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Abstract: The main goal of this study is to propose two Bayesian hierarchical modelling approaches using basketball 
game data from the 2008/2009 NBA regular season. The aim of the first approach is to estimate the results of 
each match during the season. This is done by considering each scoring method in basketball separately, that 
is, free throws, 2-point shots and 3-point shots, and estimating the offensive and defensive ability with respect 
to each scoring method for each team. These attributes are then used to produce a final score for each match. 
We attempt both the Poisson and the negative binomial distribution to model the scoring propensities. Both 
models are used to predict game outcomes and final standings, and since we find the negative binomial 
approach to be considerably superior, we use it to determine overall attack and defense abilities of each time 
for each scoring method. The second modelling approach, on the other hand, focuses on finding the probability 
of the home team winning a particular match in the season. Due to MCMC convergence issues, this model is 
represented by just one parameter representing overall strength for each team rather than two. When 
comparing the winning probability approach with the scoring propensity approach, we find that the latter is 
superior at predicting game outcomes, the former is superior at predicting final standings, while both are 
comparable in predicting which teams will qualify to playoffs. 

1 INTRODUCTION 

The main objective of this paper is to propose a 
Bayesian hierarchical approach to modelling 
basketball scores, and consequently games outcomes, 
in a league. While our focus will be on basketball, 
literature on other sports will be referenced, and 
required adjustments for the basketball application 
shall be made. In the following, we shall first focus 
on literature related to statistical modelling related to 
basketball and Bayesian hierarchical modelling. 
Next, we will provide the mathematical formulation 
for the Bayesian hierarchical structure of the 
proposed models, which are built with two basketball 
game related applications in mind, related to 
modelling the scoring intensity and the winning 
probability. Finally, we will fit the different models 
and compare results to determine which Bayesian 
hierarchical models are the most suitable for game 
prediction and standings prediction for the dataset 
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under study, which is the 2008/2009 NBA (National 
Basketball Association) regular season. The scoring 
intensity models shall also be used to measure the 
teams’ attack and defense attributes.  

2 LITERATURE REVIEW 

In this section, we provide a literature review that 
focuses on two aspects. The first is the use of 
statistical analysis to model phenomena in the 
basketball game, and the second is the use of 
Bayesian modelling, and more specifically Bayesian 
hierarchical modelling, in sports literature. 

An early application of sports modelling to 
basketball is the use of models which estimate the 
probability that a specific team in the NCAA would 
win the whole tournament (Carlin, 1996). External 
information regarding the teams’ strengths along with 
the point spreads available prior to the start of the 
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tournament were used to improve the proposed 
models. Another application is the use of a maximum 
score estimator to predict final scores (Caudill, 2003). 
This is an improvement to a probit model which 
forms a relationship between a team’s seed and the 
probability of them winning (Boulier and Stekler, 
1999). Not only within the basketball context, the 
idea that a team’s ability or strength is something 
dynamic and can fluctuate throughout the course of a 
season or a tournament is applied via an extension of 
the Bradley–Terry model for paired comparison data, 
to model the outcomes of sport events while allowing 
for time varying abilities through the use of weighted 
moving averages (Catellan et al., 2013). This was 
applied to the 2009-2010 NBA regular season 
(basketball) along with the 2008-2009 Italian Serie A 
season (football). The use of player-tracking data at 
every moment in a team’s possession of the ball to 
produce a quantity called expected possession value 
(EPV), has also been applied (Cervone et al., 2014). 
EPV is an expectation of how many points the 
attacking team is expected to score by the end of the 
possession. This quantity was first introduced to 
football where it was considered quite a revolutionary 
new metric as it provides a team with data regarding 
what would happen on an average basis if the team 
was scheduled for an infinite number of matches. 
Now, it is slowly making its way over to other sports 
including basketball. 

One early attempt of the use of Bayesian 
modelling in sports is a Bayesian framework to the 
bivariate Poisson distribution (Tsionas, 2001), which 
was originally applied in a frequentist context in 
football games (Karlis and Ntzoufras, 2000; Karlis 
and Ntzoufras, 2003). The influential seminal paper 
on the use of Bayesian hierarchical modelling in 
sports, where each individual team’s number of goals 
scored is assumed to follow a Poisson distribution, is 
applied to the Italian Serie A championship 
1991/1992 (Baio and Blangiardo, 2010). There have 
also been other approaches on the use of Bayesian 
hierarchical models to predict the outcome of tennis 
matches (Ingram, 2019) and women’s volleyball 
(Gabrio, 2020). In the former, a Bayesian hierarchical 
model based on the binomial distribution is used to 
model the serve-match, and in the latter, a Bernoulli-
based Bayesian hierarchical model is used to model 
the probability of playing five sets, and the 
probability of winning a match. To our knowledge, 
the Bayesian hierarchical modelling approach has not 
been applied to the basketball context. The Bayesian 
hierarchical Poisson model (Baio and Blangiardo, 
2010) shall serve as the basis for modelling scoring 
intensity, and this shall be extended to the negative 

binomial approach. Furthermore, the Bernouilli-
based Bayesian hierarchical modelling approach 
applied to volleyball (Gabrio, 2020) shall serve as the 
backbone for modelling the winning probability. 

3 BAYESIAN HIERARCHICAL 
MODELLING OF SCORING 
INTENSITY 

A noteworthy difference between the goals scored in 
football and basketball is that, in football you have 
one method of increasing the number of goals in a 
match, which always increments by a single value for 
each goal, while in basketball there are three different 
ways to score and how one can increase their team’s 
point tally. These different ways would be the free 
throw (1 point), the two-point shot, and the three-
point shot. Due to this difference, it was felt necessary 
that each scoring method should be modelled 
separately and in the end, the totals would be summed 
up according to their respective weight in order to 
obtain the predicted final score. We first start by 
defining the Bayesian hierarchical Poisson model 
applied to basketball, and then move on to extending 
this to the negative binomial case. 

