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Abstract: Software categorization involves organizing software into groups based on their behavior or domain. Tradi-
tionally, categorization has been crucial for software maintenance, aiding programmers in locating programs,
identifying features, and finding similar ones within extensive code repositories. Manual categorization is
expensive, tedious, and labor-intensive, leading to the growing importance of automatic categorization ap-
proaches. However, existing datasets primarily focus on technical categorization for the most common pro-
gramming language, leaving a gap in other areas. This paper addresses the research problem of classifying
software repositories that contain R code. The objective is to develop a classification model capable of accu-
rately and efficiently categorizing these repositories into predefined classes with less data. The contribution of
this research is twofold. Firstly, we propose a model that enables the categorization of software repositories
focusing on R programming, even with a limited amount of training data. Secondly, we conduct a compre-
hensive empirical evaluation to assess the impact of repository features and data augmentation on automatic
repository categorization. This research endeavors to advance the field of software categorization and facilitate
better utilization of software repositories in the context of diverse domains research.

1 INTRODUCTION

Recently, the growth of open source software commu-
nities has been remarkable, leading to an exponential
increase in the number of software repositories avail-
able. These repositories serve as valuable resources
for developers, researchers, and users seeking to ex-
plore, reuse, and contribute to open source projects.
With such a vast amount of repositories, automatic
categorization and organization become crucial for ef-
ficient information retrieval and knowledge discovery
and reducing manual search significantly.

Automatic software categorization involves the
task of grouping software into categories that effec-
tively describe their behavior or domain. To tackle
this challenge, researchers have explored different
techniques, including supervised learning, where a
repository is assigned a set of categories (Sharma
et al., 2017)(Thung et al., 2012). Unsupervised pro-
cedures, such as LDA, have also gained popularity as
a valuable tool for grouping similar programs (Wu
et al., 2016)(Tian et al., 2009). The literature has
widely recognized the significance of automatic clas-
sification and the computation of repository similar-
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ity.
Currently, software repositories are categorized

using text classification techniques, which have been
extensively studied in the field of Natural Lan-
guage Processing (NLP). Impressive results have
been achieved in tasks like sentiment analysis and
documents topic classification. The categorization
process relies on utilizing available high-level infor-
mation within repositories, such as repository pro-
files, to accurately predict the appropriate category.
However, categorizing repositories poses a significant
challenge due to the distinct nature of information
present in the code and accompanying textual content.
Low-level terms in the source code tend to exhibit
more variability compared to terms in the accompa-
nying text. This variation arises from programmer-
generated identifier names, abbreviations, compound
words that are difficult to expand or split, and spe-
cific meanings assigned to words in code that differ
from their English meanings (e.g., ”button,” ”free,”
”object”) (LeClair et al., 2018). Additionally, there
is no guarantee of sufficient high-level text data be-
ing available in the repositories, which necessitates
considering the source code itself rather than relying
solely on high-level information. To address these
challenges, a comprehensive approach that incorpo-
rates multiple dimensions of information is required
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to achieve accurate and thorough classification.
In this paper, our objective is to develop a classi-

fication model capable of accurately and efficiently
categorizing software repositories into predefined
classes with less data taking into consideration the
high-level and low-level information. The proposed
model is based on a pre-trained model in order to en-
code the similarity between low-level terms and high-
level terms in repository descriptions and code source.
The contribution of this research is twofold. Firstly,
we propose a model that enables the categorization
of software repositories focusing on R programming,
even with a limited amount of training data. Secondly,
we conduct a comprehensive empirical evaluation to
assess the impact of repository features level and data
augmentation technique on automatic repository cat-
egorization. This research endeavors to advance the
field of software categorization and facilitate better
utilization of software repositories in the context of
diverse domains research.

2 RELATED WORK

The main focus of previous research revolves around
software categorization, specifically the classification
of software repositories into predefined categories.
Existing literature in software categorization can be
divided into two categories based on the adopted
methodology: machine learning (ML) and deep learn-
ing. However, the majority of studies in this domain
have primarily employed ML techniques to address
the problem. In recent years, an increase in the in-
terest of software categorization due to the rise of
transformer-based networks and large language mod-
els.

