
Can Ensemble Learning Approaches for Offside Detection Work?

Kurt Dylan Buttigieg a, David Suda b and Mark Anthony Caruana c
Department of Statistics and Operations Research, University of Malta, Msida, MSD2080, Malta

Keywords: Football, Offside Detection, Random Forests, Boosting, Ensemble Learning.

Abstract: The analysis of data collected from various recreational activities and professional sports is essential to obtain
more information on the activity in question or to make better data-driven decisions. Most literature related
to offside detection related to the efficacy of manual offside detection or the use of an offside detection
algorithm. In this study, the focus shall be on the detection of offside judgements in football/soccer using
ensemble learning approaches such as random forest type algorithms, boosting type algorithms and majority
voting. For random forests, we also consider three corresponding extensions: regularized random forests,
guided regularized random forests, and guided random forests. Moreover, five boosting approaches are
considered, namely: Discrete AdaBoost, Real AdaBoost, Gentle AdaBoost, Gradient Boosting and Extreme
Gradient Boosting. Gentle AdaBoost is the best performing model on most metrics, except for sensitivity,
where Extreme Gradient Boosting performs best. Furthermore, soft majority voting among the models
considered is capable of improving the Cohen’s Kappa and the F1 score but does not provide improvements
on other metrics.

1 INTRODUCTION

The offside rule in football is considered to be one of
the most complex and critical rules that a referee has to
abide by during a match. It is primarily enforced by two
referees, one for each side of the pitch, known as
linesmen or assistant referees. Each linesman runs on
one side of the pitch from the half-way line up to the
goal line and is the referee in charge of enforcing the
offside rule for his side of the pitch. Rules in football
are defined in the Laws of The Game (LOTG),
maintained by the International Football Association
Board (IFAB), which consists of 17 different laws.
Law 11 concerns the offside rule which explicitly
defines an offside offence in the game of football and
how it should be enforced by the referees. The law
states that a player is in an offside position if any part
of the head, body or feet of such player is in the
opponents’ half of the pitch and closer to the attacking
goal line than the ball and the penultimate member of
the defending team. The player in an offside position is
only penalised for the offence if such player touches or
plays the ball, interferes with an opponent by

a https://orcid.org/0000-0002-7861-7479
b https://orcid.org/0000-0003-0106-7947
c https://orcid.org/0000-0002-9033-1481

preventing them from playing the ball, obstructs an
opponent from the ball, challenges an opponent for the
ball, or impacts an opponent’s ability to play the ball in
any other way. Since offside detection by a referee is
subject to human error, the assistance of computational
means to detect offside are of utmost importance. As
shall be seen in the literature review, most literature in
this aspect focus on the use of an offside detection
algorithm. In this study, an alternative focus on
machine learning techniques is taken. Images taken
from a broadcasted television camera are used for
offside detection. The images do not consider whether
a player is interfering with play or not, as the referee
can easily take this decision. Therefore, the aim of this
study is to identify whether an attacking player’s head,
shoulders, hips, knees or feet are in an offside position
at the time the image is taken or the video is stopped.

2 LITERATURE REVIEW

Several authors studied the manual accuracy of
assistant referees for offside judgement in football

34
Buttigieg, K., Suda, D. and Caruana, M.
Can Ensemble Learning Approaches for Offside Detection Work?.
DOI: 10.5220/0012159800003587
In Proceedings of the 11th International Conference on Sport Sciences Research and Technology Support (icSPORTS 2023), pages 34-44
ISBN: 978-989-758-673-6; ISSN: 2184-3201
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

(Oudejans et al., 2005; Helsen et al., 2006; Gilis et al.,
2008; Catteeuw et al., 2010). These authors conclude
that, in a significant number of cases (between 17-
33%), the judgment given by these referees was
erroneous. Moreover, it has also been established that
during the first 15-minute match period, the error in
judging offside is significantly higher than in other
match periods, with a percentage error of 38.5%.
(Helsen et al., 2006). In one of the earliest studies
investigating the applicability of mathematical
concepts for offside detection, a multiple camera
system and an offside detection algorithm was used
in real-time was by (D'Orazio et al., 2009). This led
to a classification accuracy of 77.8%. Another article
concludes that the most suitable form for offside
detection is camera-based player tracking, with a
decrease in accuracy error of around 40% (Henderson
et al., 2014). The use of contour mapping to identify
players that are in an offside position has also been
applied (Patil et al., 2018). An infrared camera system
and a MATLAB script were also used to detect
offside (Lopez and Jenkins, 2019). The system had no
misclassification errors, however, the players had to
wear several reflective markers and the system may
confuse one player with another. The dataset we shall
use in this paper has also been used (Panse and
Mahabaleshwarkar, 2020). In this paper, TV-
broadcasted images and a vanishing point algorithm
were used to identify the playing area. DBSCAN and
the k-means clustering algorithms were used to
classify players into teams. An offside detection
algorithm was also constructed to detect offside from
the collected dataset, giving an F1 score of 0.85.
Another study used two cameras and several
algorithms to construct the dataset, followed by an
offside detection algorithm. They obtained precision,
recall and F1 scores between 0.6 and 0.67 (Uchida et
al., 2021). Finally, the use of multiple cameras and
several algorithms to establish the players' positions,
followed by an offside detection algorithm
conditioned on the players' positions, has also been
studied (Siratanita et al., 2021). The accuracy was of
98.5%. Despite much of the literature focusing on the
use of an offside detection algorithm, none of the
literature found looked into the use of machine
learning techniques to detect offside, in particular
ensemble learning approaches. Ensemble learning
methods combine the prediction of multiple models
to provide a combined output. In this paper, we look
at the use of these methods to determine whether
these can offer an improvement over both linesmen
and the oft resorted to offside detection algorithm.