3.1 The Poisson Model 

In this study, three Poisson models separately shall be 
considered (free throws made, two point shots made 
and three point shots made): 
 𝐹𝑇  | 𝜃  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃  ) 𝑇𝑤𝑜𝑃𝑇  | 𝜃  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃  )      (1) 𝑇ℎ𝑟𝑒𝑒𝑃𝑇  | 𝜃  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃  ) 

where 𝑔 represents the match index (in order of the 
date and time they were played), 𝑗 represents whether 
the team played at home or away (1 – home effect, 2 
– away effect). 𝐹𝑇 ,𝑇𝑤𝑜𝑃𝑇  and 𝑇ℎ𝑟𝑒𝑒𝑃𝑇  
represent the observed count for the free throws, two-
point shots and three-point shots made by team 𝑗 in 
the gth match, respectively.  𝜃 ,  𝜃  and  𝜃  represent the scoring intensity with 
respect to free throws, two-point shots and three-point 
shots by team 𝑗 in the gth match, respectively. The 
scoring intensity of the home and away team shall be 
estimated by considering the attack and defense 
ability for each team along with the home effect. The 
models must also include an intercept common for 
both scoring intensities due to the fact that basketball 
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scores can take large values. These parameters were 
again modelled using a log-linear random effect 
model: 
 𝑙𝑜𝑔 𝜃  = 𝑎𝑡𝑡 ( ) +  𝑑𝑒𝑓 ( ) + 𝑐 + ℎ𝑜𝑚𝑒  

 𝑙𝑜𝑔 𝜃  = 𝑎𝑡𝑡 ( ) +  𝑑𝑒𝑓 ( ) + 𝑐     (2) 
 

where 𝑎𝑡𝑡  represents the attack intensity for team 𝑡 
(which can take 30 different values for 30 different 
teams) with respect to model 𝑀 (which can be FT, 
2PT or 3PT). Similarly, 𝑑𝑒𝑓  represents the defense 
intensity for team t with respect to model 𝑀 . It is 
important to notice that a high and low 𝑎𝑡𝑡  value 
represents a good and bad attacking strength for a 
team, respectively. On the contrary, a high and low 𝑑𝑒𝑓  value represents a bad and good defending 
strength for a team, respectively. Also, ℎ(𝑔)  and 𝑎(𝑔)  represent the team index (all teams listed in 
order alphabetically) for the home and away team in 
match g, respectively. The ℎ𝑜𝑚𝑒  represents the 
advantage (for each model 𝑀) for the home team due 
to playing at their home court and due to a vast 
majority of the fans supporting them. Finally, 𝑐  
represents a common intercept for all teams under 
model 𝑀. This intercept was imperative for the model 
to work correctly, due to the nature of a basketball 
match having high score numbers. Also, nowadays, 
each scoring method can be found multiple times in 
every single match implying that the mean for each 
predicted scoring method value had to be shifted 
away from zero, justifying the inclusion of the 
intercept in this model. 

A suitable prior distribution must be assigned to 
each parameter. In order to put the focus on the data 
at hand, the following flat prior distributions shall be 
considered: 

 ℎ𝑜𝑚𝑒  ~ 𝑁𝑜𝑟𝑚(0, 0.0001) 𝑐  ~ 𝑁𝑜𝑟𝑚(0, 0.0001)    (3) 

similar to the model based on the Italian football 
league (Baio and Blangiardo, 2010). The parameters 𝑎𝑡𝑡  and 𝑑𝑒𝑓  are further assigned two 
interchangeable (common for home and away) 
hyperparameters each, which in turn, are also 
modelled independently using flat prior distributions 
where 𝜇 / are assumed to follow normal 
distributions with mean 0 and precision 0.0001 while 𝜏 /  are assumed to follow gamma distributions 
with shape and scale parameters both 0.01, i.e. 
 
 
 

𝑎𝑡𝑡 ~ 𝑁𝑜𝑟𝑚(𝜇 , 𝜏 ) 𝑑𝑒𝑓 ~ 𝑁𝑜𝑟𝑚(𝜇 , 𝜏 ) 𝜇  ~ 𝑁𝑜𝑟𝑚(0, 0.0001)     (4) 𝜇  ~ 𝑁𝑜𝑟𝑚(0, 0.0001) 𝜏  ~ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1) 𝜏  ~ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1) 

Also, we applied constraints to the parameters 𝑎𝑡𝑡  
and 𝑑𝑒𝑓  for identifiability purposes. 
 ∑ 𝑎𝑡𝑡 = 0   and   ∑ 𝑑𝑒𝑓 = 0   (5) 

 
Figure 1: DAG of the general case for the scoring intensity 
models using the Poisson distribution. 

Since the NBA consists of 30 teams, this means 
that each model will be working with 30 different 𝑎𝑡𝑡 
parameters and 30 different 𝑑𝑒𝑓 parameters for each 
team along with one value each for the ℎ𝑜𝑚𝑒 
parameter and the overall intercept 𝑐. Thus, in total 
we are going to be handling 186 different parameters 
which combined together will ultimately provide us 
with the total expected points scored by the home and 
away team. Naturally, this is calculated at the end by 
considering the number of points provided by each 
scoring method. i.e.,  

 𝑇𝑃 = 𝐹𝑇 +  2 ∗ 𝑇𝑤𝑜𝑃𝑇 + 3 ∗ (𝑇ℎ𝑟𝑒𝑒𝑃𝑇 ) 
(6) 

Letting 𝑀  represent the observed count for each 
model ( 𝐹𝑇 ,𝑇𝑤𝑜𝑃𝑇  and 𝑇ℎ𝑟𝑒𝑒𝑃𝑇 ) , we can 
represent each hierarchical model graphically in a 
similar manner. Figure 1 shows a graphical 
representation of the hierarchical structure for the 
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general case using the Poisson scoring intensity 
model. 

