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Abstract: The present work shows the application of a new controller based on combining the fractional order calculus
concepts with the sliding mode theory to a non-linear system with variable delay. The power of fractional-order
calculus is used to identify the real process and represent it as a reduced-order model. From this model, the
controller is developed using the sliding-mode control procedure. An SMC based on FOPDT and one based
on fractional calculus are compared using some performance indicators to assess performance quantitatively.

1 INTRODUCTION

The chemical and biochemical engineering field has
a lot of control problems, one of which is the pri-
mary focus of current work: regulating variable time
delay processes. In real applications, plant behav-
ior is often affected by unexpected dynamics, out-
side disturbances, etc. (Obando et al., 2023). Dis-
turbances, model errors, unmodeled dynamics, ele-
vated time delay, and poorly defined plant charac-
teristics reduce the efficacy of conventional regula-
tion schemes even for linear time-invariant systems in
chemical processes, especially at the industrial scale.

When designing a process controller, the control
actions become slow if it has a time delay, decreas-
ing the total process performance. Furthermore, in
some cases, it has been seen that delays produce in-
stability in the system, as in (Prado et al., 2022), lead-
ing to the search for more advanced control proposals.
Thus, controlling dynamical systems with delay time
has become a major topic in control theory.

The variable structure control has a method called
the sliding mode control (SMC). SMC is a simple
and reliable method for creating controllers for linear
and non-linear processes, according to (Camacho and
Smith, 2000; Utkin et al., 2020). SMC is one of the
most widely used techniques for managing dynamical
systems because it is relatively insensitive to uncer-
tainties(Camacho and Smith, 2000; Espı́n et al., 2022;
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Utkin et al., 2020). The traditional sliding mode con-
trol always maintains a predesigned sliding variable
S(t), which is generated by a so-called reaching con-
dition, such as S(t) ˙S(t) < 0, to be zero under high-
frequency switching (Utkin et al., 2020).

Substantial research has been published on the ap-
plication of SMC in industrial engineering process
control; we can name some of them here(Espı́n et al.,
2022; Xiao and Li, 2016; Dimassi et al., 2019; Ra-
sul and Pathak, 2016; Sardella et al., 2020; Siddiqui
et al., 2020; Herrera et al., 2020; Salinas et al., 2018;
Kadu et al., 2018). Although few studies on SMC de-
sign employ fractional order calculus techniques for
chemical processes, we can highlight some of them
(Di Teodoro et al., 2023; Di Teodoro et al., 2022;
Ullah and Mohammad, 2022; Allahem et al., 2022;
Mehri and Tabatabaei, 2021; Haghighi and Ziaratban,
2020; Ardjal et al., 2021).

The current work illustrates the application of a
novel controller based on fusing notions from sliding
mode theory and fractional order calculus to a non-
linear system with variable delay. First, the actual
process is represented as a reduced-order model us-
ing the strength of fractional-order calculus. Then,
the sliding-mode control approach is used to create
the controller from this model. Finally, some perfor-
mance measures were used to evaluate and compare
an SMC based on FOPDT and an SMC based on frac-
tional calculus.

The paper is divided as follows: in Section
two, some fundamentals are described; Section three
shows the methodology of design; in Section four, the
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results by simulations are presented; and finally, the
conclusion.

2 BACKGROUND

2.1 Sliding Mode Control

The SMC is a variable structure controller created uti-
lizing nonlinear control techniques. It is a robust con-
trol that reacts appropriately to nonlinear systems un-
der unknown conditions. Furthermore, it is immune
to changes in modeling parameters. The SMC consid-
ers a sliding surface that allows the controlled variable
to transition from an initial state to the desired final
state. For this reason, its control law includes a con-
tinuous component to move on the sliding surface and
a discontinuous part for the reachability phase. The
motion of the system on a sliding surface is known as
the sliding mode (Utkin et al., 2020).

