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Abstract: The analysis of data collected from various recreational activities and professional sports is essential to obtain 
more information on the activity in question or to make better data-driven decisions. Most literature related 
to offside detection related to the efficacy of manual offside detection or the use of an offside detection 
algorithm. In this study, the focus shall be on the detection of offside judgements in football/soccer using 
ensemble learning approaches such as random forest type algorithms, boosting type algorithms and majority 
voting. For random forests, we also consider three corresponding extensions: regularized random forests, 
guided regularized random forests, and guided random forests. Moreover, five boosting approaches are 
considered, namely: Discrete AdaBoost, Real AdaBoost, Gentle AdaBoost, Gradient Boosting and Extreme 
Gradient Boosting. Gentle AdaBoost is the best performing model on most metrics, except for sensitivity, 
where Extreme Gradient Boosting performs best. Furthermore, soft majority voting among the models 
considered is capable of improving the Cohen’s Kappa and the F1 score but does not provide improvements 
on other metrics.

1 INTRODUCTION 

The offside rule in football is considered to be one of 
the most complex and critical rules that a referee has to 
abide by during a match. It is primarily enforced by two 
referees, one for each side of the pitch, known as 
linesmen or assistant referees. Each linesman runs on 
one side of the pitch from the half-way line up to the 
goal line and is the referee in charge of enforcing the 
offside rule for his side of the pitch. Rules in football 
are defined in the Laws of The Game (LOTG), 
maintained by the International Football Association 
Board (IFAB), which consists of 17 different laws. 
Law 11 concerns the offside rule which explicitly 
defines an offside offence in the game of football and 
how it should be enforced by the referees. The law 
states that a player is in an offside position if any part 
of the head, body or feet of such player is in the 
opponents’ half of the pitch and closer to the attacking 
goal line than the ball and the penultimate member of 
the defending team. The player in an offside position is 
only penalised for the offence if such player touches or 
plays the ball, interferes with an opponent by 
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preventing them from playing the ball, obstructs an 
opponent from the ball, challenges an opponent for the 
ball, or impacts an opponent’s ability to play the ball in 
any other way. Since offside detection by a referee is 
subject to human error, the assistance of computational 
means to detect offside are of utmost importance.  As 
shall be seen in the literature review, most literature in 
this aspect focus on the use of an offside detection 
algorithm. In this study, an alternative focus on 
machine learning techniques is taken. Images taken 
from a broadcasted television camera are used for 
offside detection. The images do not consider whether 
a player is interfering with play or not, as the referee 
can easily take this decision. Therefore, the aim of this 
study is to identify whether an attacking player’s head, 
shoulders, hips, knees or feet are in an offside position 
at the time the image is taken or the video is stopped. 

2 LITERATURE REVIEW 

Several authors studied the manual accuracy of 
assistant referees for offside judgement in football 
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(Oudejans et al., 2005; Helsen et al., 2006; Gilis et al., 
2008; Catteeuw et al., 2010). These authors conclude 
that, in a significant number of cases (between 17-
33%), the judgment given by these referees was 
erroneous. Moreover, it has also been established that 
during the first 15-minute match period, the error in 
judging offside is significantly higher than in other 
match periods, with a percentage error of 38.5%. 
(Helsen et al., 2006). In one of the earliest studies 
investigating the applicability of mathematical 
concepts for offside detection, a multiple camera 
system and an offside detection algorithm was used 
in real-time was by (D'Orazio et al., 2009). This led 
to a classification accuracy of 77.8%.  Another article 
concludes that the most suitable form for offside 
detection is camera-based player tracking, with a 
decrease in accuracy error of around 40% (Henderson 
et al., 2014). The use of contour mapping to identify 
players that are in an offside position has also been 
applied (Patil et al., 2018). An infrared camera system 
and a MATLAB script were also used to detect 
offside (Lopez and Jenkins, 2019). The system had no 
misclassification errors, however, the players had to 
wear several reflective markers and the system may 
confuse one player with another. The dataset we shall 
use in this paper has also been used (Panse and 
Mahabaleshwarkar, 2020). In this paper, TV-
broadcasted images and a vanishing point algorithm 
were used to identify the playing area. DBSCAN and 
the k-means clustering algorithms were used to 
classify players into teams. An offside detection 
algorithm was also constructed to detect offside from 
the collected dataset, giving an F1 score of 0.85. 
Another study used two cameras and several 
algorithms to construct the dataset, followed by an 
offside detection algorithm. They obtained precision, 
recall and F1 scores between 0.6 and 0.67 (Uchida et 
al., 2021). Finally, the use of multiple cameras and 
several algorithms to establish the players' positions, 
followed by an offside detection algorithm 
conditioned on the players' positions, has also been 
studied (Siratanita et al., 2021). The accuracy was of 
98.5%. Despite much of the literature focusing on the 
use of an offside detection algorithm, none of the 
literature found looked into the use of machine 
learning techniques to detect offside, in particular 
ensemble learning approaches. Ensemble learning 
methods combine the prediction of multiple models 
to provide a combined output. In this paper, we look 
at the use of these methods to determine whether 
these can offer an improvement over both linesmen 
and the oft resorted to offside detection algorithm.  
 

3 METHODOLOGY 

In this section we shall go through a number of 
ensemble learning approaches which we will make use 
of in this paper. The first is random forests (RF), 
which uses the bagging approach (also known as 
bootstrap aggregating), to train multiple decision trees 
which are then eventually considered collectively to 
obtain a predictive model (Breiman, 2001). Aside from 
the bagging step, random forests also require two 
settings - the number of variables randomly sampled as 
candidates at each split and the minimum number of 
vectors of observations in the terminal nodes. In 
random forests, the splits are determined using the Gini 
impurity. In regularised random forests (RRF), the 
impurity decrease of variables which have not yet 
been used in any of the trees of the random forest is 
penalised by a coefficient of regularisation 𝜐 (Deng 
and Runger, 2012). Therefore, a feature which has not 
yet been selected in any of the nodes in the forest 
needs to have a high impurity decrease to be selected 
for the split. Further extensions include guided 
regularized random forests (GRRF) and guided 
random forests (GRF). In guided regularized 
random forests, the penalisation parameter is not kept 
constant for all features, but is a function of the 
importance in a previously trained random forest. We 
thus have two important parameters, 𝜐 and 𝜏, where 𝜏 
is a coefficient of importance (Deng and Runger, 
2013). Guided random forests, on the other hand, set 
the penalisation parameter 𝜐 = 1 and rely solely on 
the coefficient of importance (Deng, 2013). 