3.2 The Negative Binomial Model 

Although the Poisson setup could potentially be an 
acceptable model for the basketball application, a 
distribution which could turn out to be a better choice 
in the case of basketball would the negative binomial 
distribution. This is due to the larger flexibility thanks 
to its second parameter. This flexibility should be able 
to compensate for the nature of points in a basketball 
match always taking a large value, far from 0. 
Analogous to the Poisson formulation, under the 
negative binomial setup, three separate models shall 
also be considered: 
 𝐹𝑇  | 𝑙 , 𝑟  ~ 𝑁𝑒𝑔𝐵𝑖𝑛(𝑙 , 𝑟  ) 𝑇𝑤𝑜𝑃𝑇  | 𝑙 , 𝑟  ~ 𝑁𝑒𝑔𝐵𝑖𝑛(𝑙 , 𝑟  ) 𝑇ℎ𝑟𝑒𝑒𝑃𝑇  | 𝑙 , 𝑟  ~ 𝑁𝑒𝑔𝐵𝑖𝑛(𝑙 , 𝑟  ) 

(7) 

where once again, g represents the match time order 
index, 𝑗 represents whether the team played at home 
or away (1 – home, 2 – away). 𝐹𝑇 ,𝑇𝑤𝑜𝑃𝑇  and 𝑇ℎ𝑟𝑒𝑒𝑃𝑇  represent the observed count for the free 
throws, two point shots and three points made by 
team 𝑗 in the 𝑔  match, respectively.   
 

 
Figure 2: DAG of the general case for the scoring intensity 
models using the negative binomial distribution. 

Differently to the Poisson setup, 𝑟 , 𝑟  and  𝑟  represent the stopping parameters with 
respect to free throws, two point shots and three point 
shots by team 𝑗  in the 𝑔  match, respectively. 
Moreover, 𝑙 ,  𝑙  and  𝑙  represent 

the success probability parameters with respect to free 
throws, two point shots and three point shots by team 𝑗  in the 𝑔  match, respectively. These parameters 
were once again modelled using a log-linear random 
effect model: 

 𝑙𝑜𝑔 𝑟 = 𝑎𝑡𝑡 ( ) +  𝑑𝑒𝑓 ( ) + 𝑐 + ℎ𝑜𝑚𝑒  𝑙𝑜𝑔 𝑟 = 𝑎𝑡𝑡 ( ) +  𝑑𝑒𝑓 ( ) + 𝑐         
(8) 

The parameters mentioned in (8) have the same 
definitions as in (3) and (4), and the hyperparameters 
are also similarly defined. The parameters 𝑙 were 
assigned uniform distributions ranging from 0 to 1. It 
is imperative that they take a value between 0 and 1 
since they represent a success probability, i.e., 𝑙 ~ 𝑈𝑛𝑖𝑓(0,1). A graphical representation of the 
hierarchical model for the general case (scoring 
method 𝑀) using the negative binomial distribution, 
can be seen in Figure 2. The total points scored are 
also obtained as in (6). 

Both the models in Section 3.1 and 3.2 are 
estimated using Gibbs sampling, which is an MCMC 
approach for simulating values from the desired 
parameters. For the algorithm for Gibbs sampling in 
the Bayesian hierarchical context, see e.g. (Gelman et 
al., 2004). In the next section, we go through the 
construction of the Bayesian hierarchical winning 
probability model. 

4 BAYESIAN HIERARCHICAL 
MODELLING OF WINNING 
PROBABILITY 

For our approach with respect to basketball, a slightly 
different procedure was taken albeit with similarities 
to the setup in the Bernoulli-based Bayesian 
hierarchical model on women’s volleyball (Gabrio, 
2020). Firstly, the idea of sets is non-existent in 
basketball (as opposed to volleyball) so that part of 
the model in the mentioned paper is not considered. 
Secondly, since the binary variable which needs to be 
estimated depends directly on the number of points 
scored by each team in a particular match, one cannot 
include these same variables in the logit function in 
the same way as in this paper. Originally, the option 
was to use the same predictor variables as those 
specified in the scoring intensity models, except for 
the home advantage since the intercept parameter 
sufficed. However, due to issues of convergence in 
the Gibbs sampler, it was finally decided that each 
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team is only represented with one parameter which 
we shall refer to as the strength, rather than making a 
distinction between attack and defense parameters. 
The model which we will be using will be of the form: 𝑑 ≔  𝕀 𝑦 𝑦 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜋  𝑙𝑜𝑔𝑖𝑡 𝜋 =  𝜂 + 𝑠𝑡𝑟 ( )  𝑠𝑡𝑟 ( )           (9) 

where 𝜂  represents a common intercept and 𝑠𝑡𝑟  
represents the total strength/ability of team 𝑡 . The 
parameters 𝑠𝑡𝑟  are further assigned two 
hyperparameters (common for home and away), 
which in turn, are also modelled independently using 
flat prior distributions, where 𝜇 is assumed to follow 
a normal distribution with mean 0 and precision 
0.0001, while 𝜏  is assumed to follow a gamma 
distribution with shape and scale parameters both 
equal to 0.01. The parameter 𝜂 is also modelled using 
the same distribution as 𝜇. Therefore, we have: 
 𝑠𝑡𝑟  ~ 𝑁𝑜𝑟𝑚(𝜇, 𝜏) 𝜇 ~ 𝑁𝑜𝑟𝑚(0, 0.0001) 𝜏 ~ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1)       (10) 𝜂 ~ 𝑁𝑜𝑟𝑚(0,0.0001). 
Figure 3 shows a graphical representation of the 
hierarchical structure for the winning probability 
model we will be using which has been adapted with 
respect to basketball.  

 
Figure 3: DAG of the general case for the winning 
probability model. 

Just as in Section 3, the winning probability 
model constructed in this section is also estimated via 
Gibbs sampling. What now follows is the application 
of the models described to the NBA regular season 
dataset, and analysis of the results. 

 
1 https://www.kaggle.com/wyattowalsh/basketball  

5 DATA AND RESULTS 

In this section, a detailed description of the dataset 
under study is given and the package used to construct 
and evaluate these models is introduced. Then we 
move on to modelling the scoring intensity using 
Bayesian hierarchical modelling under both the 
Poisson and negative binomial distributional 
assumptions and, furthermore, modelling the winning 
probability using a Bernoulli-based Bayesian 
hierarchical model. 