3 METHODOLOGY

In this section we shall go through a number of
ensemble learning approaches which we will make use
of in this paper. The first is random forests (RF),
which uses the bagging approach (also known as
bootstrap aggregating), to train multiple decision trees
which are then eventually considered collectively to
obtain a predictive model (Breiman, 2001). Aside from
the bagging step, random forests also require two
settings - the number of variables randomly sampled as
candidates at each split and the minimum number of
vectors of observations in the terminal nodes. In
random forests, the splits are determined using the Gini
impurity. In regularised random forests (RRF), the
impurity decrease of variables which have not yet
been used in any of the trees of the random forest is
penalised by a coefficient of regularisation 𝜐 (Deng
and Runger, 2012). Therefore, a feature which has not
yet been selected in any of the nodes in the forest
needs to have a high impurity decrease to be selected
for the split. Further extensions include guided
regularized random forests (GRRF) and guided
random forests (GRF). In guided regularized
random forests, the penalisation parameter is not kept
constant for all features, but is a function of the
importance in a previously trained random forest. We
thus have two important parameters, 𝜐 and 𝜏, where 𝜏
is a coefficient of importance (Deng and Runger,
2013). Guided random forests, on the other hand, set
the penalisation parameter 𝜐 = 1 and rely solely on
the coefficient of importance (Deng, 2013).

The class of random forest algorithms represents
one type of ensemble learning, where multiple trees
are generated, trained in parallel, and combined at a
later stage. Another class of algorithms are boosting
algorithms. In this case, classifiers are trained
sequentially, and the most recent classifier is trained
depending on the previous classifier. One of the
earliest known boosting classifiers is discrete
AdaBoost (Freund and Schapire, 1997). In discrete
AdaBoost, each observation is initially given equal
weighting, but then at every iteration, each classifier
is given a new weighting depending on the
classification error, based on the exponential loss
function. This is repeated for a set number of
iterations until a final classifier is given. An extension
to discrete AdaBoost is real AdaBoost (Friedman et
al., 2000) which uses class probabilities instead of
discrete classes in the computation of the weights.
Finally, we also have gentle AdaBoost, where direct
optimisation of the exponential loss is replaced by
Newton’s method (Friedman et al., 2000). In these
three cases, the number of trees (iterations of the

Can Ensemble Learning Approaches for Offside Detection Work?

35

algorithm) 𝐵, the maximum depth of each tree, the
shrinkage parameter 𝛼 and the subsampling rate 𝜗
are all important parameters of these algorithms.
Gradient Boosting, on the other hand, is an
alternative boosting approach that uses pseudo
residuals as target variables to build trees rather than
the classifiers themselves (Friedman, 2001).
Extreme Gradient Boosting, also referred to as
XGBoost, uses the number of leaves in the tree at the
current iteration and L2 regularisation with the loss
function, and is known to achieve better accuracy at
higher speeds (Chen and Guestrin, 2016). Important
parameters of both algorithms are: the number of
boosting iterations 𝐵, the maximum tree depth, the
minimum number of vectors of observations in the
terminal nodes of each tree, the shrinkage parameter 𝛼the subsampling rate 𝜗 and the column subsampling
rate 𝜖. Additionally, XGBoost also has regularisation
coefficients 𝛽 and 𝜂 which are associated with the
number of leaves and L2 regularisation term. An
extension to XGBoost is XGBoost with dropout,
where a fraction of the trees, 𝜃 ∈ [0,1], are dropped
at each iteration. Also, one can also specify a
probability 𝜆 ∈ [0,1] which defines whether the tree
dropout technique is used.

Following this overview of the types of methods
and relevant parameters which will be assessed in this
paper with the aim of offside detection, a description
of the dataset under study shall be given, after which
detail about the grid search for the model parameters
shall be provided. This is followed by the chosen
parameters based on the different models’ Cohen’s
Kappa, and in the end, the different performance
criteria of the different models shall be analysed.

4 APPLICATION

4.1 Dataset

The dataset used for this analysis contains several
images taken from publicly broadcasted videos on
television (Panse and Mahabaleshwarkar, 2020).
Moreover, a pose estimation algorithm was used to
detect the body parts of each player in the image and
convert them to x-y coordinates (Bridgeman et al.,
2019). The x-y coordinates of the head, shoulders,
hips, knees and feet for each player in the frame are
obtained using the mentioned pose algorithm. All the
images are 2560 by 1440 pixels and the x-y
coordinates are the pixel coordinates of the respective
players and body parts. The DBSCAN and the k-
means clustering algorithms to detect the goalkeeper
and referee and classify players into teams.

Specifically, since the DBSCAN algorithm also
classifies noisy data, it was used to detect the
goalkeeper and the referee in the frame, while the k-
means algorithm was used to classify the players into
teams (Panse and Mahabaleshwarkar, 2020).
Following this, each row of data is therefore an image
with several numerical variables indicating the
coordinates of each body part of the players. Since
there are 10 players in each team (excluding the
goalkeeper), 9 body parts and 2 coordinates (x and y),
there are 180 variables for each team. The defending
goalkeeper includes a further 18 variables in the
dataset, together with the target variable indicating 1
for offside and 0 otherwise. This gives a total of 379
variables.

Figure 1: An example on the use of the camera_angle
variable and the solution to the missing data problem.