Starting with datasets, the (Sas and Capiluppi,
2021) presents a new dataset called LabelGit made
for Github Java repositories classification based just
on the source code. The dataset contains 11.502
Java projects covering 13 categories including Web,
Networking, Paser, etc, resulting in around 15 GB
compressed. Moving to the works that applied ML
methodology, we can find (Wang et al., 2012) that
aims to detect software topics by utilizing labeled de-
scriptions through a hybrid approach that combines
L-LDA and a topic detection algorithm based on a
word-label matrix. The approach, called Labeled
Software Topic Detection (LSTD), involves associat-
ing each project with a label, and a word-label ma-
trix is created using L-LDA. Moreover, a topic de-
tection algorithm is applied to the word-label matrix
to identify appropriate label sets for specific projects.
The effectiveness of LSTD is evaluated on a dataset

comprises project profiles with descriptions, and la-
bels. (Linares-Vásquez et al., 2014) explores the ap-
plication of ML techniques to automatically catego-
rize open and closed Java software applications into
distinct categories. The authors used API calls, in-
cluding packages and classes, as attributes for cat-
egorization Three ML algorithms (Decision Trees,
Naive Bayes, and Support Vector Machines) are com-
pared. The study examines a large dataset of Java
applications from various repositories and make all
case study data publicly available. The (Soll and
Vosgerau, 2017) ClassifyHub is an algorithm devel-
oped for the InformatiCup 2017 competition to cat-
egorize GitHub repositories using a combination of
eight weak classifiers based on ML techniques such
as KNN and Decision Tree. Each classifier works
on feature data, i.e., file extension, README files,
commits, and repository structure. The approach has
been evaluated using ten-fold cross validation over
a dataset of 681 GitHub repositories with 7 classes
like Solutions for homework, documents and web-
site. (Sharma et al., 2017) exploits README files
of GitHub projects to extract descriptive fragments in
order to catalog them using the standard NLP tech-
niques. The categorization has been done by using
LDA-GA, a mature technique that combines Latent
Dirichlet Allocation with Genetic Algorithm to build
a topic model. A post-processing step was then man-
ually conducted to remove the wrong terms or merge
similar ones in terms of granularity. Their evaluation
involved a dataset of 10K GitHub repositories with
a minimum of 20 stars, and a user study was con-
ducted to assign appropriate categories to each repos-
itory. Using the Github repository README file, the
(Di Sipio et al., 2020) developed a tool based on a
Naı̈ve Bayesian classifier to recommend topics. The
recommending process passed through: (1) Crawling
dataset; (2) encoded the relevant information using
the TF-IDF weight scheme. (3) Training the model
and at the end add the programming language using
the guessLang package. The (Di Rocco et al., 2020)
presents a collaborative filtering-based recommender
system named TopFilter that can suggest GitHub top-
ics. The process of recommendation in TopFilter
based on encoding repositories (README file) and
related topics in a graph-based representation and ap-
plied a syntactic-based similarity function to predict
missing topics from similar repositories based on TF-
IDF feature vector. To enhance the prediction per-
formance of TopFilter, they combined it with MNBN
that acts as an input topic generator which leads to
significant boost. The (Izadi et al., 2021) develops
a Logistic Regression model using TF-IDF features
for Github repository topics recommendation based
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on multi-label classification technique. The data used
in this study contains about 152K GitHub repositories
and 228 featured topics and the learning was done on
textual information.