The class of random forest algorithms represents 
one type of ensemble learning, where multiple trees 
are generated, trained in parallel, and combined at a 
later stage. Another class of algorithms are boosting 
algorithms. In this case, classifiers are trained 
sequentially, and the most recent classifier is trained 
depending on the previous classifier.  One of the 
earliest known boosting classifiers is discrete 
AdaBoost (Freund and Schapire, 1997). In discrete 
AdaBoost, each observation is initially given equal 
weighting, but then at every iteration, each classifier 
is given a new weighting depending on the 
classification error, based on the exponential loss 
function. This is repeated for a set number of 
iterations until a final classifier is given. An extension 
to discrete AdaBoost is real AdaBoost (Friedman et 
al., 2000) which uses class probabilities instead of 
discrete classes in the computation of the weights. 
Finally, we also have gentle AdaBoost, where direct 
optimisation of the exponential loss is replaced by 
Newton’s method (Friedman et al., 2000). In these 
three cases, the number of trees (iterations of the 
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algorithm) 𝐵, the maximum depth of each tree, the 
shrinkage parameter 𝛼  and the subsampling rate 𝜗 
are all important parameters of these algorithms. 
Gradient Boosting, on the other hand, is an 
alternative boosting approach that uses pseudo 
residuals as target variables to build trees rather than 
the classifiers themselves (Friedman, 2001). 
Extreme Gradient Boosting, also referred to as 
XGBoost, uses the number of leaves in the tree at the 
current iteration and L2 regularisation with the loss 
function, and is known to achieve better accuracy at 
higher speeds (Chen and Guestrin, 2016). Important 
parameters of both algorithms are: the number of 
boosting iterations 𝐵, the maximum tree depth, the 
minimum number of vectors of observations in the 
terminal nodes of each tree, the shrinkage parameter 𝛼the subsampling rate 𝜗 and the column subsampling 
rate 𝜖. Additionally, XGBoost also has regularisation 
coefficients 𝛽  and 𝜂  which are associated with the 
number of leaves and L2 regularisation term. An 
extension to XGBoost is XGBoost with dropout, 
where a fraction of the trees, 𝜃 ∈ [0,1], are dropped 
at each iteration. Also, one can also specify a 
probability 𝜆 ∈ [0,1] which defines whether the tree 
dropout technique is used. 

Following this overview of the types of methods 
and relevant parameters which will be assessed in this 
paper with the aim of offside detection, a description 
of the dataset under study shall be given, after which 
detail about the grid search for the model parameters 
shall be provided. This is followed by the chosen 
parameters based on the different models’ Cohen’s 
Kappa, and in the end, the different performance 
criteria of the different models shall be analysed. 

4 APPLICATION 

4.1 Dataset 

The dataset used for this analysis contains several 
images taken from publicly broadcasted videos on 
television (Panse and Mahabaleshwarkar, 2020). 
Moreover, a pose estimation algorithm was used to 
detect the body parts of each player in the image and 
convert them to x-y coordinates (Bridgeman et al., 
2019). The x-y coordinates of the head, shoulders, 
hips, knees and feet for each player in the frame are 
obtained using the mentioned pose algorithm. All the 
images are 2560 by 1440 pixels and the x-y 
coordinates are the pixel coordinates of the respective 
players and body parts. The DBSCAN and the k-
means clustering algorithms to detect the goalkeeper 
and referee and classify players into teams. 

Specifically, since the DBSCAN algorithm also 
classifies noisy data, it was used to detect the 
goalkeeper and the referee in the frame, while the k-
means algorithm was used to classify the players into 
teams (Panse and Mahabaleshwarkar, 2020). 
Following this, each row of data is therefore an image 
with several numerical variables indicating the 
coordinates of each body part of the players. Since 
there are 10 players in each team (excluding the 
goalkeeper), 9 body parts and 2 coordinates (x and y), 
there are 180 variables for each team. The defending 
goalkeeper includes a further 18 variables in the 
dataset, together with the target variable indicating 1 
for offside and 0 otherwise. This gives a total of 379 
variables. 

 

 
Figure 1: An example on the use of the camera_angle 
variable and the solution to the missing data problem. 

Evidently, a broadcasting camera does not capture the 
whole football pitch and a camera is directed manually. 
Because of this, a camera placed on the side of the pitch 
between the two halves does not include all the players 
in the frame, leading to missing data in the dataset, 
corresponding to players which are not in the frame. To 
cater for this, an additional binary variable was created 
indicating the camera’s direction, denoted as 
camera_angle, which can either be showing the left or 
the right-hand sides of the pitch. This variable takes the 
value 0 if the camera is directed to the left or the value 
1 if the camera is directed to the right. As an example, 
consider the two-dimensional image in Figure 1 
(taking camera_angle as 1), where Area B is the area 
being captured by the broadcasting camera while Areas 
A and C are the remaining areas not captured by the 
camera. Using the camera_angle variable, the missing 
x-y coordinates for the missing players were taken as 
the coordinates on the far bottom left or the far bottom 
right of the frame. Specifically, the x-coordinate when 
the camera is directed to the left is taken as 2560 (i.e., 
far right) while the x-coordinate when the camera is 
directed to the right is taken as 0 (i.e., far left). The y-
coordinate is taken constantly for both cases as 1440, 
representing the bottom of the frame. This is also 
depicted in the example of Figure 1, where the 
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coordinates of the players in Area A are taken as the 
furthest position to the bottom left of Area B, 
represented by the purple point. This applies to all 
variables characterizing different body parts. In this 
way, the missing data problem for the players is 
eliminated and the new coordinates are not affecting 
the offside decision. 