Evidently, a broadcasting camera does not capture the
whole football pitch and a camera is directed manually.
Because of this, a camera placed on the side of the pitch
between the two halves does not include all the players
in the frame, leading to missing data in the dataset,
corresponding to players which are not in the frame. To
cater for this, an additional binary variable was created
indicating the camera’s direction, denoted as
camera_angle, which can either be showing the left or
the right-hand sides of the pitch. This variable takes the
value 0 if the camera is directed to the left or the value
1 if the camera is directed to the right. As an example,
consider the two-dimensional image in Figure 1
(taking camera_angle as 1), where Area B is the area
being captured by the broadcasting camera while Areas
A and C are the remaining areas not captured by the
camera. Using the camera_angle variable, the missing
x-y coordinates for the missing players were taken as
the coordinates on the far bottom left or the far bottom
right of the frame. Specifically, the x-coordinate when
the camera is directed to the left is taken as 2560 (i.e.,
far right) while the x-coordinate when the camera is
directed to the right is taken as 0 (i.e., far left). The y-
coordinate is taken constantly for both cases as 1440,
representing the bottom of the frame. This is also
depicted in the example of Figure 1, where the

icSPORTS 2023 - 11th International Conference on Sport Sciences Research and Technology Support

36

coordinates of the players in Area A are taken as the
furthest position to the bottom left of Area B,
represented by the purple point. This applies to all
variables characterizing different body parts. In this
way, the missing data problem for the players is
eliminated and the new coordinates are not affecting
the offside decision.

Another missing data problem was present for the
defending goalkeeper, where the frame of several
images was slightly to the right or to the left and the
goalkeeper was out of the frame. The position of this
goalkeeper is significant to the offside decision and
thus, the variable indicating the camera direction was
used again to input the respective coordinates.
Particularly, if the camera is directed to the left and the
goalkeeper’s coordinates are missing, the x-coordinate
of the goalkeeper is taken as 0 (i.e., far left) and is taken
as 2560 (i.e., far right) if the camera is directed to the
right. The y-coordinate is taken as 720, indicating that
the goalkeeper is in the middle of the frame. This is
also pictured in Figure 1, where the out-of-frame
defending goalkeeper has been given the rightmost
coordinates. As done for the missing data problem for
the players, this solution was applied to all variables
characterizing different body parts. The camera_angle
variable indicating the camera’s direction shall also be
included in the models during training.

The names of the features in the dataset for the
players are in the form A-B-Γ-E, where 𝛢 ∈ {1, 2} for
the two different teams, 𝐵 ∈ {0, 1, …, 9} denotes the 𝐵 th left-most player in team Α , 𝛤 ∈ { 0, 1, …, 8 }
denotes the Γth body part of player Β in team Α, while 𝐸 ∈ {x, y} is either the x or y coordinate of body part Γ
of player Β in team Α . Note that Team 1 is taken
constantly as the team attacking from the left to the
right side of the pitch. Thus, if camera_angle = 0 (i.e.,
the camera is directed to the left side of the pitch),
Team 1 denotes the defending team, and if
camera_angle = 1 (i.e., the camera is directed to the
right side of the pitch), Team 1 denotes the attacking
team. Moreover, for the set 𝛤, 0 denotes the player’s
head, 1, 2, 3 and 4 denote the player’s left shoulder,
hip, knee, and foot respectively, while 5, 6, 7 and 8 -
denote the player’s right foot, knee, hip and shoulder
respectively. As an example, the variable Team1-0-2-
x is the x-coordinate in the frame of the left hip of the
left-most player of team 1. The goalkeeper variable
names follow a similar but simpler structure.
Specifically, the variable takes the form GK-Γ-E,
where the sets 𝛤 and 𝐸 are as defined previously for
the players. As an example, GK-6-y denotes the y-
coordinate in the frame of the right knee of the
defending goalkeeper.

The data is imbalanced since only 26.5% of the
images include at least one player in an offside
position. Python’s imblearn library was used to apply
SMOTE-NC on this dataset. In the balanced dataset,
69.31% of the vectors of observations are used for
training while the remaining 30.69% are used for
testing, where 192 vectors of observations are used for
training for each class.

4.2 Model Parameters for Grid Search

The model parameter sets used for grid search shall
now be discussed. For all the models to be trained, 3-
fold cross-validation shall be used, and the vectors of
observations in each of the folds are the same across all
models. This was done to reduce any bias and to keep
equal conditions between different models for
comparison. Cohen’s Kappa shall be the performance
metric utilised to identify the optimal hyperparameters
across different models in the grid search, since equal
importance is given to all the classes and no class’s
performance needs to be optimised more than the other
classes. The well-known R package caret shall be used
for generic model training. The package easily trains
different models from different packages by tuning
hyperparameters using 𝐾 -fold cross-validation, and
then chooses the best performing model depending on
a defined metric.

Random Forest
For the random forest, the randomForest package is
used, where two hyperparameters are optimised; the
number of variables randomly sampled as candidates
at each split and the minimum number of vectors of
observations in the terminal nodes. A grid search is
conducted where the number of variables sampled is
taken from the set {5, 6, 7, …, 18, 19, 20, 35, …, 350,
365, 379} with a total of 40 different values. The values
for the minimum number of vectors of observations in
the terminal nodes are taken from the set {1, 3, 6, 9,
12 } . Therefore, there are a total of 200 different
combinations in the grid. The number of trees in the
random forest is fixed at 500, since the prediction error
of a random forest goes to a limiting value almost
surely as the number of trees increases (Breiman,
2001). Thus, setting the number of trees to 500 is
adequate for our problem.

RRF, GRRF and GRF

The RRF package has been created to apply the
extensions to random forests (Deng and Runger,
2012; Deng and Runger, 2013; Deng, 2013). For all
RRF, GRRF and GRF, the number of trees shall also

Can Ensemble Learning Approaches for Offside Detection Work?

37

be fixed at 500 and the number of variables randomly
sampled for splits is optimised as in random forests.
Moreover, 𝐶 and the coefficient of importance 𝜏 are
optimised as follows. For RRF, 𝜐 is optimised from {0.1, 0.2, …, 0.9, 1} and 𝜏 is kept constant at 0. For
GRRF, both 𝜐 and 𝜏 are optimised from {0, 0.1, 0.2,
…, 0.9, 1}, but excluding the combination (𝜐, 𝜏) =(0,0). For GRF, 𝜐 is kept constant at 1 and 𝜏 is
optimised from {0, 0.1, 0.2, …, 0.9, 1}. Thus, for
RRF, there are a total of 400 combinations of
different model parameters to consider while 4800
model combinations are available for GRRF and 440
different parameter combinations for GRF.