Few works used DL techniques includes (LeClair
et al., 2018) which focuses on the task of software
categorization using neural network architecture. The
proposed approach is evaluated using reference data
from Debian end-user programs and annotated C/C++
libraries. The approach proposed used the project’
function by creating vectors of integers to repre-
sent each function using the code-only and code-
description representations. The neural classification
model consists of CNN and LSTM layers. The vot-
ing mechanism employed is plurality voting, where
the project category is determined based on the label
assigned to the highest number of its functions. The
proposed approach surpasses previous software clas-
sification techniques (Bag Of Words and LR) but still
suffers from the vocabulary problem when the code
description does not exist. In addition to that, (Zhang
et al., 2019) proposes a keyword-driven hierarchical
classification approach for automatically classifying
GitHub repositories based on their content. It uses
an HIN encoding module, a label prediction module
based on MLP network, and a label refinement mod-
ule to refine the predicted labels. The authors col-
lected two datasets of GitHub repositories ”Machine
Learning” and ”Bioinformatics”. The results show
that their approach outperforms several state-of-the-
art methods in terms of accuracy and F1 score on both
datasets.

In the realm of transformer-based and LLM, sig-
nificant progress has been made, resulting in the
emergence of more sophisticated methodologies. One
prominent example is ChatGPT, which exhibits sub-
stantial potential across various tasks relevant to the
focus of this study. These tasks encompass text clas-
sification (Kuzman et al., 2023)(Zhang et al., 2022) ,
code comprehension and generation (Megahed et al.,
2023)(Treude, 2023)(Sobania et al., 2023), data aug-
mentation (Dai et al., 2023), and information extrac-
tion (Wei et al., 2023)(Gao et al., 2023)(Polak and
Morgan, 2023). Evaluations indicate that ChatGPT’s
zero-shot performance is comparable to fine-tuned
models such as BERT, BART, and GPT-3.5. Fur-
thermore, leveraging advanced prompting strategies
can enhance ChatGPT’s comprehension capabilities.
Nonetheless, it has not yet surpassed the performance
of the current state-of-the-art (SOTA) models.

In contrast to the studies mentioned earlier, our
work aims to categorize software repositories by uti-
lizing both textual and source code information, pro-
viding a more comprehensive approach. Previous

research predominantly concentrated on categorizing
repositories into technical classes, which lacked the
ability to differentiate between repositories from var-
ious disciplines. Furthermore, these studies primarily
focused on widely used programming languages like
Java and Python. In contrast, our approach empha-
sizes categorizing repositories based on their subject
or discipline, with a particular emphasis on the R pro-
gramming language, which boasts a large and vibrant
community. This targeted focus allows for a more
specialized categorization, catering to the needs of re-
searchers and practitioners within specific domains.
Additionally, we leverage cutting-edge deep learning
techniques, incorporating the vast knowledge gained
from LLMs, further enhancing the accuracy and ef-
fectiveness of our categorization model.

3 MODEL ARCHITECTURE

Few-shot learning techniques have gained popular-
ity as effective solutions for scenarios with limited
labeled data. These techniques involve adapting
pre-trained language models to specific tasks using
minimal training examples. Various approaches al-
ready exist such as in-context learning (ICL) (used
in GPT3), and adaptation approach which performs a
localized updates that concentrate changes in a small
set of model’ parameters like using adapters (Houlsby
et al., 2019); (Pfeiffer et al., 2020); (Üstün et al.,
2020). However, they may not always be practical due
to their reliance on billion-parameter language mod-
els, susceptibility to high variability caused by man-
ually crafted prompts, and the infrastructure and cost
requirements for deployment.

To address these limitations, a new approach
called SETFIT (Sentence Transformer Fine Tuning)
has been proposed in (Tunstall et al., 2022). SET-
FIT is an efficient and prompt-free approach for few-
shot fine-tuning of Sentence Transformers (ST). The
framework involves first fine-tuning a pretrained ST
using a contrastive siamese approach with a small set
of text pairs. This fine-tuned model then generates
rich text embeddings, which are utilized to train a
classification head (as depicted in Figure 1).