Another missing data problem was present for the 
defending goalkeeper, where the frame of several 
images was slightly to the right or to the left and the 
goalkeeper was out of the frame. The position of this 
goalkeeper is significant to the offside decision and 
thus, the variable indicating the camera direction was 
used again to input the respective coordinates. 
Particularly, if the camera is directed to the left and the 
goalkeeper’s coordinates are missing, the x-coordinate 
of the goalkeeper is taken as 0 (i.e., far left) and is taken 
as 2560 (i.e., far right) if the camera is directed to the 
right. The y-coordinate is taken as 720, indicating that 
the goalkeeper is in the middle of the frame. This is 
also pictured in Figure 1, where the out-of-frame 
defending goalkeeper has been given the rightmost 
coordinates. As done for the missing data problem for 
the players, this solution was applied to all variables 
characterizing different body parts. The camera_angle 
variable indicating the camera’s direction shall also be 
included in the models during training.  

The names of the features in the dataset for the 
players are in the form A-B-Γ-E, where 𝛢 ∈ {1, 2} for 
the two different teams, 𝐵 ∈ {0, 1, …, 9} denotes the 𝐵 th left-most player in team Α , 𝛤 ∈ { 0, 1, …, 8 } 
denotes the Γth body part of player Β in team Α, while 𝐸 ∈ {x, y} is either the x or y coordinate of body part Γ 
of player Β  in team Α . Note that Team 1 is taken 
constantly as the team attacking from the left to the 
right side of the pitch. Thus, if camera_angle = 0 (i.e., 
the camera is directed to the left side of the pitch), 
Team 1 denotes the defending team, and if 
camera_angle = 1 (i.e., the camera is directed to the 
right side of the pitch), Team 1 denotes the attacking 
team.  Moreover, for the set 𝛤, 0 denotes the player’s 
head, 1, 2, 3 and 4 denote the player’s left shoulder, 
hip, knee, and foot respectively, while 5, 6, 7 and 8 -
denote the player’s right foot, knee, hip and shoulder 
respectively. As an example, the variable Team1-0-2-
x is the x-coordinate in the frame of the left hip of the 
left-most player of team 1. The goalkeeper variable 
names follow a similar but simpler structure. 
Specifically, the variable takes the form GK-Γ-E, 
where the sets 𝛤 and 𝐸 are as defined previously for 
the players. As an example, GK-6-y denotes the y-
coordinate in the frame of the right knee of the 
defending goalkeeper. 

The data is imbalanced since only 26.5% of the 
images include at least one player in an offside 
position. Python’s imblearn library was used to apply 
SMOTE-NC on this dataset. In the balanced dataset, 
69.31% of the vectors of observations are used for 
training while the remaining 30.69% are used for 
testing, where 192 vectors of observations are used for 
training for each class. 

4.2 Model Parameters for Grid Search 

The model parameter sets used for grid search shall 
now be discussed. For all the models to be trained, 3-
fold cross-validation shall be used, and the vectors of 
observations in each of the folds are the same across all 
models. This was done to reduce any bias and to keep 
equal conditions between different models for 
comparison. Cohen’s Kappa shall be the performance 
metric utilised to identify the optimal hyperparameters 
across different models in the grid search, since equal 
importance is given to all the classes and no class’s 
performance needs to be optimised more than the other 
classes. The well-known R package caret shall be used 
for generic model training. The package easily trains 
different models from different packages by tuning 
hyperparameters using 𝐾 -fold cross-validation, and 
then chooses the best performing model depending on 
a defined metric. 

Random Forest 
For the random forest, the randomForest package is 
used, where two hyperparameters are optimised; the 
number of variables randomly sampled as candidates 
at each split and the minimum number of vectors of 
observations in the terminal nodes. A grid search is 
conducted where the number of variables sampled is 
taken from the set {5, 6, 7, …, 18, 19, 20, 35, …, 350, 
365, 379} with a total of 40 different values. The values 
for the minimum number of vectors of observations in 
the terminal nodes are taken from the set {1, 3, 6, 9, 
12 } . Therefore, there are a total of 200 different 
combinations in the grid. The number of trees in the 
random forest is fixed at 500, since the prediction error 
of a random forest goes to a limiting value almost 
surely as the number of trees increases (Breiman, 
2001). Thus, setting the number of trees to 500 is 
adequate for our problem. 

RRF, GRRF and GRF 

The RRF package has been created to apply the 
extensions to random forests (Deng and Runger, 
2012; Deng and Runger, 2013; Deng, 2013). For all 
RRF, GRRF and GRF, the number of trees shall also 
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be fixed at 500 and the number of variables randomly 
sampled for splits is optimised as in random forests. 
Moreover, 𝐶 and the coefficient of importance 𝜏 are 
optimised as follows. For RRF, 𝜐 is optimised from {0.1, 0.2, …, 0.9, 1} and 𝜏 is kept constant at 0. For 
GRRF, both 𝜐 and 𝜏 are optimised from {0, 0.1, 0.2, 
…, 0.9, 1}, but excluding the combination (𝜐, 𝜏) =( 0,0). For GRF, 𝜐  is kept constant at 1 and 𝜏  is 
optimised from {0, 0.1, 0.2, …, 0.9, 1}. Thus, for 
RRF, there are a total of 400 combinations of 
different model parameters to consider while 4800 
model combinations are available for GRRF and 440 
different parameter combinations for GRF.  