Discrete, Real and Gentle AdaBoost

For the three AdaBoost algorithms, the ada package
implementation in caret shall be used. The number of
trees 𝐵 , the maximum depth of each tree, the
shrinkage parameter 𝛼 and the subsampling rate 𝜗
are all parameters which need to be optimised.
AdaBoost was initially created to work on weak
learners and decisions stumps, indicating that the
maximum depth should be 1. However, when
considering trees with a maximum depth of 1 (thus
having a boosted model consisting of weak learners)
the models performed significantly worse than those
with a depth greater than 1. Therefore, stronger
learners with an increased tree depth will be
considered. For each of the three AdaBoost models,
the number of trees 𝐵 shall be optimised from the set { 100, 200, …, 900, 1000 } while the shrinkage
parameter 𝛼 and the subsampling rate 𝜗 shall both be
optimised from the set {0.25, 0.5, 0.75, 1}. The set of
tree depth values to be optimised shall be {3, 5, 7, 9}.
Thus, the grid consists of 640 combinations.

Gradient Boosting and Extreme Gradient Boosting

The caret implementation of the h2o package in R shall
be used for the implementation of Gradient Boosting,
where the logistic loss function is used for binary
classification. More information on other loss
functions available here (Click et al., 2022). The
number of boosting iterations 𝐵 shall be optimised
from the set {100, 200, …, 500}, the maximum tree
depth shall be taken from {3, 5, 7}, while the minimum
number of vectors of observations in the terminal
nodes of each tree shall be optimised from the set {3,
6, 9, 12 } . Additionally, the optimal value for the
shrinkage parameter 𝛼 will be obtained from the set {0.05, 0.1, 0.25, 0.5}, while the best values for both the

1 https://github.com/buttigiegkurt/offside-paper

subsampling rate 𝜗 and the column subsampling rate 𝜖 will be taken from {0.5, 0.75, 1}. This gives 2160
different combinations in our grid search. Thus, due
to 3-fold cross-validation, 6480 models need to be
trained.

For Extreme Gradient Boosting, two different grid
searches shall be created. The first approach is the
simple Extreme Gradient Boosting without the tree
dropout while the second approach includes tree
dropout. The xgboost R package shall be used in this
study, which caters for both extreme gradient boosted
trees and the corresponding dropout version. For the
first approach, the seven different parameters are
optimised as follows; the number of boosting iterations 𝐵 is optimised from the set {50, 100, 150, 200, 300},
the maximum tree depth is optimised from the set {3,
5, 7, 9}, the shrinkage parameter 𝛼 is optimised from
the set {0.05, 0.1, 0.25, 0.5}, the subsampling rate 𝜗
and the column subsampling rate 𝜖 are both optimised
from the set {0.5, 0.75, 1} , the coefficient 𝛽 which
determines the influence of 𝑀௕ is optimised from the
set {0, 1}, and the coefficient 𝜂 which determines the
influence of the L2 regularization term is optimised
from the set {0.5, 1, 2}. This gives a total of 4320
different combinations in the grid search. In the second
approach, the 4320 combinations used in the first
approach are once again considered, together with the
optimisation of the dropout fraction 𝜃 and the dropout
probability 𝜆 from the set { 0.25, 0.5 } . Thus, the
optimal model is obtained from 17280 combinations.

4.3 Statistical Models

In this section, the models for offside detection are
trained using the training offside dataset and
optimised using the hyperparameter sets. Cohen’s
Kappa shall be considered when training and testing
models as the cost of incorrectly classifying a non-
offside case is equal to the cost of incorrectly
classifying an offside case. Other testing metrics
including the accuracy, sensitivity and specificity are
given at the end of the section after the models have
been trained, wherein a comparison of the models and
feature importance are considered. Due to space
limitations, the reason for hyperparameter choice and
the figures plotting the performance results for
hyperparameter optimisation using grid search are
given in the supplementary material1.

icSPORTS 2023 - 11th International Conference on Sport Sciences Research and Technology Support

38

Random Forest

For random forests, lower values for the minimum
number of vectors of observations in the terminal
nodes give a slightly better model and, more
evidently, increasing the number of variables sampled
declines the performance of the model. The optimal
set of parameters is 6 for the number of variables
sampled and 3 for the minimum number of vectors of
observations in terminal nodes, giving an average
validation performance of 0.443. Training a model on
the full training set using the two optimal parameters
gives a training accuracy of 100% and a Kappa of 1,
indicating that all training vectors of observations are
classified correctly. This shows that, despite the
implementation of parameter tuning, some overfitting
may still be present in the trained model. Testing the
model on the testing set leads to a Kappa of 0.488.
The prediction error of a random forest goes to a
limiting value almost surely as the number of trees
increases.

RRF, GRRF and GRF

For RRF, it can be noted that higher values for the
coefficient of regularization drastically improve the
performance of the models. The values 0.9 and 1 are
similar in terms of performance while values in the
range [0.1, 0.6] are shown to have poor model
performance. Recall that 𝜐 = 1 gives the standard
random forest, meaning that low regularization
parameters are not beneficial for this dataset. The
optimal model obtained has 𝜐 = 0.9 and the number
of variables sampled equal to 11, giving an average
validation performance of 0.398 when considering
the Kappa metric. Training using the mentioned
optimal parameters on the whole training set gives a
model which predicts all training vectors of
observations correctly, indicating some overfitting
once again. Furthermore, testing the model on the
testing set gives a Kappa of 0.410.