The SMC control law U(t), as expressed in (1):

U(t) =Ueq(t)+UD(t) (1)

Ueq(t): It is obtained from the equivalent control
method (Utkin et al., 2020). Keep the controlled vari-
able on the sliding surface σ(t) = 0. The equivalent
control is deduced, considering that the derivative of
the surface is zero.

The sliding condition is given by:

dσ(t)
dt

= 0 (2)

Combined with the previous equation and the
model of the process system, Ueq(t) is obtained.

UD(t): It is the discontinuous control part; it al-
lows the system to reach the sliding surface. It incor-
porates a nonlinear element that includes the switch-
ing element of the control law; therefore, UD(t) con-
tains the switching element and is given by:

UD (t) = KDsign(σ(t)) (3)

KD is a tuning parameter responsible for the reach-
ing mode.

SMC transitions on the sliding surface cause chat-
tering. Chattering excites system dynamics not mod-
eled, causes vibration of the actuator with wear, and
degrades performance. One way to reduce such im-
pacts is to smooth the non-linear switching function
using soft functions such as the sigmoid function (Ca-
macho and Smith, 2000). Therefore, the discontinu-
ous controller utilizes the sigmoid function:

UD(t) = KD
σ(t)

|σ(t)|+δ
(4)

The convergence condition, often known as at-
tractiveness, ensures that the system dynamics will
always converge on the sliding surface(Utkin et al.,
2020). It is necessary to formulate a Lyapunov func-
tion V (t) > 0 with finite energy. The candidate Lya-
punov function is defined as follows.

V (t) = 1/2σ
2(t) (5)

It is sufficient to make sure that the derivative of
the function V (t) is negative for it to be possible for
the function V (t) to be reduced. Therefore, the condi-
tion of convergence can be written as follows:

dV (t)
dt

=
dσ(t)

dt
σ(t)< 0 (6)

It states that if the projection of the system trajec-
tories on the sliding surface is stable, then the system
is stable (Li et al., 2010).

2.2 Briefs About Fractional Calculus

2.2.1 Definitions of Caputo and
Riemann-Liouville Derivative and Their
Connection

Definition 1. The Riemann − Liouville fractional in-
tegral of order α > 0 is given by (see (Kilbas et al.,
2006; Miller and Ross, 1993; Podlubny, 1994; Kilbas
et al., 1993))(

Iα

a+h
)
(x) =

1
Γ(α)

∫ x

a

h(t)
(x− t)1−α

dt, x > a. (7)

We denote by Iα

a+(L1) the class of functions h, rep-
resented by the fractional integral (7) of a summable
function, that is, h = Iα

a+ϕ, where ϕ ∈ L1(a,b). A de-
scription of this class of functions is given in (Kilbas
et al., 2006; Kilbas et al., 1993; Abbas et al., 2023;
Patel et al., 2023) (L1[a,b] space can be defined as a
space of measurable functions for which the absolute
value is Lebesgue-integrable).
Definition 2. Let

(
Dα

a+h
)
(x) denote the fractional

Riemann–Liouville derivative of order α > 0, where
h∈ L1(a,b) (see (Kilbas et al., 2006; Miller and Ross,
1993; Podlubny, 1994; Kilbas et al., 1993; Abbas
et al., 2023))(

RLDα

a+h
)
(x) =

( d
dx

)s 1
Γ(s−α)

∫ x
a

h(t)
(x−t)α−s+1 dt, (8)

s = [α]+1,x > a, (9)

where [α] denotes the integer part of α and Γ is the
gamma function.
When 0 < α < 1, then (8) takes the form(

RL
Dα

a+h
)
(x) =

d
dx

(
I1−α

a+ h
)
(x). (10)
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Example 1.

RLDα

a+ f (x−a)γ =

{
0, γ = α−1,

γ+1
γ−α+1 (x−a)γ−α , otherwise

.