Discrete, Real and Gentle AdaBoost 

For the three AdaBoost algorithms, the ada package 
implementation in caret shall be used. The number of 
trees 𝐵 , the maximum depth of each tree, the 
shrinkage parameter 𝛼  and the subsampling rate 𝜗 
are all parameters which need to be optimised. 
AdaBoost was initially created to work on weak 
learners and decisions stumps, indicating that the 
maximum depth should be 1. However, when 
considering trees with a maximum depth of 1 (thus 
having a boosted model consisting of weak learners) 
the models performed significantly worse than those 
with a depth greater than 1. Therefore, stronger 
learners with an increased tree depth will be 
considered. For each of the three AdaBoost models, 
the number of trees 𝐵 shall be optimised from the set { 100, 200, …, 900, 1000 }  while the shrinkage 
parameter 𝛼 and the subsampling rate 𝜗 shall both be 
optimised from the set {0.25, 0.5, 0.75, 1}. The set of 
tree depth values to be optimised shall be {3, 5, 7, 9}. 
Thus, the grid consists of 640 combinations.  

Gradient Boosting and Extreme Gradient Boosting 

The caret implementation of the h2o package in R shall 
be used for the implementation of Gradient Boosting, 
where the logistic loss function is used for binary 
classification. More information on other loss 
functions available here (Click et al., 2022). The 
number of boosting iterations 𝐵  shall be optimised 
from the set {100, 200, …, 500}, the maximum tree 
depth shall be taken from {3, 5, 7}, while the minimum 
number of vectors of observations in the terminal 
nodes of each tree shall be optimised from the set {3, 
6, 9, 12 } . Additionally, the optimal value for the 
shrinkage parameter 𝛼  will be obtained from the set {0.05, 0.1, 0.25, 0.5}, while the best values for both the 
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subsampling rate 𝜗 and the column subsampling rate 𝜖 will be taken from {0.5, 0.75, 1}. This gives 2160 
different combinations in our grid search. Thus, due 
to 3-fold cross-validation, 6480 models need to be 
trained. 

For Extreme Gradient Boosting, two different grid 
searches shall be created. The first approach is the 
simple Extreme Gradient Boosting without the tree 
dropout while the second approach includes tree 
dropout. The xgboost R package shall be used in this 
study, which caters for both extreme gradient boosted 
trees and the corresponding dropout version. For the 
first approach, the seven different parameters are 
optimised as follows; the number of boosting iterations 𝐵 is optimised from the set {50, 100, 150, 200, 300}, 
the maximum tree depth is optimised from the set {3, 
5, 7, 9}, the shrinkage parameter 𝛼 is optimised from 
the set {0.05, 0.1, 0.25, 0.5}, the subsampling rate 𝜗 
and the column subsampling rate 𝜖 are both optimised 
from the set {0.5, 0.75, 1} , the coefficient 𝛽  which 
determines the influence of 𝑀௕ is optimised from the 
set {0, 1}, and the coefficient 𝜂 which determines the 
influence of the L2 regularization term is optimised 
from the set {0.5, 1, 2}. This gives a total of 4320 
different combinations in the grid search. In the second 
approach, the 4320 combinations used in the first 
approach are once again considered, together with the 
optimisation of the dropout fraction 𝜃 and the dropout 
probability 𝜆  from the set { 0.25, 0.5 } . Thus, the 
optimal model is obtained from 17280 combinations. 

4.3 Statistical Models 

In this section, the models for offside detection are 
trained using the training offside dataset and 
optimised using the hyperparameter sets. Cohen’s 
Kappa shall be considered when training and testing 
models as the cost of incorrectly classifying a non-
offside case is equal to the cost of incorrectly 
classifying an offside case. Other testing metrics 
including the accuracy, sensitivity and specificity are 
given at the end of the section after the models have 
been trained, wherein a comparison of the models and 
feature importance are considered. Due to space 
limitations, the reason for hyperparameter choice and 
the figures plotting the performance results for 
hyperparameter optimisation using grid search are 
given in the supplementary material1.  
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Random Forest 

For random forests, lower values for the minimum 
number of vectors of observations in the terminal 
nodes give a slightly better model and, more 
evidently, increasing the number of variables sampled 
declines the performance of the model. The optimal 
set of parameters is 6 for the number of variables 
sampled and 3 for the minimum number of vectors of 
observations in terminal nodes, giving an average 
validation performance of 0.443. Training a model on 
the full training set using the two optimal parameters 
gives a training accuracy of 100% and a Kappa of 1, 
indicating that all training vectors of observations are 
classified correctly. This shows that, despite the 
implementation of parameter tuning, some overfitting 
may still be present in the trained model. Testing the 
model on the testing set leads to a Kappa of 0.488. 
The prediction error of a random forest goes to a 
limiting value almost surely as the number of trees 
increases. 

RRF, GRRF and GRF 

For RRF, it can be noted that higher values for the 
coefficient of regularization drastically improve the 
performance of the models. The values 0.9 and 1 are 
similar in terms of performance while values in the 
range [ 0.1, 0.6 ]  are shown to have poor model 
performance. Recall that 𝜐 =  1 gives the standard 
random forest, meaning that low regularization 
parameters are not beneficial for this dataset. The 
optimal model obtained has 𝜐 = 0.9 and the number 
of variables sampled equal to 11, giving an average 
validation performance of 0.398 when considering 
the Kappa metric. Training using the mentioned 
optimal parameters on the whole training set gives a 
model which predicts all training vectors of 
observations correctly, indicating some overfitting 
once again. Furthermore, testing the model on the 
testing set gives a Kappa of 0.410. 

Three parameters shall be optimised when 
considering the GRRF approach, the two coefficients 
and the number of variables sampled. Lower values 
for both the coefficients lead to a more dispersed set 
of line graphs, indicating that taking one of the 
coefficients close to 1 leads to similar models 
irrespective of the other coefficient. Moreover, 
different values for the number of variables sampled 
does not seem to be affecting model performance as 
the line graph is consistent across the x-axis. The 
optimal set of parameters is given by (𝜐, 𝜏) = (0.8, 
0.3), with the number of variables sampled equal to 
350, giving an average Kappa validation metric of 

0.430. Training a model on the optimal parameters 
and applying it on the full dataset leads to an accuracy 
of 100%, predicting all training vectors of 
observations correctly. Despite this, testing the model 
on the testing set gives a Kappa of 0.410. Once more, 
due to the significant decrease in performance from 
the training set to the testing set, model overfitting 
which was not eliminated from parameter tuning may 
still be present. 