5.1 Dataset Description 

The dataset under study are the results obtained from 
the 2008/2009 NBA regular season.  The reason 
behind choosing the NBA rather than any other 
league from around the world is due to its worldwide 
popularity and abundant number of matches by each 
team played per season - 82 under normal 
circumstances. The lack of promotions/relegations in 
the NBA would allow us to implement these models 
for predictive purposes to a subsequent year. 
Furthermore, the regular season was chosen in favour 
of playoffs, due to the latter having many matches 
played between the same two teams repeatedly which 
would not be suitable for our models. Later on, we 
shall be comparing the results predicted for the final 
standings for each model. It is important to note that 
in the NBA, there are two league tables - one 
representing the Eastern Conference and the other for 
the Western Conference, where the top 8 teams in 
each conference go through to the playoffs. Despite 
the separate standings, teams from both conferences 
still play against each other during the season. Thus, 
the only difference in our results is that a team will go 
through to the playoffs or not depending on where 
they ranked in their respective conference rather than 
in the entire league. 

The dataset was found online from Kaggle1, and 
is a constantly updated dataset that contains data 
regarding players, teams, matches, etc. within the 
NBA all the way back from 1946 but only the data 
revolving around matches played during the 
2008/2009 regular season is sued in the paper. The 
reason behind the choice of this specific season was 
that it was a typical ideal season where all 82 games 
were played by each of the 30 teams. Data was 
collected from a total of 1230 matches played within 
169 days starting from 28th October 2008 until 15th 
April 2009. The names of the home and away team, 
along with their respective free throws made, three 
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pointers made and total points scored for each match 
were taken directly from the dataset. Each team was 
given an index (ascending order alphabetically) and 
this was listed for each match depending on whether 
the team was home or away. The two-pointers are 
obtained by deducting the three pointers made from 
the field goals made. So ultimately, the dataset 
contained the match index (‘g’), date of the match, 
name of the home and away team, index of the home 
and away team (‘Hg’ and ‘Ag’), number of free 
throws, two point shots and three point shots made by 
the home and away team (‘HFT’, ‘AFT’, ‘H2PT’, 
‘A2PT’, ‘H3PT’ and ‘A3PT’ respectively) and the 
total number of points scored by the home and away 
team (‘HT’ and ‘AT’). The binary variable Home 
Win was also added where a value of 1 was assigned 
if the team playing home won the match and 0 if they 
lost. This was included in order to aid the running of 
the second model. The full dataset used may be found 
through this GitHub link 2 . Furthermore, the 
subsequent model outputs have been obtained using 
the rjags package in R, which is a popular way of 
handling Bayesian hierarchical models. The outputs 
are based on averages of 3 chains of 1000 readings 
each with a burn-in period of 5000. 

5.2 Scoring Intensity Models Results 
Using the Poisson Distribution 

The first attempt for modelling scoring intensity 
makes use of the Poisson distribution. It was not 
expected that this would the best option when 
tackling a sport like basketball where scores reach 
very high values, however it was decided that this 
would be a good starting point and a useful 
comparison with the negative binomial approach we 
introduce later on. The initial models used for each of 
FT, 2PT and 3PT included all parameters for each 
team, i.e. the FT, 2PT and 3PT models included 
values of 𝑎𝑡𝑡 and 𝑑𝑒𝑓 for every team along with the 
terms ℎ𝑜𝑚𝑒  and 𝑐 , where these parameters are as 
defined in (4). 

Table 1: Excerpt of posterior distribution summary 
statistics from the Poisson Free Throw (FT) model. 

 
 

2 https://github.com/davidsuda80/bayesianhierarchicalbasket
ball/blob/main/nba2008.csv   

Table 2: Excerpt of posterior distribution summary 
statistics from the Poisson 2-Point Shots (2PT) model. 

 

Table 3: Excerpt of posterior distribution summary 
statistics from the Poisson 3-Point Shots (3PT) model. 

 

Tables 1-3 show excerpts of the estimated Poisson-
type Bayesian hierarchical model parameters for all 
scoring types. The full results for all three scoring 
methods may be found from the GitHub repository3. 
The first and second column refer to an estimate of 
the posterior mean and its respective standard 
deviation. ‘Naïve Error’ refers to a standard error that 
does not take into consideration the potential 
autocorrelation of the MCMC samples (which can be 
quite high). Hence for C chains of length S of X, 𝑆𝐸 ï = √ , where 𝜎  is the standard deviation of 
X. On the other hand, ‘Times Series Error’ takes the 
autocorrelations 𝜌  into account, so it provides a 
more realistic measure for the error of the estimate. 

Hence 𝑆𝐸 = ( )√ , where 𝜎( ) = ∑ . 

The rest of the columns represent each respective 
quantile. Furthermore, the corresponding trace plots 
and empirical probability density plots can also be 
found in the aforementioned GitHub repository. 

5.3 Scoring Intensity Models Results 
Using the Negative Binomial 
Distribution 

Due to the large variances in scores obtained from 
basketball matches, and the mismatch between the 
mean and the variance, it was decided to also fit 
models where each scoring method follows the 
negative binomial distribution, with the expectation 

3davidsuda80/bayesianhierarchicalbasketball (github.com) 