Three parameters shall be optimised when
considering the GRRF approach, the two coefficients
and the number of variables sampled. Lower values
for both the coefficients lead to a more dispersed set
of line graphs, indicating that taking one of the
coefficients close to 1 leads to similar models
irrespective of the other coefficient. Moreover,
different values for the number of variables sampled
does not seem to be affecting model performance as
the line graph is consistent across the x-axis. The
optimal set of parameters is given by (𝜐, 𝜏) = (0.8,
0.3), with the number of variables sampled equal to
350, giving an average Kappa validation metric of

0.430. Training a model on the optimal parameters
and applying it on the full dataset leads to an accuracy
of 100%, predicting all training vectors of
observations correctly. Despite this, testing the model
on the testing set gives a Kappa of 0.410. Once more,
due to the significant decrease in performance from
the training set to the testing set, model overfitting
which was not eliminated from parameter tuning may
still be present.

The final extension to random forests which still
needs to be considered is GRF. Increasing the number
of variables sampled reduces the model performance,
with higher values for the coefficient of importance
leading to a more accelerated decline in the Kappa
metric. Despite this, all variations of the coefficient
lead have similar performance for low values of the
number of variables sampled during splits. The
optimal average validation Kappa is given when 𝜏 =
0.8 and the number of variables sample is equal to 5.
Training these parameters on the full training set
produces a model with an accuracy of 100% once
more. Testing the model on the testing set gives a
Kappa of 0.559.

Comparing the three models, the RRF and GRRF
models performed equally well on the testing set,
predicting 17 offsides out of the total 32 and 122
onsides out of 138. However, the GRF performed
slightly better in predicting both the offside and
onside images, with 18 offsides detected and 131
onsides. Moreover, the performance of the GRF is
marginally better than the standard random forest,
with 4 more images classified correctly. This
indicates that, contrary to RRF and GRRF, the GRF
approach may have a slight advantage over standard
random forests for this offside detection dataset.
Next, the focus shall move on to boosting, where
Discrete, Real and Gentle AdaBoost are considered.

Discrete, Real and Gentle AdaBoost

The optimal model for Discrete AdaBoost has a
shrinkage parameter of 1, a subsampling parameter of
1, includes just 100 trees and a maximum tree depth
of 3. The average validation Kappa performance for
this model is given by 0.417. Similar to the random
forest model, the Discrete AdaBoost model has a
100% accuracy on the training set, whereas testing the
same model on the testing set gives a Kappa of 0.428,
incorrectly predicting 34 vectors of observations.

The Real AdaBoost approach performed similarly
in terms of validation performance as the optimal
model having a shrinkage parameter of 0.5, a
subsampling parameter of 0.25, a maximum tree
depth of 5 and 100 trees gives an average Kappa of 0.409.

Can Ensemble Learning Approaches for Offside Detection Work?

39

The performance of models with a subsampling value
of 1 or the combination (𝛼, 𝜗) = (1, 0.25) seems to
differ over different maximum tree depths whereas
the other combinations do not suggest such difference
over distinct tree depths. As in discrete AdaBoost, the
model gives a perfect prediction over the training set.
Fitting the model on the testing set provides a Kappa
of 0.408. The Real AdaBoost model performed well
in predicting onside however only half of the offside
images where correctly predicted. This translates to a
15.63% lower performance in predicting the positive
class.

Finally, for Gentle AdaBoost, the optimal model
has a shrinkage parameter of 0.25, a subsampling
parameter of 0.25, a maximum tree depth of 7 and
includes 200 trees. This model gives an average
validation Kappa of 0.417 and, once again, a 100%
accuracy on the full training set. With a testing Kappa
of 0.668, only 5 offside and 11 onsides where
incorrectly classified in the testing set, indicating that
Gentle AdaBoost is the best performing technique up
till now.

Gradient Boosting and Extreme Gradient Boosting

The optimal validation Kappa of 0.352 is obtained
when the number of trees is the boosted model is 100,
the maximum tree depth is 5, the minimum number
of vectors of observations in the terminal nodes is 9,
together with a shrinkage of 0.1, a subsampling
parameter of 0.5, and a column subsampling
parameter 0.75. This optimal model gives an accuracy
of 99.74% with just one vector of observations
classified incorrectly. As noted in the previously
trained models, overfitting may once again be present
in the Gradient Boosting model. Upon testing the
constructed model, a testing Kappa of 0.519 is
derived. This shows that Gradient Boosting is a very
valid technique on this dataset, performing quite well
on the testing dataset.

A value of 1 is the worst performing value for both
the subsampling and column subsampling
parameters. There does not seem to be a significant
difference between the values of 0.5 and 0.75, and the
performance is somewhat constant across the
different number of trees for most of the
combinations. Moreover, different values for
maximum tree depth also do not seem to be affecting
model performance. It is clear that the higher
shrinkage values of 0.25 and 0.5 perform worse than
the lower values of 0.05 and 0.1. Additionally, the
performance is constant across different number of
trees and does not depend on the L2 regularization
coefficient as the Kappa metric does not seem to

change with the mentioned coefficient. Despite this,
the coefficient for the number of terminal nodes
regularization parameter does seem to impact the
performance as the value 0, i.e., not including this
regularization term, leads to a better Kappa
performance when compared to the value of 1, i.e.,
including the mentioned regularization term.

The optimal combination has an average validated
Kappa metric of 0.391, where the number of boosting
iterations 𝐵 is 50, the maximum tree depth is 5, the
shrinkage parameter 𝛼 is 0.1, the subsampling rate 𝜗
and the column subsampling rate 𝜖 are both 0.75, the
coefficient 𝛽 which determines the influence of 𝑀௕ is
0, and the coefficient 𝜂 which determines the
influence of the L2 regularization term is 1. Training
a model on this set of parameters on the full training
set, a model predicting all training vectors of
observations correctly is once again obtained,
indicating that, despite all the regularization measures
taken in Extreme Gradient Boosting, overfitting may
still be present. Testing the trained model on the
testing set, a Kappa of 0.541 is derived.