This approach has achieved impressive outcomes
in text classification and offers various advantages
over similar approaches like T-FEW, ADAPET,
and PERFECT. It stands out for its remarkable
speed during inference and training, and it doesn’t
rely on extensive base models or data for optimal
performance, eliminating the need for external com-
putation. Unlike previously mentioned approaches
and zero-shot learning, SETFIT avoids the instabil-
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Figure 1: A visual representation of SetFIT’s architecture.

ity and inconvenience associated with prompting.
Considering our case of limited data and real-world
deployment, this approach is highly suitable.

ST Fine-Tuning. To overcome the limitations
posed by the scarcity of data, the initial phase of
fine-tuning the ST model relies on a contrastive
training approach. This technique, commonly
employed for image similarity (Koch et al., 2015),
involves the generation of positive and negative
triplets from a small labeled example set, D = (xi,
yi), where xi represents sentences and yi represents
their corresponding class labels. For each class label
c ∈ C, two sets of triplets are formed: R positive
triplets (T cp) comprising pairs from the same class,
and R negative triplets (T cn) containing a sentence
from one class and another from a different class.
During each iteration of sentence-pair generation,
2xK training pairs are created, with K representing
the total number of training samples in the task. The
contrastive fine-tuning dataset, denoted as T, is con-
structed by concatenating the positive and negative
triplets across all class labels. Subsequently, the
sentence transformer model undergoes fine-tuning on
the T dataset to yield an adapted ST.

Classification Head and Inference. In the second
phase, the limited original training data is employed
to generate sentence embeddings using the adapted
ST. These embeddings, along with the original class
labels, are used as the dataset to train the classification
head. In the original research paper, a logistic regres-
sion (LR) model is utilized as the text classification
head. During the inference phase, each test sentence
undergoes encoding using the adapted ST, and the LR
model predicts its corresponding category.

4 EXPERIMENTAL DESIGN

4.1 Dataset

Due to the lack of an existing dataset specialized in
classifying projects written in R language to prede-
fined disciplines, we took the initiative to collect our
own dataset from the Zenodo1 platform. Zenodo is
an open repository, serving as a versatile platform. It
enables researchers to upload various forms of digital
artifacts related to their research, including research
papers, datasets, research software, reports, and other
research-related materials. Our dataset comprises a
total of 479 projects, encompassing various classes
such as 82 Bioinformatics, 97 Economics, 100 Social
Science, 100 Statistical and Data analysis, and 100
Environmental Science. In order to capture compre-
hensive information about each project, we collected
multiple features, including the title, description, con-
tent (code), and file names. Additionally, we gener-
ated additional features such as keywords and code
descriptions using the GPT-4 via API calls, to provide
a more in-depth understanding of the projects within
our dataset. We divided the dataset into train and
test parts by using a balanced distribution between the
classes which resulted in 250 projects (50 projects in
each class) for training and rest for testing.

4.2 ST Model Selection

When it comes to selecting the optimal model for a
specific downstream task, explicit guidelines are of-
ten absent. Using the hypothesis mentioned in (Tun-
stall et al., 2022) by employing an embedding model
trained to identify semantic similarity between sen-
tence pairs due to similarity between classes in a
text classification setup. Consequently, we focused
on embedding models trained with all or paraphrase
datasets. Our selection process concentrated on mod-
els that demonstrated superior sentence embedding
performance and have a small size in terms of param-
eters as seen in Table 1.

Table 1: Candidate ST models that were chosen for validat-
ing SetFit on the our dataset.

Model Size Input
all-MiniLM-L6-v2 80 MB 256

paraphrase-MiniLM-L6-v2 80 MB 384
paraphrase-mpnet-base-v2 970 MB 512

all-mpnet-base-v2 420 MB 768

1https://zenodo.org/
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4.3 Baselines

Most of the previous works in software categoriza-
tion applied ML and DL techniques which required
a large dataset. Due to the non existing data in
software disciplines categorization, we compare
the few shot approach performance using our small
dataset against recent best LLM performing zero-shot
approaches such as: GPT (Generative Pre-trained
Transformer) series including CharGPT and GPT-4
(OpenAI, 2023), BART model (Lewis et al., 2019)
and CodeBERT model (Feng et al., 2020).