With α ∈ (0,1), a > 0, k ∈ N and γ > −1, and an
appropriate f . (See (Ceballos et al., 2020; Ceballos
et al., 2022; Kilbas et al., 1993))
Definition 3. Let α ≥ 0 and m = [α]. Then, we can
define the operator cDα

a+ by cDα

a+ f := Im−α

a+
( d

dx

)m
f ,

when
( d

dx

)m
f ∈ L1[a,b].

Example 2. cDα

a+(x−a)β = 0 if β ∈ {0,1,2, . . . ,m−
1}.
Lemma 1. Let α ≥ 0 and m = [α]+1. Suppose that
f is such that cDα

a+ and RLDα

a+ exists. Then

cDα

a+ f =RL Dα

a+ f −
m−1

∑
k=0

(x−a)k−α

Γ(k−α+1)

(
d
dx

)k

f (a).

See (Kilbas et al., 2006; Podlubny, 1994; Kilbas et al.,
1993))
consequently, we have the following lemma:
Lemma 2. Let α ≥ 0 and m = [α]+1. Suppose that
f is such that cDα

a+ and RLDα

a+ exists.

Then cDα

a+ f =RL Dα

a+ f = Dα

a+ f . If and only if
( d

dx

)k

f (a) = 0 for all k = 0, ...,m−1.
The semigroup property for the composition of frac-
tional derivatives does not hold in general (see (Pod-
lubny, 1994, Sect. 2.3.6)). In fact, the property:

Dα

a+
(
Dγ

a+h
)
= Dα+γ

a+ h (11)
holds whenever

h( j)(a+) = 0, j = 0,1, . . . ,s−1, (12)

and h ∈ ACs−1([a,b]), h(s) ∈ L1(a,b) and s = [γ] + 1
( ACs([a,b]) denotes the class of functions h, which
are continuously differentiable in the segment [a,b],
up to order s− 1 and h(s−1) is absolutely continuous
in [a,b]).
Remark 1. In this paper, we use Dα

a+ to identify the
fractional operator because we assume that the initial
conditions are equal to zero.

2.2.2 Laplace Transform of Fractional
Derivatives

Definition 4. Let F(s) := (L f )(s), i.e., say, the
Laplace transform of the function f and α > 0
(See([(Kilbas et al., 1993)])).(

L Dα

0+ f
)
(s) = sαF(s)−

l−1

∑
j=0

f ( j)(0+)sα− j−1

where l = [α] + 1 and f ( j)(0+) = d j

dt j f (t)|t−→0+ , j =
0, ..., l −1. Clearly, if α ∈ (0,1) then(

L Dα

0+ f
)
(s) = sαF(s)− f (0+)sα−1 (13)

2.2.3 The Use of the Mittag-Leffler for G(s)

In order to develop our model, we will make use of the
two-parameter Mittag-Leffler function. This function
is defined classically as

Definition 5. Let z ∈ C and α > 0. The two-
parameter Mittag-Leffler function is given by

Eα,β(z) =
+∞

∑
k=0

zk

Γ(αk+β)
, ∀z ∈ C. (14)

Remark 2. Note that Eα,β(z)> 0 for all z ∈ C+ and
when β= 1, then Eα,β(z) =Eα(z) This function is uni-
formly convergent over C. For α,β ≥ 0 If n = 1 and
r = 1. E1,1(z) = E1(z) = exp(z). (see (Kilbas et al.,
2006; Podlubny, 1994; Kilbas et al., 1993))

3 CONTROL DESIGN APPROACH
IN THE CAPUTO SENSE

This section presents the mathematical development
of the sliding mode control based on a FOPID surface.
Since SMC is a model-based controller, let us use an
empirical model of the actual process. Using the reac-
tion curve procedure, the nonlinear process can be ap-
proximated for a first-order plus dead time (FOPDT)
model (Smith and Corripio, 2005).