For extreme gradient boosting with dropout,
17280 parameter combinations have been considered.
For the column subsampling parameter, the value of
0.5 seem to be performing better than the other two
values and for the subsampling parameter, the value
0.75 seems to give the better averaged performance.
With regard to maximum tree depth, there does not
seem to be a significant difference between the
different values, however a maximum tree depth of 3
gave a lower performance in five of the nine
combinations of the two subsampling parameters.

Different values for the L2 regularization
coefficient do not seem to influence the performance
of the model, however the value 0 for the number of
terminal nodes regularization coefficient slightly
improves the performance of the model. Moreover,
for lower number of trees, the shrinkage value of 0.05
performs the worst compared with other values,
however improves when the number of trees
increases. Different values for the two dropout
parameters do not seem to be significantly affecting
the performance, however increasing the number of
trees is beneficial and the performance seems to
converge between 150 and 200 trees. Following this,
the optimal validation performance obtained
corresponds to the model with 300 boosting
iterations, a maximum tree depth of 5, a shrinkage 𝛼
of 0.05, a subsampling rate 𝜗 of 0.75, a column
subsampling rate 𝜖 of 0.5, a coefficient 𝛽 of 0 (which
determines the influence of 𝑀௕), a coefficient 𝜂 of 0.5
(which determines the influence of the L2
regularization term), a dropout fraction 𝜃 of 0.25 and

icSPORTS 2023 - 11th International Conference on Sport Sciences Research and Technology Support

40

a dropout probability 𝜆 also of 0.25. This
combination gives a validated Kappa of 0.396.
Training a model on the full training set using the
mentioned parameter gives a model predicting
99.48% of the training vectors of observations
correctly with just one vector of observations in each
class classified incorrectly. Moreover, testing this
model gives a testing Kappa of 0.473.

Comparing the approach without dropout with the
one with dropout, the first approach performed better
on the testing set than the corresponding dropout
version. Although several regularization parameters
are being considered, overfitting may still be present
in all the two models as the training performance are
relatively high compared to the testing ones. The
introduction of just two additional values in each of
the two dropout parameters presented another
computational challenge as this multiplied the
number of models to be trained in the grid search by
4. Apart from taking weeks to finish the dropout
model, the memory required to store the model
outputs needs also to be taken into consideration as
these grids need to be split and saved separately to
avoid out-of-memory problems. This is also a
limitation as more combinations can be considered to
better optimise model performance. Moreover, tree
dropout seems to decrease model performance for this
dataset and the slightly simpler Extreme Gradient
Boosting without dropout is preferred.

Model Comparisons and Variable Importance

Next, the testing performances for each model are
presented and discussed. Table 1 summarises several
binary performance metrics, including the accuracy,
the precision and sensitivity, together with the F1
score and specificity.

The Gentle AdaBoost model clearly performed
best on the testing set, obtaining the highest
performance in all but one metric. According to the
accuracy metric, the second-best model is the GRF,
followed by the gradient boosted one. However, the
F1 score depict a slightly different picture since,
according to this metric, the Extreme Gradient
Boosting model is the second-best model, followed
by GRF.

Table 1: Testing performance metrics for each model
considered for the offside dataset. RF is random forest, RRF
is regularized random forest, GRRF is guided regularized
random forest, GRF is guided random forest, DA is discrete
AdaBoost, RA is real AdaBoost, GA is Gentle AdaBoost,
GB is gradient boosting, EGB is extreme gradient boosting,
EGBD is extreme gradient boosting with dropout, A is
accuracy, P is precision, Se is sensitivity, Sp is specificity.

A P Se F1 Sp

RF 0.853 0.630 0.531 0.576 0.928
RRF 0.818 0.515 0.531 0.523 0.884
GRRF 0.818 0.515 0.531 0.523 0.884
GRF 0.876 0.720 0.563 0.632 0.949
DA 0.800 0.477 0.656 0.553 0.833
RA 0.824 0.533 0.500 0.516 0.899
GA 0.906 0.808 0.656 0.724 0.964
GB 0.871 0.727 0.500 0.593 0.957
EGB 0.841 0.558 0.750 0.640 0.862
EGBD 0.818 0.512 0.688 0.587 0.848

The sensitivity metric, which can be considered as the
accuracy of a model on the positive class (i.e., the ratio
of the true offsides to all of the offsides), was the only
metric which Gentle AdaBoost did not perform the
best in. Extreme Gradient Boosting performed better in
terms of the sensitivity metric, with 75% of the testing
positive cases classified correctly.

With regards to the random forest and its
extensions, GRF improved the performance over the
standard random forest, however, the other two
extensions diminished the performance by 3.5%
accuracy. Moreover, for Extreme Gradient Boosting,
the dropout extension does not seem to improve on the
model without dropout as all the metrics indicate a
reduction in performance.

For variable importance, a type of ensemble is
proposed to consider all the models together. For both
random forests and boosting, the change in node purity
is utilised (Breiman, 2001), where the importance is
estimated as the average of the total decrease in node
impurities from the splits in the decision nodes over all
the trees in the ensemble. To estimate the importance
of each variable across all models, the importance
vectors of the 14 models are combined into a 379 × 14
matrix which is then scaled by dividing the importance
of each model by its standard deviation. Note that the
importance vectors are only scaled and not centred as
this will lead to negative importance for variables with
an importance of 0 (i.e., not used in the model).
Following this, the importance of each variable is
summed across all models, leading to a total variable
importance vector of size 379.

Can Ensemble Learning Approaches for Offside Detection Work?