The final extension to random forests which still 
needs to be considered is GRF. Increasing the number 
of variables sampled reduces the model performance, 
with higher values for the coefficient of importance 
leading to a more accelerated decline in the Kappa 
metric. Despite this, all variations of the coefficient 
lead have similar performance for low values of the 
number of variables sampled during splits. The 
optimal average validation Kappa is given when 𝜏 = 
0.8 and the number of variables sample is equal to 5. 
Training these parameters on the full training set 
produces a model with an accuracy of 100% once 
more. Testing the model on the testing set gives a 
Kappa of 0.559. 

Comparing the three models, the RRF and GRRF 
models performed equally well on the testing set, 
predicting 17 offsides out of the total 32 and 122 
onsides out of 138. However, the GRF performed 
slightly better in predicting both the offside and 
onside images, with 18 offsides detected and 131 
onsides. Moreover, the performance of the GRF is 
marginally better than the standard random forest, 
with 4 more images classified correctly. This 
indicates that, contrary to RRF and GRRF, the GRF 
approach may have a slight advantage over standard 
random forests for this offside detection dataset. 
Next, the focus shall move on to boosting, where 
Discrete, Real and Gentle AdaBoost are considered. 

Discrete, Real and Gentle AdaBoost 

The optimal model for Discrete AdaBoost has a 
shrinkage parameter of 1, a subsampling parameter of 
1, includes just 100 trees and a maximum tree depth 
of 3. The average validation Kappa performance for 
this model is given by 0.417. Similar to the random 
forest model, the Discrete AdaBoost model has a 
100% accuracy on the training set, whereas testing the 
same model on the testing set gives a Kappa of 0.428, 
incorrectly predicting 34 vectors of observations. 

The Real AdaBoost approach performed similarly 
in terms of validation performance as the optimal 
model having a shrinkage parameter of 0.5, a 
subsampling parameter of 0.25, a maximum tree 
depth of 5 and 100 trees gives an average Kappa of 0.409. 
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The performance of models with a subsampling value 
of 1 or the combination (𝛼, 𝜗) = (1, 0.25) seems to 
differ over different maximum tree depths whereas 
the other combinations do not suggest such difference 
over distinct tree depths. As in discrete AdaBoost, the 
model gives a perfect prediction over the training set. 
Fitting the model on the testing set provides a Kappa 
of 0.408. The Real AdaBoost model performed well 
in predicting onside however only half of the offside 
images where correctly predicted. This translates to a 
15.63% lower performance in predicting the positive 
class. 

Finally, for Gentle AdaBoost, the optimal model 
has a shrinkage parameter of 0.25, a subsampling 
parameter of 0.25, a maximum tree depth of 7 and 
includes 200 trees. This model gives an average 
validation Kappa of 0.417 and, once again, a 100% 
accuracy on the full training set. With a testing Kappa 
of 0.668, only 5 offside and 11 onsides where 
incorrectly classified in the testing set, indicating that 
Gentle AdaBoost is the best performing technique up 
till now. 

Gradient Boosting and Extreme Gradient Boosting 

The optimal validation Kappa of 0.352 is obtained 
when the number of trees is the boosted model is 100, 
the maximum tree depth is 5, the minimum number 
of vectors of observations in the terminal nodes is 9, 
together with a shrinkage of 0.1, a subsampling 
parameter of 0.5, and a column subsampling 
parameter 0.75. This optimal model gives an accuracy 
of 99.74% with just one vector of observations 
classified incorrectly. As noted in the previously 
trained models, overfitting may once again be present 
in the Gradient Boosting model. Upon testing the 
constructed model, a testing Kappa of 0.519 is 
derived. This shows that Gradient Boosting is a very 
valid technique on this dataset, performing quite well 
on the testing dataset.  

A value of 1 is the worst performing value for both 
the subsampling and column subsampling 
parameters. There does not seem to be a significant 
difference between the values of 0.5 and 0.75, and the 
performance is somewhat constant across the 
different number of trees for most of the 
combinations. Moreover, different values for 
maximum tree depth also do not seem to be affecting 
model performance. It is clear that the higher 
shrinkage values of 0.25 and 0.5 perform worse than 
the lower values of 0.05 and 0.1. Additionally, the 
performance is constant across different number of 
trees and does not depend on the L2 regularization 
coefficient as the Kappa metric does not seem to 

change with the mentioned coefficient. Despite this, 
the coefficient for the number of terminal nodes 
regularization parameter does seem to impact the 
performance as the value 0, i.e., not including this 
regularization term, leads to a better Kappa 
performance when compared to the value of 1, i.e., 
including the mentioned regularization term. 

The optimal combination has an average validated 
Kappa metric of 0.391, where the number of boosting 
iterations 𝐵 is 50, the maximum tree depth is 5, the 
shrinkage parameter 𝛼 is 0.1, the subsampling rate 𝜗 
and the column subsampling rate 𝜖 are both 0.75, the 
coefficient 𝛽 which determines the influence of 𝑀௕ is 
0, and the coefficient 𝜂  which determines the 
influence of the L2 regularization term is 1. Training 
a model on this set of parameters on the full training 
set, a model predicting all training vectors of 
observations correctly is once again obtained, 
indicating that, despite all the regularization measures 
taken in Extreme Gradient Boosting, overfitting may 
still be present. Testing the trained model on the 
testing set, a Kappa of 0.541 is derived. 