X(s)
U(s)

=
Ke−t0s

τs+1
. (15)

3.1 Time Delay Approximation

A first problem encounter in the realization of this
fractional controller is the time delay part (Camacho
and Smith, 2000). In the complex settings, the natu-
ral exponential function ez can be represented as the
well–known Taylor series centered at 0 which is abso-
lutely convergent for z ∈ C. A simple linear approx-
imation is 1+ z where the absolute error |ez −1− z|
equals the Taylor remainder R1. On the other hand,
we have that e−z = 1

ez thus we can approximate e−z

by 1
1+z . Indeed, to see this let the approximation

error,
∣∣e−z − 1

1+z

∣∣, be bounded by εmax > 0. Then,∣∣e−z − 1
1+z

∣∣≤ |z|
|1+z| max

{
1,e−Re{z}

}
= εmax.

For example, the time delay e−t0s can be approxi-
mated to 1

t0s+1 and, in turn, the FOPDT transfer func-
tion is as follows:

Ke−t0s

τs+1
≈ K

(τs+1)(t0s+1)
, (16)
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that has a second order differential equation form (Ca-
macho and Smith, 2000).

Remark 3. A discussion that seems interesting to us
about the role of the fractional parameter in the expo-
nential function is a future work. A further conjecture
is that we believe that the parameter β is not neces-
sary. Which makes the calculation of the Laplace in-
verse much simpler.

3.2 Fractional Transfer Functions

Let α,β ∈ R, r,n ≥ 0. Then, we define the fractional
transfer function plus dead time as

X(s)
U(s)

=

(
K

τ(sα)+1

)
·
[

1
En,r(to(sβ))

]
(17)

where α and β can be interpreted as orders of frac-
tional derivatives and integrals. Note that transfer
function (15) is obtained when α and β approach to
1−.
Transfer function (17) can be approximated by (see
sec. 3.1 above)

X(s)
U(s)

=

(
K

τ(sα)+1

)
·
[

1
En,r(to(sβ))

]
≈
(

K
τ(sα)+1

)
· Γ(n)Γ(n+ r)

Γ(n+ r)+
(
to(sβ)

)
Γ(n)

. (18)

and can be changed to a fractional differential equa-
tion form. Using this approximation in equation (17)
we obtain[
Γ(n) sα+β +

(
1
t0

Γ(n+ r)
)

sα +
( 1

τ
Γ(n)

)
sβ + 1

τt0
Γ(n+ r)

]
X(s)

=
1

τt0
[K Γ(n) Γ(n+ r)]U(s)

(19)

Using definition 4 whenever the function X satisfies
the conditions of lemma 2 , then(

D
α+β

0+ X
)
(t)+

[
1
t0

Γ(n+ r)
Γ(n)

]
(Dα

0+X)(t)

+

[
1
τ

](
D

β

0+X
)
(t)+

[
1

τt0

Γ(n+ r)
Γ(n)

]
X(t) =

1
τt0

[K Γ(n+ r)]U(t)

(20)

3.3 Fractional Sliding Surface

Let us define the fractional sliding surface according
to (18) and (20). In the following, we assume the con-
ditions of lemma 2.

Definition 6. Let α,β ∈ R, m = [α + β], e(t) ∈
ACm−1([a,b]) and e(m) ∈ L1(a,b). Then, the frac-
tional slinding surface, Sα,β, is defined as

(
Sα,β e

)
(t) :=

(
Dα+β

0+ +λ1Dα

0+ +λ2Dβ

0+ +λ0

)(
I1 e

)
(t).

(21)
where λ0,λ1,λ2 are selected such that Sα,β = 0, giving
a closed-loop stable response.

Remark 4. In the classical sense (Camacho and
Smith, 2000), our operator converge to (22)

(S e)(t) =
(

d
dt

+λ

)n ∫
e(t)dt. (22)

when n = 2 as α,β approach to 1−. The binomial
theorem can be used to generalize n. This is a fasci-
nating topic for further research. Just emphasize that
fractional computation for outside-interval parame-
ters (0,1) is much more difficult to calculate.