GPT3.5 and GPT-4 are the latest iterations of
OpenAI’s GPT model, representing advanced ver-
sions developed for understanding and generating
both natural language and code. These models are
pre-trained on extensive text data, including natural
language and programming language. Although
specific details about their training data and archi-
tecture are not well-documented, they are believed
to be autoregressive language models based on the
transformer architecture (Vaswani et al., 2017). In our
experiments, we utilize the gpt-3.5-turbo and gpt-4
models through the official API, without making any
modifications to the default parameters.

BART is a transformer-based encoder-decoder
model, utilizing both bidirectional encoding similar
to BERT and autoregressive decoding akin to GPT.
BART is pre-trained through a two-step process:
(1) introducing noise to the text using an arbitrary
function, and (2) training the model to reconstruct the
original text. The architecture consists of 12 layers
each in the encoder and decoder components. In this
study, we used the bart-large-mnli2 which is a bart
base model that was fine-tuned using the MultiNLI
(MNLI) dataset (Williams et al., 2017), enabling its
utilization for zero-shot text classification tasks.

CodeBERT is a pre-trained model designed to han-
dle both programming and natural languages. It is
trained on a combination of textual and code data
from CodeSearchNet (Husain et al., 2019), employ-
ing the MLM+RTD (Masked Language Modeling +
Replaced Token Detection) objectives. CodeBERT is
developed using the identical model architecture as
RoBERTa-base, as described in the work by Liu et
al. (2019). It consists of a total of 125 million model
parameters.

2https://huggingface.co/facebook/bart-large-mnli

4.4 Experimental Setup

In the few-shot framework, we conducted fine-tuning
of the ST model by utilizing a cosine-similarity loss.
The fine-tuning process involved a learning rate of 1e-
3, a batch size of 16, and a maximum sequence length
of 256 tokens. We performed the fine-tuning for 5
epochs by fixing the number of iteration to 5. In all
our experiments, we made use of the Hugging Face
Transformers library (Wolf et al., 2020).

To generate features using the GPT-4 model, we
employed the prompt ”Generate keywords from this
repository description and code:” including the title,
description, and code.

For the zero-shot classification, we used the fol-
lowing prompt structure: ”Classify this repository in-
formation into one of the following classes: [Bioin-
formatics, Environmental Science, Social Sciences,
Statistics and Data Analysis, Economics]” with dif-
ferent combinations of features.

5 RESULTS AND DISCUSSION

This section presents the evaluation of our approach
in comparison to the baselines, with the objective of
addressing various research questions that pertain to
different aspects of input features and classifier mod-
els.

• RQ1. How does the performance of the model
differ when using only text descriptions compared
to using text descriptions along with source code?

• RQ2. How does generating new features (trans-
forming the source code into a text description and
generating repository’ keywords) affect the per-
formance of the models?

• RQ3. Does combining different features actually
enhance the accuracy of the models?

• RQ4. Is it possible for data augmentation to en-
hance the accuracy of our approach?

5.1 RQ1. Performance on Text
Description and Code

This section presents the evaluation results for the
models based on their performance using text descrip-
tions alone (table 2) and text descriptions with code
sources (table 3). In the following, we will discuss
the results and answer the first research question.

Upon comparing the two tables, it becomes ap-
parent that the performance of the models deterio-
rates when code sources are incorporated alongside
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Table 2: Evaluation results based on text description fea-
ture.

Models Acc. Pre. Rec. F1
Bart-large-mnli 0.49 0.57 0.5 0.47

GPT3.5 0.35 0.52 0.37 0.32
GPT-4 0.38 0.48 0.39 0.35

CodeBERT 0.26 0.34 0.24 0.17
Few-shot all−MiniLM 0.57 0.59 0.55 0.56

Table 3: Text description with code source evaluation.