For extreme gradient boosting with dropout, 
17280 parameter combinations have been considered. 
For the column subsampling parameter, the value of 
0.5 seem to be performing better than the other two 
values and for the subsampling parameter, the value 
0.75 seems to give the better averaged performance. 
With regard to maximum tree depth, there does not 
seem to be a significant difference between the 
different values, however a maximum tree depth of 3 
gave a lower performance in five of the nine 
combinations of the two subsampling parameters. 

Different values for the L2 regularization 
coefficient do not seem to influence the performance 
of the model, however the value 0 for the number of 
terminal nodes regularization coefficient slightly 
improves the performance of the model. Moreover, 
for lower number of trees, the shrinkage value of 0.05 
performs the worst compared with other values, 
however improves when the number of trees 
increases. Different values for the two dropout 
parameters do not seem to be significantly affecting 
the performance, however increasing the number of 
trees is beneficial and the performance seems to 
converge between 150 and 200 trees. Following this, 
the optimal validation performance obtained 
corresponds to the model with 300 boosting 
iterations, a maximum tree depth of 5, a shrinkage 𝛼 
of 0.05, a subsampling rate 𝜗  of 0.75, a column 
subsampling rate 𝜖 of 0.5, a coefficient 𝛽 of 0 (which 
determines the influence of 𝑀௕), a coefficient 𝜂 of 0.5 
(which determines the influence of the L2 
regularization term), a dropout fraction 𝜃 of 0.25 and 
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a dropout probability 𝜆  also of 0.25. This 
combination gives a validated Kappa of 0.396. 
Training a model on the full training set using the 
mentioned parameter gives a model predicting 
99.48% of the training vectors of observations 
correctly with just one vector of observations in each 
class classified incorrectly. Moreover, testing this 
model gives a testing Kappa of 0.473. 

Comparing the approach without dropout with the 
one with dropout, the first approach performed better 
on the testing set than the corresponding dropout 
version. Although several regularization parameters 
are being considered, overfitting may still be present 
in all the two models as the training performance are 
relatively high compared to the testing ones. The 
introduction of just two additional values in each of 
the two dropout parameters presented another 
computational challenge as this multiplied the 
number of models to be trained in the grid search by 
4. Apart from taking weeks to finish the dropout 
model, the memory required to store the model 
outputs needs also to be taken into consideration as 
these grids need to be split and saved separately to 
avoid out-of-memory problems. This is also a 
limitation as more combinations can be considered to 
better optimise model performance. Moreover, tree 
dropout seems to decrease model performance for this 
dataset and the slightly simpler Extreme Gradient 
Boosting without dropout is preferred. 

Model Comparisons and Variable Importance 

Next, the testing performances for each model are 
presented and discussed. Table 1 summarises several 
binary performance metrics, including the accuracy, 
the precision and sensitivity, together with the F1 
score and specificity.  

The Gentle AdaBoost model clearly performed 
best on the testing set, obtaining the highest 
performance in all but one metric. According to the 
accuracy metric, the second-best model is the GRF, 
followed by the gradient boosted one. However, the 
F1 score depict a slightly different picture since, 
according to this metric, the Extreme Gradient 
Boosting model is the second-best model, followed 
by GRF. 

Table 1: Testing performance metrics for each model 
considered for the offside dataset. RF is random forest, RRF 
is regularized random forest, GRRF is guided regularized 
random forest, GRF is guided random forest, DA is discrete 
AdaBoost, RA is real AdaBoost, GA is Gentle AdaBoost, 
GB is gradient boosting, EGB is extreme gradient boosting, 
EGBD is extreme gradient boosting with dropout, A is 
accuracy, P is precision, Se is sensitivity, Sp is specificity. 

A P Se F1 Sp 
      

RF 0.853 0.630 0.531 0.576 0.928 
RRF 0.818 0.515 0.531 0.523 0.884 
GRRF 0.818 0.515 0.531 0.523 0.884 
GRF 0.876 0.720 0.563 0.632 0.949 
DA 0.800 0.477 0.656 0.553 0.833 
RA 0.824 0.533 0.500 0.516 0.899 
GA 0.906 0.808 0.656 0.724 0.964 
GB 0.871 0.727 0.500 0.593 0.957 
EGB 0.841 0.558 0.750 0.640 0.862 
EGBD 0.818 0.512 0.688 0.587 0.848 

 
The sensitivity metric, which can be considered as the 
accuracy of a model on the positive class (i.e., the ratio 
of the true offsides to all of the offsides), was the only 
metric which Gentle AdaBoost did not perform the 
best in. Extreme Gradient Boosting performed better in 
terms of the sensitivity metric, with 75% of the testing 
positive cases classified correctly. 

With regards to the random forest and its 
extensions, GRF improved the performance over the 
standard random forest, however, the other two 
extensions diminished the performance by 3.5% 
accuracy. Moreover, for Extreme Gradient Boosting, 
the dropout extension does not seem to improve on the 
model without dropout as all the metrics indicate a 
reduction in performance. 

For variable importance, a type of ensemble is 
proposed to consider all the models together. For both 
random forests and boosting, the change in node purity 
is utilised (Breiman, 2001), where the importance is 
estimated as the average of the total decrease in node 
impurities from the splits in the decision nodes over all 
the trees in the ensemble. To estimate the importance 
of each variable across all models, the importance 
vectors of the 14 models are combined into a 379 × 14 
matrix which is then scaled by dividing the importance 
of each model by its standard deviation. Note that the 
importance vectors are only scaled and not centred as 
this will lead to negative importance for variables with 
an importance of 0 (i.e., not used in the model). 
Following this, the importance of each variable is 
summed across all models, leading to a total variable 
importance vector of size 379. 
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Table 2 shows the top 20 attributes of the total 
variable importance vector. The most important 
variable is GK.4.x, which corresponds to the x-
coordinate of the left foot of the goalkeeper, followed 
by Team1.3.3.x, corresponding to the x-coordinate of 
the left knee of the third leftmost player of the team 
attacking from left to right in the image. The reason 
for the importance of the GK.4.x attribute is 
understandable and expected as the position of the 
goalkeeper is crucial for offside judgement in the 
majority of cases. The other variables are much less 
important than GK.4.x, indicating that this is by far 
the most dominant variable. The difference in 
importance between the other attributes is 
considerably less pronounced and all seem to provide 
approximately equal contribution. One can also 
notice that 8 out of the top 10 attributes correspond to 
the x-coordinate, which is slightly expected as the 
offside line is primarily dependant on the horizontal 
position of the players. Moreover, another conclusion 
from variable importance is the significance of the 
coordinates of the players’ head and left shoulder and 
left knee (body parts 0, 1 and 4), which are part of 9 
out of the top 10 attributes. 