Remark 5. Note that the definitions 2 and 3 allow us
to commute the classical integral operator I1 in the
fractional sliding surface operator in definition 6, i.e.,(

Dα+β

0+ +λ1Dα

0+ +λ2Dβ

0+ +λ0

)
I1 =

I1
(

Dα+β

0+ +λ1Dα

0+ +λ2Dβ

0+ +λ0

)
. (23)

Classical derivation of operator 6 will be needed in
the following:

d
dt

(
Sα,β e

)
(t) =

(
Dα+β

0+ +λ1Dα

0+ +λ2Dβ

0+ +λ0

)
[e(t)] .

(24)
where we have used the result in remark 5 followed by
the application of the Fundamental Theorem of Cal-
culus.

The next theorem shows how we can construct the
fractional equivalent control law Uα,β

eq (t).

Theorem 1. Let α,β ∈ R, m = [α + β], e(t) ∈
ACm−1([a,b]) and R(m)(t),X (m)(t) ∈ L1(a,b). Then,
the fractional control law uα,β

eq (t) based in the frac-
tional sliding surface defined in 6 is

uα,β
eq (t)=

τt0
K Γ(n+ r)



(
Dα+β

0+ R
)
(t)+λ1

(
Dα

0+R
)
(t)+

λ2

(
Dβ

0+R
)
(t)+λ0R(t)+(

1
t0

Γ(n+ r)
Γ(n)

−λ1

)(
Dα

0+X
)
(t)+( 1

τ
−λ2

)(
Dβ

0+X
)
(t)+(

1
τt0

Γ(n+ r)
Γ(n)

−λ0

)
X(t)


(25)

ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics

134



Let e(t) = R(t)−X(t). First, we apply operator
(24) to function e(t) to obtain

d
dt

(
Sα,β e

)
(t) =

d
dt

(
Sα,β R

)
(t)− d

dt

(
Sα,β X

)
(t).
(26)

by the linearity of this fractional operator. Next,
d
dt

(
Sα,β e

)
(t) = 0 guides us, combining equation (20)

to(
Dα+β

0+ R
)
(t)+λ1

(
Dα

0+R
)
(t)+λ2

(
Dβ

0+R
)
(t)+λ0R(t)+(

D
α+β

0+ X
)
(t)+

[
1
t0

Γ(n+ r)
Γ(n)

](
Dα

0+X
)
(t)+[

1
τ

](
D

β

0+X
)
(t)+

[
1

τt0

Γ(n+ r)
Γ(n)

]
X(t) =

(
Dα+β

0+ X
)
(t)+

λ1
(
Dα

0+X
)
(t)+λ2

(
Dβ

0+X
)
(t)+λ0X(t)+

1
τt0

[K Γ(n+ r)]U(t) (27)

The result follows.

Remark 6. If R : R→ R such that R = c, where c ∈
R. Then Ṙ = 0, consequently, Dα

0+R(t) = 0 and Dβ

0+R
(t) = 0.

The derivatives of the reference value can be ignored
(Camacho and Smith, 2000) without affecting the
control performance, which allows a simpler con-
troller.
Thus, the resulting equivalent controller law is given
as follows:

uα,β
eq (t) =

τt0
K Γ(n+ r)



λ0R(t)+(
1
t0

Γ(n+ r)
Γ(n)

−λ1

)(
Dα

0+X
)
(t)+( 1

τ
−λ2

)(
Dβ

0+X
)
(t)+(

1
τt0

Γ(n+ r)
Γ(n)

−λ0

)
X(t)

 (28)

The previous equation can be simplified by letting,

1
t0

Γ(n+ r)
Γ(n)

= λ1 (29)

and
1
τ
= λ2 (30)

The sliding (continuous) control law is:

uα,β
eq (t) = τt0

K Γ(n+r)

(
λ0e(t)+

(
1

τt0
Γ(n+r)

Γ(n)

)
X(t)

)
(31)

The reaching (discontinuous) control law Uα,β
D (t) is

defined as follows:

Uα,β
D (t) = KD(α,β)

Sα,β (t)∣∣Sα,β (t)
∣∣+δα,β

(32)

Where KD(α,β) is the switching gain.