41

Table 2 shows the top 20 attributes of the total
variable importance vector. The most important
variable is GK.4.x, which corresponds to the x-
coordinate of the left foot of the goalkeeper, followed
by Team1.3.3.x, corresponding to the x-coordinate of
the left knee of the third leftmost player of the team
attacking from left to right in the image. The reason
for the importance of the GK.4.x attribute is
understandable and expected as the position of the
goalkeeper is crucial for offside judgement in the
majority of cases. The other variables are much less
important than GK.4.x, indicating that this is by far
the most dominant variable. The difference in
importance between the other attributes is
considerably less pronounced and all seem to provide
approximately equal contribution. One can also
notice that 8 out of the top 10 attributes correspond to
the x-coordinate, which is slightly expected as the
offside line is primarily dependant on the horizontal
position of the players. Moreover, another conclusion
from variable importance is the significance of the
coordinates of the players’ head and left shoulder and
left knee (body parts 0, 1 and 4), which are part of 9
out of the top 10 attributes.

Table 2: Twenty of the most important attributes calculated
by first considering the 14 models, then scaling and
summing the variable importance (Var. Imp.) for each
model. Refer to Section 4.1 for interpretation of attribute
abbreviation.

Attribute Var. Imp. Attribute Var. Imp.
GK-4-x 46.150 GK-6-x 16.655

Team1-3-3-x 26.320 Team2-1-1-y 16.417
Team1-2-0-x 21.350 Team2-0-1-x 16.285
Team2-2-1-x 20.455 Team2-2-2-y 16.266

GK-1-y 20.282 Team2-0-7-y 15.120
Team2-0-4-y 20.281 Team2-1-0-y 14.950
Team1-3-0-x 20.058 GK-2-x 14.841
Team2-0-0-x 17.584 Team1-3-1-x 14.536
Team1-3-5-x 17.409 Team2-1-8-y 14.324
Team2-3-4-x 17.065 Team1-3-2-x 14.219

The scaled feature importance for each of the models
separately are given in the supplementary material.
The variable importance for the RF, RRF, GRRF and
GRF models do not seem to follow any particular
pattern, however the guided approaches to random
forests (GRRF and GRF) utilised the GK.4.x variable
more than the two other bagging approaches. For the
Discrete, Real and Gentle AdaBoost models, these
techniques seem to signify that the three leftmost
players (for both teams) in the dataset are the most
influential. This may be due to the images not
including all the players and thus focusing on the first

two to three players of each team. In the case of
Gentle AdaBoost, this model utilises the goalkeeper
coordinates the most. For Gradient Boosting,
Extreme Gradient Boosting, and Extreme Gradient
Boosting with dropout, these three techniques all
provide a different view on which attribute is the most
important. Despite this, the three models indicate that
the x-coordinate is more useful than the y-coordinate
of the players in the image. In the next section, a soft
majority approach shall be applied.

5 SOFT MAJORITY VOTING

In soft majority voting, the class predicted
probabilities from the 𝑑 different models are used to
obtain the final predicted probabilities. The latter are
directly obtained by taking the average of the former.
Formally, let 𝓅௝௟ be the class probability for model 𝑗
for a vector of observations predicted as class 𝑙. Then,
the predicted class 𝑦ො(ௌெ௏) produced by soft majority
voting is given by 𝑦ො(ௌெ௏) = argmax௟ୀ(ଵ,…,௅) ଵௗ ∑ 𝓅௝௟ௗ௝ୀଵ .
Table 3: Testing set summary table for soft majority voting.
GA denotes Gentle AdaBoost, EGB denotes Extreme
Gradient Boosting, A is accuracy, K is Kappa, P is
precision, Se is sensitivity, Sp is specificity.

A K P Se Sp F1

Single
Model

Perform.
0.906
(GA)

0.668
(GA)

0.808
(GA)

0.750
(EGB)

0.964
(GA)

0.724
(GA)

Top 2 0.906 0.668 0.808 0.656 0.964 0.724
Top 3 0.906 0.668 0.808 0.656 0.964 0.724
Top 4 0.894 0.636 0.750 0.656 0.949 0.700
Top 5 0.894 0.636 0.750 0.656 0.949 0.700
Top 6 0.900 0.661 0.759 0.688 0.949 0.721
Top 7 0.900 0.669 0.742 0.719 0.942 0.730
Top 8 0.894 0.654 0.719 0.719 0.935 0.719
Top 9 0.906 0.684 0.767 0.719 0.949 0.742
Top 10 0.888 0.621 0.724 0.656 0.942 0.689

This approach is applied on the trained models from
Section 4 in this paper. The models are first ranked
depending on their Kappa performance on the testing
set and the top 𝑗 models are taken for 𝑗 =2 , …,10.
Table 3 shows the performance metrics for the soft
majority voting ensembles.

Comparing the underlying models to the soft
majority voting ones, there is a slight improvement in
the Kappa and F1 metrics. The Kappa increased from
0.668 for the Gentle AdaBoost model to 0.689 for the
top 9 model while the F1 increased from 0.724 for the
Gentle AdaBoost model to 0.742, also for the top 9
model. The accuracy does not change from the Gentle

icSPORTS 2023 - 11th International Conference on Sport Sciences Research and Technology Support

42

AdaBoost model to the soft majority voting ensemble
models and the sensitivity decreased when compared
to the Extreme Gradient Boosting model. This shows
that the effect of soft majority voting on the predictive
abilities of the models is mixed, with some
improvement on certain performance criteria, and
slight deterioration in other cases.