Models Acc. Pre. Rec. F1
Bart-large-mnli 0.27 0.31 0.29 0.25

GPT3.5 0.29 0.41 0.32 0.26
GPT-4 0.32 0.31 0.34 0.26

CodeBERT 0.11 0.1 0.12 0.09
Few-shot all−MiniLM 0.47 0.52 0.51 0.48

text descriptions (table 3). This decline in perfor-
mance is consistent across all evaluated models, as
indicated by the decreased accuracy, precision, re-
call, and F1 scores. This outcome is not entirely sur-
prising, considering that the algorithms were primar-
ily developed for achieving high performance on text
data rather than low-level data. From our perspec-
tive, these results suggest that classifying source code
presents a distinct challenge compared to text classi-
fication, likely due to the vocabulary disparities.

CodeBERT, in particular, demonstrates the most
notable decline in performance, showcasing the least
favorable results compared to all other models in ta-
ble 3. Despite being trained on both text descriptions
and code sources, CodeBERT continues to face dif-
ficulties. One possible explanation for this could be
the distinct structural differences between the R code
used and the programming language encountered dur-
ing the training phase. Additionally, CodeBERT may
have a relatively limited understanding of textual in-
formation compared to the other models, which could
contribute to its struggles in this task.

Few-shot approach manages to maintain relatively
high performance in both experiments. This indicates
that it is more robust in handling the combined in-
put types and demonstrates a better understanding of
the relationship between text descriptions and code
sources even with few samples. GPT3.5’s accuracy
decreases from 0.35 to 0.29, indicating a reduction in
its ability to correctly classify repositories. Similarly,
GPT-4’s accuracy drops from 0.38 to 0.32 which sug-
gests that the inclusion of code sources in the input
negatively affects the performance of both GPT3.5
and GPT-4 which confirms that classifying source
code is a different problem than text classification
even when the input length touches the 8k tokens.

5.2 RQ2. New Features Generating

The provided section presents the evaluation results
(Table 4) of all models based on their performance
when transforming code sources into text descriptions
(Explanation of the code) and generating of keywords
using the GPT-4 model.

Table 4: Transforming code source to text description eval-
uation.

Models Acc. Pre. Rec. F1
Bart-large-mnli 0.29 0.48 0.29 0.21

GPT3.5 0.28 0.38 0.31 0.25
GPT-4 0.28 0.42 0.31 0.26

CodeBERT 0.22 0.16 0.22 0.16
Few-shot all−MiniLM 0.33 0.36 0.34 0.34

Looking at the results in table 4, it is evident that
transforming code sources into text descriptions nega-
tively impacts the performance of the evaluated mod-
els. The metrics scores are generally lower compared
to the previous tables. Among the models, Few-shot
approach exhibits the highest performance with an ac-
curacy of 0.33 and an F1 score of 0.34. Bart-large-
mnli, GPT3.5, and GPT-4 show similar performances,
with comparable accuracy and F1 scores. However,
their precision and recall vary slightly. The drop may
be caused by the misunderstanding of the GPT3.5 of
the code source even with adding the title and descrip-
tion to the prompt in order to give more information
about the repository.

Table 5: Title, description and keywords evaluation.

Models Acc. Pre. Rec. F1
Bart-large-mnli 0.49 0.58 0.5 0.48

GPT3.5 0.31 0.37 0.33 0.26
GPT-4 0.32 0.43 0.33 0.27

CodeBERT 0.24 0.13 0.22 0.14
Few-shot all−MiniLM 0.62 0.7 0.62 0.64

The results in table 5 indicate variations in the per-
formance of the models when considering title, de-
scription, and keywords. Few-shot approach demon-
strates the highest performance among the models,
with the highest scores over all metrics. This indi-
cates that Few-shot is more effective at utilizing the
title, description, and keywords to classify correctly
the repositories. Moreover, Bart-large-mnli performs
relatively well, achieving a moderate accuracy of 0.49
and a reasonably high precision of 0.58. However,
its recall and F1 score are slightly lower, suggesting
that it may struggle with capturing all relevant in-
formation from the title, description, and keywords.
GPT3.5 and GPT-4 show similar performances with
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lower scores compared to Bart-large-mnli and Few-
shot. CodeBERT exhibits the lowest performance
among the models and still struggles with the clas-
sification of the repositories.