Once the continuous and discontinuous parts of the
SMC, based on the fractional reduced order, have
been obtained; the total fractional order SMC law can
be represented as follows:

Uα,β (t) = uα,β
eq (t)+KD(α,β)

Sα,β (t)∣∣Sα,β (t)
∣∣+δα,β

. (33)

Until now, to our knowledge, there are no tuning
equations for KD(α,β) neither δα,β; hence in this paper
they are tuned by trial and error.

3.4 Fractional Results Using r = α and
n = β = 1

M Uα,1
eq (t) =

[
Dα+1

0+ +λ1D
α

0+ +λ2D
1
0+ +λ0

]
R(t)

+

[
Γ(α+1)

t0
−λ1

](
Dα

0+X
)
(t)

+

[
1
τ
−λ2

](
D1

0+X
)
(t)+

[
Γ(α+1)

τt0
−λ0

]
X(t)

(34)

Where M = K
τt0

Γ(α+1) and Γ(1) = 0! = 1

3.5 Stability Condition

The dynamics of the system will always converge on
the sliding surface according to the convergence con-
dition; to reach the sliding surface, it is necessary to
create a Lyapunov candidate function V (t) > 0 with
finite energy. We use the Mittag–Leffler stability the-
orem to do this and get the corresponding systems’
asymptotic stability.

Theorem 2 (See Theorem 5.1 in (Li et al., 2010)). Let
x = 0 be an equilibrium point for the system

Dα

0+x(t) = f (x(t)), t ≥ t0,

where 0 < α ≤ 1 and I ⊂ R be a domain containing
the origin f ∈ C1(I). Let V (t,x(t)) : [0,∞)× I → R
be a continuously differentiable function and locally
Lipschitz with respect to x such that

i) A||x||a ≤V (t,x(t))≤ B||x||b,
ii) Dα

0+V (t,x(t))≤−F ||x||ab

where t ≥ 0, x ∈ I,α ∈ (0,1),A,B,F,a, and b. are
arbitrary positive constants. Then x = 0 is Mit-
tag–Leffler stable. If the assumptions hold globally
on R, then x = 0 is globally Mittag–Leffler stable.

V (t,x(t)) = x(t)(2)α−1Eα,α(−λx(t)(2)α−1). (35)
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Figure 1: Mixing Tank process.

Where α ∈ (0,1) , Eα,β is the Mittag-Leffler function
defined in (14).
This function is locally Lipschitz any interval of R
and satisfies

(i 0 < V (t,x(t)) ≤ B||x||b for x ∈ I ⊂ R and any B ∈
R. See (Coloma et al., 2021; Ceballos et al., 2020;
Ceballos et al., 2022)

(ii Dα

0+V (t,x(t)) = −λV (t,x(t)) ≤ −F ||x||ab for any
F,a,b ∈ R, see (Kilbas et al., 2006).

in consequence x = 0 is Mittag–Leffler stable, using
the Remark 4.4 in (Li et al., 2010) (Mittag–Leffler sta-
bility and Generalized Mittag–Leffler stability imply
asymptotic stability) we guarantee asymptotic stabil-
ity of our system.

4 RESULTS AND DISCUSSION

4.1 Mixing Tank Process

The mixing tank shown in Fig. 1 consists of the si-
multaneous entry of the hot W1(t) and cold flow W2(t)
into the process with temperatures T1(t) and T2(t), re-
spectively. The output T4(t) is the temperature of the
mixture measured at a point 125 ft downstream of the
mixing tank. The Fail-Closed (FC) actuator regulates
the cold stream to maintain the desired temperature
T3 within the mixing tank. The control objective con-
sists of maintaining the required mixing temperature
T3(t) despite disturbances in the hot flow W1(t). The
following determines the time delay between the tank
and the sensor’s position.