Parameter Mean Std. Dev. Naive Error TS Error 2.5% Median 97.5% 𝒂𝒕𝒕𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝑭𝑻 -0.0208 0.0240 0.0004 0.0005 -0.0682 -0.0204 0.0250 𝒂𝒕𝒕𝑩𝒐𝒔𝒕𝒐𝒏𝑭𝑻 0.0204 0.0240 0.0004 0.0005 -0.0282 0.0207 0.0661 
… … … … … … … … 𝒂𝒕𝒕𝑼𝒕𝒂𝒉𝑭𝑻 0.1450 0.0226 0.0004 0.0005 0.0993 0.1452 0.1886 𝒂𝒕𝒕𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝑭𝑻 -0.0387 0.0239 0.0004 0.0006 -0.0857 -0.0385 0.0070 𝒅𝒆𝒇𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝑭𝑻 -0.1047 0.0255 0.0005 0.0006 -0.1532 -0.1047 -0.0545 𝒅𝒆𝒇𝑩𝒐𝒔𝒕𝒐𝒏𝑭𝑻 0.0501 0.0239 0.0004 0.0005 0.0015 0.0503 0.0976 
… … … … … … … … 𝒅𝒆𝒇𝑼𝒕𝒂𝒉𝑭𝑻 0.0827 0.0225 0.0004 0.0005 0.0393 0.0827 0.1268 𝒅𝒆𝒇𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝑭𝑻 -0.0392 0.0255 0.0005 0.0006 -0.0908 -0.0391 0.0101 𝒉𝒐𝒎𝒆𝑭𝑻 0.0640 0.0093 0.0002 0.0004 0.0458 0.0641 0.0823 𝒄𝑭𝑻 2.9061 0.0067 0.0001 0.0003 2.8926 2.9060 2.9193 

Parameter Mean Std. Dev. Naive Error TS Error 2.5% Median 97.5% 𝒂𝒕𝒕𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝟐𝑷𝑻 -0.0447 0.0195 0.0004 0.0005 -0.0834 -0.0444 -0.0075 𝒂𝒕𝒕𝑩𝒐𝒔𝒕𝒐𝒏𝟐𝑷𝑻 0.0164 0.0181 0.0003 0.0004 -0.0174 0.0163 0.0528 
… … … … … … … … 𝒂𝒕𝒕𝑼𝒕𝒂𝒉𝟐𝑷𝑻 0.0844 0.0180 0.0003 0.0004 0.0492 0.0844 0.1190 𝒂𝒕𝒕𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝟐𝑷𝑻 0.0422 0.0188 0.0003 0.0004 0.0061 0.0423 0.0787 𝒅𝒆𝒇𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝟐𝑷𝑻 -0.0057 0.0189 0.0003 0.0005 -0.0436 -0.0058 0.0315 𝒅𝒆𝒇𝑩𝒐𝒔𝒕𝒐𝒏𝟐𝑷𝑻 -0.0861 0.0202 0.0004 0.0005 -0.1265 -0.0865 -0.0462 
… … … … … … … … 𝒅𝒆𝒇𝑼𝒕𝒂𝒉𝟐𝑷𝑻 -0.0031 0.0191 0.0003 0.0004 -0.0403 -0.0032 0.0346 𝒅𝒆𝒇𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝟐𝑷𝑻 0.0037 0.0192 0.0004 0.0004 -0.0338 0.0036 0.0424 𝒉𝒐𝒎𝒆𝟐𝑷𝑻 0.0321 0.0071 0.0001 0.0003 0.0177 0.0323 0.0454 𝒄𝟐𝑷𝑻 3.3969 0.0052 0.0001 0.0002 3.3869 3.3967 3.4078 

Parameter Mean Std. Dev. Naive Error TS Error 2.5% Median 97.5% 𝒂𝒕𝒕𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝟑𝑷𝑻 0.1053 0.0400 0.0007 0.0009 0.0248 0.1053 0.1791 𝒂𝒕𝒕𝑩𝒐𝒔𝒕𝒐𝒏𝟑𝑷𝑻 0.0068 0.0427 0.0008 0.0010 -0.0763 0.0078 0.0889 
… … … … … … … … 𝒂𝒕𝒕𝑼𝒕𝒂𝒉𝟑𝑷𝑻 -0.2950 0.0481 0.0009 0.0011 -0.3917 -0.2948 -0.2028 𝒂𝒕𝒕𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝟑𝑷𝑻 -0.2751 0.0464 0.0008 0.0010 -0.3676 -0.2756 -0.1857 𝒅𝒆𝒇𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝟑𝑷𝑻 -0.0270 0.0400 0.0007 0.0009 -0.1110 -0.0307 0.0441 𝒅𝒆𝒇𝑩𝒐𝒔𝒕𝒐𝒏𝟑𝑷𝑻 -0.0731 0.0408 0.0007 0.0010 -0.1529 -0.0726 0.0068 
… … … … … … … … 𝒅𝒆𝒇𝑼𝒕𝒂𝒉𝟑𝑷𝑻 -0.0152 0.0403 0.0007 0.0010 -0.0948 -0.0154 0.0668 𝒅𝒆𝒇𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝟑𝑷𝑻 0.1689 0.0361 0.0007 0.0008 0.0983 0.1692 0.2374 𝒉𝒐𝒎𝒆𝟑𝑷𝑻 0.0065 0.0155 0.0003 0.0006 -0.0252 0.0066 0.0367 𝒄𝟑𝑷𝑻 1.8632 0.0111 0.0002 0.0005 1.8418 1.8630 1.8859 
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of a better overall performance. Ultimately the aim is 
also to draw a comparison between the goodness of 
fit of the two models.  

Table 4: Excerpt of posterior distribution summary statistics 
from the negative binomial Free Throw (FT) model. 

 

Table 5: Excerpt of posterior distribution summary statistics 
from the negative binomial 2-Point Shots (2PT) model. 

 
Table 6: Excerpt of posterior distribution summary statistics 
from the negative binomial 3-Point Shots (3PT) model. 

  
Tables 4-6 show excerpts of the estimated parameters 
for the Bayesian hierarchical model based on the 
negative binomial distribution. The tables with all 
parameter estimates obtained may be found GitHub 
repository. The meaning of the different columns in 
these tables is the same as that for Tables 1-3. 
Furthermore, the corresponding trace plots and 
empirical probability density plots can also be found 
in the aforementioned GitHub repository. 