5.3 RQ3. Combining Features

The results in table 6 demonstrate the performance of
the models when combining all the repository features
including: title, description, keywords, code descrip-
tion, and file names.

Table 6: Evaluation results based on all input features.

Models Acc. Pre. Rec. F1
Bart-large-mnli 0.34 0.54 0.35 0.29

GPT3.5 0.35 0.51 0.38 0.32
GPT-4 0.35 0.57 0.37 0.31

CodeBERT 0.21 0.33 0.19 0.13
Few-shot all−MiniLM 0.51 0.6 0.52 0.52

The Few-shot approach performs the best among
the models, achieving the highest results. Bart-
large-mnli, GPT3.5, and GPT-4 exhibit similar per-
formances, with comparable accuracy. While their
performance is better than CodeBERT, they still show
relatively lower scores compared to the Few-shot.
The introduction of code description and file name
in the table 6 resulted in a decrease in performance.
This can be attributed to the inclusion of confusing
information that impacted the classifier, particularly
due to the overlap between the five classes. The file
names mostly had a connection to statistical and data
analysis, introducing a bias in the results. Similarly,
the code descriptions generated by GPT3.5 followed
a structure related to the statistical and data analysis
class, using technical terms like distribution, model-
ing, programming, etc. Therefore, to achieve high
performance, especially when employing deep learn-
ing approaches, it is crucial to incorporate a feature
selection phase by comparing the behavior of the clas-
sifier over each feature and combination of features.
By doing so, we can optimize the model’s perfor-
mance and mitigate biases introduced by certain fea-
tures.

5.4 RQ4. Data Augmentation Impact

Table 7 displays the evaluation outcomes concerning
the influence of data augmentation on the Few-shot
approach. The augmentation was performed using
the GPT3.5 model to produce a rephrased version of
the title, description, and keywords. The selection of
these features was based on the excellent performance
exhibited by the approach when solely utilizing the ti-

tle, description, and keywords features.

Table 7: Data Augmentation (Aug.) impact evaluation for
Few-shot model.

Models Acc. Pre. Rec F1
Without Aug. 0.62 0.7 0.62 0.64

Aug. 0.56 0.7 0.54 0.55

Comparing the two scenarios, we observe that
Few-shot without augmentation achieves higher re-
sults compared to Few-shot with augmentation. This
indicates that data augmentation has a negative impact
on the model’s performance in this specific case. The
decrease in performance can be attributed to several
factors: the augmented data (i) may introduce noise
or irrelevant patterns , (ii) not adequately capture the
underlying patterns and characteristics of the input,
and (iii) may introduce biases or inconsistencies that
negatively affect the model’s ability to generalize to
new inputs.

6 CONCLUSIONS

In conclusion, the study highlights the potential of the
few-shot learning approach to achieve promising re-
sults even with limited labeled data. The performance
of all approaches examined in this research was sig-
nificantly impacted by the presence of high-level text
data. However, the challenge of overlapping cate-
gories remains a persistent issue in the task of soft-
ware repository classification. The diversity in code
sources introduces additional ambiguity due to vari-
ations in vocabulary usage. Furthermore, fine-tuning
a pre-trained model specifically for this task demon-
strated the capability to surpass the capabilities of
LLMs. Leveraging LLMs, however, proved valuable
in generating more helpful features for the classifi-
cation process. These findings emphasize the impor-
tance of incorporating both advanced techniques like
few-shot learning and utilizing the strengths of LLMs
to enhance software categorization tasks. Further re-
search and development in this field hold the potential
to refine and optimize the automatic classification of
software repositories by evaluating more approaches,
use more input features and enrich the source code
with line comments.
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