6 CONCLUSIONS

In this study we have seen that ensemble learning,
proves to be an improvement over the manual
approach, with 9% of the decisions being erroneous,
as opposed to 17-33% (as stated in Section 2). Gentle
AdaBoost proves to be the most effective model
across most performance criteria, but Extreme
Gradient Boosting is the model with the best recall.
Furthermore, through variable importance analysis, it
was found that the x-coordinate of the goalkeeper’s
foot was by far the most important, followed by other
variables of similar contribution. When analysing the
10 most important variables, it was generally found
that the x-coordinate was more important than the y
coordinate of the body parts of the respective players.
Finally, soft majority voting managed to maintain the
same level of accuracy, improve Cohen’s Kappa and
the F1 score, but deteriorated the sensitivity,
specificity and precision.
 The ensemble approaches applied in this paper
have generally shown to fare comparably to other
papers discussed in the literature review in terms of
success. If one compares the performance of an
offside detection algorithm on the same dataset
(Panse and Mahabaleshwarkar, 2020), it has not been
successful in providing a better performance in terms
of precision (0.87), sensitivity (0.91) and F1 score
(0.85). However, given the respectable performance
ensemble learning methods have shown in taking
good decisions on offside situations, it would be
worth exploring further whether ensemble learning
methods, or other machine learning methods in
general, can act as useful tools for this purpose, on
their own or in conjunction with offside detection
algorithms.

REFERENCES

Breiman, L. (2001). Random forests. In Machine learning,
45(1), 5–32. Springer.

Bridgeman, L., Volino, M., Guillemaut, J., Hilton, A.
(2019). Multiperson 3D pose estimation and tracking in
sports. In 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW),
2487-2496. IEEE Xplore.

Catteeuw, P., Gilis, B., Wagemans, J., Helsen, W. (2010).
Offside decision making of assistant referees in the
English Premier League: Impact of physical and
perceptual-cognitive factors on match performance. In
Journal of Sports Sciences, 28(5), 471-481. Taylor &
Francis.

Chen, T., Guestrin C. (2016). XGBoost: A Scalable Tree
Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 785–794. ACM Digital
Library.

Click, C., Malohlava, M., Candel, A., Roark, H., Parmar,
V. (2022). Gradient Boosting Machine with H2O.
H2O.ai, 7th edition.

Deng, H. (2013). Guided Random Forest in the RRF
Package. In arXiv.

Deng, H., Runger, G. (2012). Feature selection via
regularized trees. In The 2012 International Joint
Conference on Neural Networks (IJCNN), 1-8. IEEE
Xplore.

Deng, H., Runger, G. (2013). Gene selection with guided
regularized random forest. In Pattern Recognition
46(12), 3483-3489. Science Direct.

D'Orazio, T., Leo, M., Spagnolo, P., Mazzeo, P. L., Mosca,
N., Nitti, M., Distante, A. (2009). An Investigation into
the Feasibility of Real-Time Soccer Offside Detection
from a Multiple Camera System. In IEEE Transactions
on Circuits and Systems for Video Technology, 19(12),
1804-1818. IEEE Xplore.

Freund, Y., Schapire, R. (1997). A decision-theoretic
generalization of online learning and an application to
boosting. In Journal of Computer and System Sciences,
55, 119–139. Science Direct.

Friedman, J. (2001). Greedy Function Approximation: A
Gradient Boosting Machine. In Annals of Statistics,
29(5), 1189-1232. IMS.

Friedman, J., Hastie, T., Tibshirani, R. (2000). Additive
logistic regression: a statistical view of boosting (with
discussion). In Annals of Statistics, 28(2) 337–407.
IMS.

Gilis, B., Helsen, W., Catteeuw, P., Wagemans, J. (2008).
Offside decisions by expert assistant referees in
association football: Perception and recall of spatial
positions in complex dynamic events. In Journal of
Experimental Psychology: Applied, 14(1), 21–35. APA.

Helsen, W., Gilis, B., Weston, M. (2006). Errors in judging
“offside” in association football: Test of the optical
error versus the perceptual flash-lag hypothesis.
Journal of Sports Sciences, 24(5), 521-528. https://doi.
org/10.1080/02640410500298065

Henderson, A., Lai, D., Allen, T. (2014). A Modern
Approach to Determine the Offside Law in
International Football. In Procedia Engineering, 72,
138-143. Science Direct.

Lopez, E., Jenkins, P. (2019). Offside Detection System
Using an Infrared Camera Tracking System. In World
Journal of Mechanics, 9(6), 163-176. Scientific
Research Publishing.

Can Ensemble Learning Approaches for Offside Detection Work?

43

Oudejans, R., Bakker, F., Verheijen, R., Gerrits, J.,
Steinbrückner, M., Beek, P. (2005). How position and
motion of expert assistant referees in soccer relate to the
quality of their offside judgements during actual match.
In International Journal of Sport Psychology (IJISP),
36, 3-21.

Panse, N., Mahabaleshwarkar, A. (2020). A Dataset
Methodology for Computer Vision based Offside
Detection in Soccer. In 3rd International Workshop on
Multimedia Content Analysis in Sports (MMSports’20),
19-26. ACM.

Patil, P.N., Salve, R.J., Pawar, K.R., Atre, P.M. (2018).
Offside Detection in the Game of Football Using
Contour Mapping. In International Journal of Research
in Engineering and Science (IJRES), 6(4), 66-69.

Siratanita, S., Chamnongthai, K., Muneyasu, M. (2021). A
Method of Football-Offside Detection Using Multiple
Cameras for an Automatic Linesman Assistance
System. In Wireless Personal Communications, 118,
1883–1905. Springer.

Uchida, I., Scott, A., Shishido, H., Kameda, Y. (2021).
Automated Offside Detection by Spatio-Temporal
Analysis of Football Videos. In Proceedings of the 4th
International Workshop on Multimedia Content
Analysis in Sports (MMSports'21), Association for
Computing Machinery, 17–24. ACM.

icSPORTS 2023 - 11th International Conference on Sport Sciences Research and Technology Support

44