Table 2: Twenty of the most important attributes calculated 
by first considering the 14 models, then scaling and 
summing the variable importance (Var. Imp.) for each 
model. Refer to Section 4.1 for interpretation of attribute 
abbreviation. 

Attribute Var. Imp. Attribute Var. Imp.
GK-4-x 46.150 GK-6-x 16.655

Team1-3-3-x 26.320 Team2-1-1-y 16.417
Team1-2-0-x 21.350 Team2-0-1-x 16.285
Team2-2-1-x 20.455 Team2-2-2-y 16.266

GK-1-y 20.282 Team2-0-7-y 15.120
Team2-0-4-y 20.281 Team2-1-0-y 14.950
Team1-3-0-x 20.058 GK-2-x 14.841
Team2-0-0-x 17.584 Team1-3-1-x 14.536
Team1-3-5-x 17.409 Team2-1-8-y 14.324
Team2-3-4-x 17.065 Team1-3-2-x 14.219

The scaled feature importance for each of the models 
separately are given in the supplementary material. 
The variable importance for the RF, RRF, GRRF and 
GRF models do not seem to follow any particular 
pattern, however the guided approaches to random 
forests (GRRF and GRF) utilised the GK.4.x variable 
more than the two other bagging approaches. For the 
Discrete, Real and Gentle AdaBoost models, these 
techniques seem to signify that the three leftmost 
players (for both teams) in the dataset are the most 
influential. This may be due to the images not 
including all the players and thus focusing on the first 

two to three players of each team. In the case of 
Gentle AdaBoost, this model utilises the goalkeeper 
coordinates the most. For Gradient Boosting, 
Extreme Gradient Boosting, and Extreme Gradient 
Boosting with dropout, these three techniques all 
provide a different view on which attribute is the most 
important. Despite this, the three models indicate that 
the x-coordinate is more useful than the y-coordinate 
of the players in the image. In the next section, a soft 
majority approach shall be applied.  

5 SOFT MAJORITY VOTING 

In soft majority voting, the class predicted 
probabilities from the 𝑑 different models are used to 
obtain the final predicted probabilities. The latter are 
directly obtained by taking the average of the former. 
Formally, let 𝓅௝௟ be the class probability for model 𝑗 
for a vector of observations predicted as class 𝑙. Then, 
the predicted class 𝑦ො(ௌெ௏) produced by soft majority 
voting is given by 𝑦ො(ௌெ௏) = argmax௟ୀ(ଵ,…,௅) ଵௗ ∑ 𝓅௝௟ௗ௝ୀଵ . 
Table 3: Testing set summary table for soft majority voting. 
GA denotes Gentle AdaBoost, EGB denotes Extreme 
Gradient Boosting, A is accuracy, K is Kappa, P is 
precision, Se is sensitivity, Sp is specificity. 

A K P Se Sp F1

Single 
Model 

Perform.
0.906
(GA)

0.668
(GA)

0.808 
(GA) 

0.750 
(EGB) 

0.964 
(GA) 

0.724 
(GA) 

Top 2 0.906 0.668 0.808 0.656 0.964 0.724
Top 3 0.906 0.668 0.808 0.656 0.964 0.724
Top 4 0.894 0.636 0.750 0.656 0.949 0.700
Top 5 0.894 0.636 0.750 0.656 0.949 0.700
Top 6 0.900 0.661 0.759 0.688 0.949 0.721
Top 7 0.900 0.669 0.742 0.719 0.942 0.730
Top 8 0.894 0.654 0.719 0.719 0.935 0.719
Top 9 0.906 0.684 0.767 0.719 0.949 0.742
Top 10 0.888 0.621 0.724 0.656 0.942 0.689

 
This approach is applied on the trained models from 
Section 4 in this paper. The models are first ranked 
depending on their Kappa performance on the testing 
set and the top 𝑗  models are taken for 𝑗 =2 , …,10. 
Table 3 shows the performance metrics for the soft 
majority voting ensembles. 

Comparing the underlying models to the soft 
majority voting ones, there is a slight improvement in 
the Kappa and F1 metrics. The Kappa increased from 
0.668 for the Gentle AdaBoost model to 0.689 for the 
top 9 model while the F1 increased from 0.724 for the 
Gentle AdaBoost model to 0.742, also for the top 9 
model. The accuracy does not change from the Gentle 
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AdaBoost model to the soft majority voting ensemble 
models and the sensitivity decreased when compared 
to the Extreme Gradient Boosting model. This shows 
that the effect of soft majority voting on the predictive 
abilities of the models is mixed, with some 
improvement on certain performance criteria, and 
slight deterioration in other cases. 