5.4 Comparison Between Poisson and 
Negative Binomial Scoring 
Intensity Models 

The predictive performance for the Poisson based 
Bayesian hierarchical model and the negative 
binomial-based Bayesian hierarchical model shall 

 
4 bayesianhierarchicalbasketball/CumulativeWP.pdf at main 

davidsuda80/bayesianhierarchicalbasketball (github.com) 

now be compared. each model fitted using both 
distributions. The root mean square error (RMSE) 
was chosen as a criterion for comparing the predicted 
results for each match to the actual observations. 
Since we are dealing with a Bayesian model, this is 
calculated for each of the values of the chain, and the 
average taken. The different models provide the 
following RMSE scores. Table 7 shows that the 
models with the negative binomial setup had a much 
better predictive accuracy than the models using a 
Poisson setup for all scoring methods, and home and 
away teams. 

Table 7: Bayesian RMSE values for each scoring method’s 
baseline model given for both distributions. 

 
From Table 8, it can be seen that the models assuming 
the negative binomial distribution predicted game 
outcomes more accurately than those assuming the 
Poisson distribution. Indeed, the mean absolute error 
(MAE) for prediction of the number of wins using the 
negative binomial model is 2.67, while that for the 
Poisson model is more than double at 5.4.  A plot 
showing the actual cumulative wins for each team 
against those predicted by the Poisson and negative 
binomial models can also be found on GitHub4.  

We can also see better predicted positions when 
using the negative binomial distribution when 
comparing the final standings for both conferences. 
Ultimately the negative binomial model correctly 
predicts all the teams which pass through to the 
playoffs from both conferences, unlike the Poisson 
distribution which predicts the Indiana Pacers passing 
through over the Detroit Pistons. Tables 9 and 10 also 
include the absolute difference between observed 
predicted positions for both the negative binomial and 
Poisson models in the last two columns. For the 
Western conference, the model using the negative 
binomial showed 13 position changes while the 
model using the Poisson distribution showed 15 
changes. For the Eastern conference, the negative 
binomially distributed model showed 9 position 
changes while the model using the Poisson 
distribution showed 11 changes. 

 

Parameter Mean Std. Dev. Naive Error TS Error 2.5% Median 97.5% 𝒂𝒕𝒕𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝑭𝑻 -0.0115 0.0622 0.0011 0.0034 -0.1419 -0.0080 0.1084 𝒂𝒕𝒕𝑩𝒐𝒔𝒕𝒐𝒏𝑭𝑻 0.0081 0.0657 0.0012 0.0041 -0.1160 0.0042 0.1494 
… … … … … … … … 𝒂𝒕𝒕𝑼𝒕𝒂𝒉𝑭𝑻 0.0250 0.0652 0.0012 0.0041 -0.0932 0.0206 0.1566 𝒂𝒕𝒕𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝑭𝑻 -0.0083 0.0612 0.0011 0.0032 -0.1295 -0.0053 0.1084 𝒅𝒆𝒇𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝑭𝑻 -0.0282 0.0703 0.0013 0.0042 -0.1835 -0.0246 0.0968 𝒅𝒆𝒇𝑩𝒐𝒔𝒕𝒐𝒏𝑭𝑻 0.0040 0.0685 0.0013 0.0040 -0.1245 0.0016 0.1460 
… … … … … … … … 𝒅𝒆𝒇𝑼𝒕𝒂𝒉𝑭𝑻 0.0163 0.0681 0.0012 0.0044 -0.1101 -0.0298 0.1617 𝒅𝒆𝒇𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝑭𝑻 -0.0046 0.0670 0.0012 0.0039 -0.1418 -0.0038 0.1220 𝒉𝒐𝒎𝒆𝑭𝑻 0.0847 0.0645 0.0012 0.0136 -0.0250 0.0823 0.2289 𝒄𝑭𝑻 2.8721 0.0419 0.0008 0.0080 2.7889 2.8729 2.9570 

 

Parameter Mean Std. Dev. Naive Error TS Error 2.5% Median 97.5% 𝒂𝒕𝒕𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝟐𝑷𝑻 -0.0051 0.0670 0.0012 0.0050 -0.1445 -0.0041 0.1188 𝒂𝒕𝒕𝑩𝒐𝒔𝒕𝒐𝒏𝟐𝑷𝑻 0.0017 0.0688 0.0013 0.0053 -0.1402 0.0002 0.1377 
… … … … … … … … 𝒂𝒕𝒕𝑼𝒕𝒂𝒉𝟐𝑷𝑻 0.0140 0.0659 0.0012 0.0049 -0.1166 0.0146 0.1493 𝒂𝒕𝒕𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝟐𝑷𝑻 -0.0083 0.0653 0.0012 0.0047 -0.1176 0.0057 0.1391 𝒅𝒆𝒇𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝟐𝑷𝑻 0.0015 0.0657 0.0012 0.0049 -0.1282 0.0016 0.1375 𝒅𝒆𝒇𝑩𝒐𝒔𝒕𝒐𝒏𝟐𝑷𝑻 -0.0163 0.0637 0.0012 0.0046 -0.1447 -0.0145 0.1032 
… … … … … … … … 𝒅𝒆𝒇𝑼𝒕𝒂𝒉𝟐𝑷𝑻 -0.0036 0.0609 0.0011 0.0043 -0.1199 -0.0049 0.1243 𝒅𝒆𝒇𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝟐𝑷𝑻 0.0010 0.0617 0.0011 0.0041 -0.1273 0.0014 0.1166 𝒉𝒐𝒎𝒆𝟐𝑷𝑻 0.0486 0.0478 0.0009 0.0090 -0.0663 0.0502 0.1351 𝒄𝟐𝑷𝑻 3.3948 0.0344 0.0006 0.0068 3.3215 3.3959 3.4631 