T4(t) = T3(t − t0) (36)
with, transportation lag or delay time:

t0 =
LAρ

W1(t)+W2(t)
(37)

where A is the cross section of the pipe, the length
of the pipe L and the density ρ of the contents of the
mixing tank. A complete description of the non-linear
model and parameters in a stationary state and the sys-
tem variables can be found in (Camacho and Smith,
2000).

4.2 Identification and Validation of
FOPDT and FO-FOPDT Models

The reaction curve method is used to identify an ap-
proximate model of the non-linear mixing tank pro-
cess. Thus, 10% of the input of the process (m(t))
is made. Figure 2 shows the responses of the tank
mix process, the approximate FOPDT model (Smith
and Corripio, 2005) and the approximate fractional
FO-FOPDT model (Gude and Garcı́a Bringas, 2022).
Equations (38) and (39) show the approximate mod-
els:

G(s)FOPDT =
−0.8207e−4.206s

2.227s+1
(38)

G(s)FO−FOPDT =
−0.8207e4.142s

2.262s1.01 +1
(39)

As can be seen in the Eqs. (38) and (39). The
controllability relation

( t0
τ
> 1

)
, which makes it dif-

ficult to control (Obando et al., 2023). Also, it can be
considered as a process with a long delay.

0 5 10 15 20 25 30

Time [min]

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

T
ra

n
s
m

it
te

r 
u
n
it
s
 [
p
u
]

Process

FOPDT

FO-FOPDT

Figure 2: Open Loop Output Responses for step process
input.

The mean square error (MSE) is used to vali-
date the models obtained. Where: MSEFOPDT =
1.4192x10−7 and MSEF0−FOPDT = 9.3819x10−8. Al-
though both indices are low, the MSE of the fractional
model was the lowest.

To analyze the performance of the FO-SMC con-
troller, it is compared with a conventional SMC con-
troller presented in (Camacho and Smith, 2000). FO-
SMC controller parameters λ0, λ1 and λ2 are tuned
according to Section 3. SMC controller parameters
and the FO-FOPDT KD and δ parameters are tuned
according to (Camacho and Smith, 2000). These pa-
rameters are shown in Table 1.
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Table 1: Controller design parameters.

Parameter SMC FO-SMC
λ0 0.1179 0.1171
λ1 0.6867 0.2425
λ2 − 0.4419
KD 0.3833 0.3925
δ 0.7059 0.6894

4.3 Disturbance Rejection Test

In this test, from the operating point T3(t) = 150[oF ],
the variations in steps from 250

[ lb
min

]
to 150

[ lb
min

]
in

the hot flow W1(t).
Due to the distance of the pipe L = 120[ f t], the

outlet temperature is measured downstream. Further-
more, due to the effect of the disturbance, the varia-
tion of W1(t) causes the time delay of the processes to
increase stepwise from 3.58 to 4.9[min], as shown in
Fig. 3.
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Figure 3: Dead Time variation.

Figure 4 shows the temperature responses for the
disturbance rejection test. It can be seen that for the
last two disturbances, the response of the FO-SMC
controller presents a slight improvement.
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Figure 4: Temperature responses.

The control actions for both controllers have very
similar behavior, as shown in Fig. 5.
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Figure 5: Action Controllers.

4.4 Performance Indices Comparison

In Fig. 6 the comparison of the performance indices
of the SMC controller and the FO-SMC is shown. It
can be seen that the performance values obtained for
both controllers are very similar. However, the FO-
SMC controller presents slightly lower ISE and IAE
values.
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Figure 6: Comparative of performance indexes of the con-
trollers.

5 CONCLUSION

The paper applied a novel SMC based on a fractional-
order model to a variable time-delayed nonlinear pro-
cess. The results showed that the proposed approach
is promising, requiring more exploration of the tun-
ing equations and the effects of λ and β to reach the
sliding surface and reduce chattering.
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