6 CONCLUSIONS 

In this study we have seen that ensemble learning, 
proves to be an improvement over the manual 
approach, with 9% of the decisions being erroneous, 
as opposed to 17-33% (as stated in Section 2). Gentle 
AdaBoost proves to be the most effective model 
across most performance criteria, but Extreme 
Gradient Boosting is the model with the best recall. 
Furthermore, through variable importance analysis, it 
was found that the x-coordinate of the goalkeeper’s 
foot was by far the most important, followed by other 
variables of similar contribution. When analysing the 
10 most important variables, it was generally found 
that the x-coordinate was more important than the y 
coordinate of the body parts of the respective players. 
Finally, soft majority voting managed to maintain the 
same level of accuracy, improve Cohen’s Kappa and 
the F1 score, but deteriorated the sensitivity, 
specificity and precision.  
 The ensemble approaches applied in this paper 
have generally shown to fare comparably to other 
papers discussed in the literature review in terms of 
success. If one compares the performance of an 
offside detection algorithm on the same dataset 
(Panse and Mahabaleshwarkar, 2020), it has not been 
successful in providing a better performance in terms 
of precision (0.87), sensitivity (0.91) and F1 score 
(0.85). However, given the respectable performance 
ensemble learning methods have shown in taking 
good decisions on offside situations, it would be 
worth exploring further whether ensemble learning 
methods, or other machine learning methods in 
general, can act as useful tools for this purpose, on 
their own or in conjunction with offside detection 
algorithms. 

REFERENCES 

Breiman, L. (2001). Random forests. In Machine learning, 
45(1), 5–32. Springer. 

Bridgeman, L., Volino, M., Guillemaut, J., Hilton, A. 
(2019). Multiperson 3D pose estimation and tracking in 
sports. In 2019 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition Workshops (CVPRW), 
2487-2496. IEEE Xplore. 

Catteeuw, P., Gilis, B., Wagemans, J., Helsen, W. (2010). 
Offside decision making of assistant referees in the 
English Premier League: Impact of physical and 
perceptual-cognitive factors on match performance. In 
Journal of Sports Sciences, 28(5), 471-481. Taylor & 
Francis. 

Chen, T., Guestrin C. (2016). XGBoost: A Scalable Tree 
Boosting System. In Proceedings of the 22nd ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 785–794. ACM Digital 
Library. 

Click, C., Malohlava, M., Candel, A., Roark, H., Parmar, 
V. (2022). Gradient Boosting Machine with H2O. 
H2O.ai, 7th edition. 

Deng, H. (2013). Guided Random Forest in the RRF 
Package. In arXiv.  

Deng, H., Runger, G. (2012). Feature selection via 
regularized trees. In The 2012 International Joint 
Conference on Neural Networks (IJCNN), 1-8. IEEE 
Xplore. 

Deng, H., Runger, G. (2013). Gene selection with guided 
regularized random forest. In Pattern Recognition 
46(12), 3483-3489. Science Direct. 

D'Orazio, T., Leo, M., Spagnolo, P., Mazzeo, P. L., Mosca, 
N., Nitti, M., Distante, A. (2009). An Investigation into 
the Feasibility of Real-Time Soccer Offside Detection 
from a Multiple Camera System. In IEEE Transactions 
on Circuits and Systems for Video Technology, 19(12), 
1804-1818. IEEE Xplore. 

Freund, Y., Schapire, R. (1997). A decision-theoretic 
generalization of online learning and an application to 
boosting. In Journal of Computer and System Sciences, 
55, 119–139. Science Direct. 

Friedman, J. (2001). Greedy Function Approximation: A 
Gradient Boosting Machine. In Annals of Statistics, 
29(5), 1189-1232. IMS. 

Friedman, J., Hastie, T., Tibshirani, R. (2000). Additive 
logistic regression: a statistical view of boosting (with 
discussion). In Annals of Statistics, 28(2) 337–407. 
IMS. 

Gilis, B., Helsen, W., Catteeuw, P., Wagemans, J. (2008). 
Offside decisions by expert assistant referees in 
association football: Perception and recall of spatial 
positions in complex dynamic events. In Journal of 
Experimental Psychology: Applied, 14(1), 21–35. APA.  

Helsen, W., Gilis, B., Weston, M. (2006). Errors in judging 
“offside” in association football: Test of the optical 
error versus the perceptual flash-lag hypothesis. 
Journal of Sports Sciences, 24(5), 521-528. https://doi. 
org/10.1080/02640410500298065 

Henderson, A., Lai, D., Allen, T. (2014). A Modern 
Approach to Determine the Offside Law in 
International Football. In Procedia Engineering, 72, 
138-143. Science Direct. 

Lopez, E., Jenkins, P. (2019). Offside Detection System 
Using an Infrared Camera Tracking System. In World 
Journal of Mechanics, 9(6), 163-176. Scientific 
Research Publishing. 

Can Ensemble Learning Approaches for Offside Detection Work?

43



Oudejans, R., Bakker, F., Verheijen, R., Gerrits, J., 
Steinbrückner, M., Beek, P. (2005). How position and 
motion of expert assistant referees in soccer relate to the 
quality of their offside judgements during actual match. 
In International Journal of Sport Psychology (IJISP), 
36, 3-21.  

Panse, N., Mahabaleshwarkar, A. (2020). A Dataset 
Methodology for Computer Vision based Offside 
Detection in Soccer. In 3rd International Workshop on 
Multimedia Content Analysis in Sports (MMSports’20), 
19-26. ACM. 

Patil, P.N., Salve, R.J., Pawar, K.R., Atre, P.M. (2018). 
Offside Detection in the Game of Football Using 
Contour Mapping. In International Journal of Research 
in Engineering and Science (IJRES), 6(4), 66-69.   

Siratanita, S., Chamnongthai, K., Muneyasu, M. (2021). A 
Method of Football-Offside Detection Using Multiple 
Cameras for an Automatic Linesman Assistance 
System. In Wireless Personal Communications, 118, 
1883–1905. Springer. 

Uchida, I., Scott, A., Shishido, H., Kameda, Y. (2021). 
Automated Offside Detection by Spatio-Temporal 
Analysis of Football Videos. In Proceedings of the 4th 
International Workshop on Multimedia Content 
Analysis in Sports (MMSports'21), Association for 
Computing Machinery, 17–24.  ACM. 

icSPORTS 2023 - 11th International Conference on Sport Sciences Research and Technology Support

44