Parameter Mean Std. Dev. Naive Error TS Error 2.5% Median 97.5% 𝒂𝒕𝒕𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝟑𝑷𝑻 0.0756 0.1162 0.0021 0.0070 -0.1480 0.0773 0.3053 𝒂𝒕𝒕𝑩𝒐𝒔𝒕𝒐𝒏𝟑𝑷𝑻 -0.0143 0.1131 0.0021 0.0064 -0.2500 -0.0103 0.1942 
… … … … … … … … 𝒂𝒕𝒕𝑼𝒕𝒂𝒉𝟑𝑷𝑻 -0.1413 0.1238 0.0023 0.0069 -0.4018 -0.1339 0.0868 𝒂𝒕𝒕𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝟑𝑷𝑻 -0.1749 0.1242 0.0023 0.0079 -0.4267 -0.1686 0.0507 𝒅𝒆𝒇𝑨𝒕𝒍𝒂𝒏𝒕𝒂𝟑𝑷𝑻 -0.0003 0.0689 0.0013 0.0028 -0.1390 -0.0009 0.1360 𝒅𝒆𝒇𝑩𝒐𝒔𝒕𝒐𝒏𝟑𝑷𝑻 -0.0244 0.0746 0.0014 0.0032 -0.1826 -0.0221 0.1158 
… … … … … … … … 𝒅𝒆𝒇𝑼𝒕𝒂𝒉𝟑𝑷𝑻 -0.0045 0.0698 0.0013 0.0029 -0.1375 -0.0046 0.1356 𝒅𝒆𝒇𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏𝟑𝑷𝑻 0.0439 0.0766 0.0014 0.0037 -0.0975 0.0401 0.2055 𝒉𝒐𝒎𝒆𝟑𝑷𝑻 0.0127 0.0605 0.0011 0.0069 -0.1010 0.0131 0.1312 𝒄𝟑𝑷𝑻 1.8529 0.0419 0.0008 0.0048 1.7701 1.8546 1.9338 

Scoring Method RMSE – Poisson RMSE – Negative Binomial 
Free Throws (FT) - Home 5.7847 0.7094 
Free Throws (FT) - Away 5.8064 0.7517 

2-Point Shots (2PT) - Home 4.5784 0.6938 
2-Point Shots (2PT) - Away 4.4376 0.6885 
3-Point Shots (3PT) - Home 2.6582 0.7391 
3-Point Shots (3PT) - Away 2.6635 0.7303 
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Table 8: Predicted total wins for each team by the Poisson 
and negative binomial distributions compared with the real 
observations. 

 

Table 9: Predicted final position for each team in the 
Western Conference by the Poisson and negative binomial 
distributions compared with the real observations. 

 

5.5 Cross-Plots for Team Abilities 

Cross-plots on each team’s attack and defence 
parameters shall now be shown for for Free Throws 
(FT), 2-Point Shots (2PT) and 3-Point Shots (3PT), 
respectively. The optimal scenario is for a team to 
have a large positive value for their attack strength 
and a large negative value for their defense strength 
for each specific scoring method. Thus, the bottom 
right quadrant of Figure 4 represents the best 
combination of attack and defense, whereas the top 

left quadrant represents the worst combination. 
Cross-plots can be obtained for both the Poisson and 
negative binomial models, however only the cross-
plots for the markedly superior model – the negative 
binomial model – shall be presented. 

Table 10: Predicted final position for each team in the 
Eastern Conference by the Poisson and negative binomial 
distributions compared with the real observations. 

 

 
Figure 4: Cross-plot of the estimated means of the posterior 
distribution for the attack strength against the estimated 
means of the posterior distribution for the defense strength 
for each team with respect to Free Throws (FT) from the 
negative binomial baseline model. 

For Free Throws (FT), the cross-plot in Figure 4 
shows that the majority of teams have an attack 
parameter value close to the mean except for a few 
teams with the Golden State Warriors, Denver 
Nuggets and Utah Jazz having the largest values and 
the San Antonio Spurs having the smallest value. 
Defensively, the teams are a bit more spread out 
where the San Antonio Spurs compensate for their 
offensive ability by having the smallest value for 
defense (i.e. best defensive value) while the 
Milwaukee Bucks had the largest value for defense 
meaning they conceded the most number of free 
throws from all the teams. 

For the 2-Point Shots (2PT), Figure 5 shows us 
that the best performing team with regards to scoring 
2 point shots were the Phoenix Suns while the 
Orlando Magic were the team on the opposite end of 
the spectrum when it came to scoring 2-Point shots. 
With respect to conceding (defense) 2-Point shots, the 
New Orleans Hornets had the smallest value with the 

Team Name Observed Wins Predicted Wins 
(Negative Binomial) 

Predicted Wins 
(Poisson) 

Atlanta Hawks 47 49 47 

Boston Celtics 62 61 75 

Charlotte Bobcats 35 37 36 

Chicago Bulls 41 41 40 

Cleveland Cavaliers 66 64 77 

Dallas Mavericks 50 50 50 

Denver Nuggets 54 51 57 

Detroit Pistons 39 38 34 

Golden State Warriors 29 32 24 

Houston Rockets 53 52 59 

Indiana Pacers 36 35 37 

Los Angeles Clippers 19 22 3 

Los Angeles Lakers 65 66 74 

Memphis Grizzlies 24 25 13 

Miami Heat 43 42 43 

Milwaukee Bucks 34 35 32 

Minnesota Timberwolves 24 22 20 

New Jersey Nets 34 34 32 

New Orleans Hornets 49 47 48 

New York Knicks 32 35 32 

Oklahoma City Thunder 23 22 12 

Orlando Magic 59 58 73 

Philadelphia 76ers 41 43 38 

Phoenix Suns 46 46 46 

Portland Trail Blazers 54 53 68 

Sacramento Kings 17 17 7 

San Antonio Spurs 54 53 58 

Toronto Raptors 33 32 35 

Utah Jazz 48 50 51 

Washington Wizards 19 18 9 

MAE (Mean Absolute 
Prediction Error) 

 2.67 5.4 

Team Name Observed Final 
Position 

Predicted Final Position 
(Negative Binomial) 

Predicted Final 
Position (Poisson) 

N.B. 
+/- 

Pois. 
+/- 

Dallas Mavericks 6th 6th 7th 0 1 
Denver Nuggets 2nd 5th 5th 3 3 

Golden State Warriors 10th 10th 10th 0 0 
Houston Rockets 5th 4th 3rd 1 2 

Los Angeles Clippers 14th 12th 15th 2 1 
Los Angeles Lakers 1st 1st 1st 0 0 
Memphis Grizzlies 11th 11th 12th 0 1 

Minnesota Timberwolves 12th 13th 11th 1 1 
New Orleans Hornets 7th 8th 8th 1 1 

Oklahoma City Thunder 13th 14th 13th 2 0 
Phoenix Suns 9th 9th 9th 0 0 

Portland Trail Blazers 3rd 2nd 2nd 1 1 
Sacramento Kings 15th 15th 14th 0 1 
San Antonio Spurs 4th 3rd 4th 1 0 

Utah Jazz 8th 7th 6th 1 2 

Team Name Observed Final 
Position 

Predicted Final Position 
(Negative Binomial) 

Predicted Final 
Position (Poisson) 

N.B. 
+/- 

Pois. 
+/- 

Atlanta Hawks 4th 4th 4th 0 0 
Boston Celtics 2nd 2nd 2nd 0 0 

Charlotte Bobcats 10th 9th 9th 1 1 
Chicago Bulls 6th 7th 6th 1 0 

Cleveland Cavaliers 1st 1st 1st 0 0 
Detroit Pistons 8th 8th 11th 0 3 
Indiana Pacers 9th 10th 8th 1 1 

Miami Heat 5th 6th 5th 1 0 
Milwaukee Bucks 11th 11th 12th 0 1 
New Jersey Nets 12th 13th 14th 1 2 

New York Knicks 13th 12th 13th 1 0 
Orlando Magic 3rd 3rd 3rd 0 0 

Philadelphia 76ers 7th 5th 7th 2 0 
Toronto Raptors 13th 14th 10th 1 3 

Washington Wizards 15th 15th 15th 0 0 
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Philadelphia 76ers following very closely behind 
them. On the other end, the worst defensive 
performances came from the Golden State Warriors 
and the New York Knicks as they had the largest 
values for the 2-Point shot defense parameters. 
 

 
Figure 5: Cross-plot of the estimated means of the posterior 
distribution for the attack strength against the estimated 
means of the posterior distribution for the defense strength 
for each team with respect to 2-Point Shots (2PT) from the 
negative binomial baseline model. 

 
Figure 6: Cross-plot of the estimated means of the posterior 
distribution for the attack strength against the estimated 
means of the posterior distribution for the defense strength 
for each team with respect to 3-Point Shots (3PT) from the 
negative binomial baseline model. 

Lastly, with respect to 3-Point Shots (3PT), the cross-
plot in Figure 6 shows the New York Knicks and 
Orlando Magic having the best attacking ability while 
the Oklahoma City Thunder and the Philadelphia 
76ers performed the worst when it came to scoring 3-
Point shots. Defensively, the best performing team 
was the Detroit Pistons followed by the Orlando 
Magic while the Washington Wizards and the 
Phoenix Suns had the worst performances with 
regards to conceding 3-Point shots. 

Table 11: Excerpt of posterior distribution summary 
statistics from the winning probability model. 

 

Table 12: Predicted total wins for each team by the 
Bernoulli distribution compared with the real observations. 

  

It is interesting to note how the Orlando Magic made 
up for their poor 2-Point Shots (2PT) attack strength 
by having the second best 3-Point Shots (3PT) attack 
strength and also having a Free Throw (FT) attack 
strength larger than the mean value. This, together 
with all their defensive attributes being better than the 
mean value made them one of the best teams that 
year. Similar patterns can be noticed for the Los 
Angeles Lakers and the Boston Celtics. 

5.6 Winning Probability Model Results 
and Comparisons with Scoring 
Intensity Models 

Excerpts of summary statistics for samples from the 
posterior distribution of different parameters can be 
seen in Table 11. The naïve and time series standard 
errors of the parameters were significantly smaller 
than they were for the previous setup. Full outputs can 
be found in the GitHub repository. The winning 
probability model correctly predicts 886 (or 72.03%) 
of the total (1230) matches. This is much less than the 
predictive accuracy of the negative binomial model, 
which correctly predicts 1189 (or 96.67%) of the total 
matches, and also less than that of the Poisson model 
that predicts 998 (81.3%) of the model. A plot 

Parameter Mean Std. Dev. Naive Error TS Error 2.5% Median 97.5% 𝒔𝒕𝒓𝑨𝒕𝒍𝒂𝒏𝒕𝒂 0.3308 0.2310 0.0013 0.0017 -0.1221 0.3297 0.7793 𝒔𝒕𝒓𝑩𝒐𝒔𝒕𝒐𝒏 1.1914 0.2548 0.0015 0.0020 0.7050 1.1874 1.7062 
… … … … … … … … 𝒔𝒕𝒓𝑼𝒕𝒂𝒉 0.3498 0.2308 0.0013 0.0017 -0.0973 0.3472 0.8021 𝒔𝒕𝒓𝑾𝒂𝒔𝒉𝒊𝒏𝒈𝒕𝒐𝒏 -1.2213 0.2556 0.0015 0.0019 -1.7354 -1.2187 -0.7332 𝜼 0.5639 0.0679 0.0003 0.0005 0.4302 0.5636 0.6966 

Team Name Observed Wins Predicted Wins 

Atlanta Hawks 47 52 

Boston Celtics 62 73 

Charlotte Bobcats 35 32 

Chicago Bulls 41 39 

Cleveland Cavaliers 66 77 

Dallas Mavericks 50 56 

Denver Nuggets 54 60 

Detroit Pistons 39 37 

Golden State Warriors 29 21 

Houston Rockets 53 59 

Indiana Pacers 36 34 

Los Angeles Clippers 19 8 

Los Angeles Lakers 65 79 

Memphis Grizzlies 24 13 

Miami Heat 43 41 

Milwaukee Bucks 34 29 

Minnesota Timberwolves 24 13 

New Jersey Nets 34 30 

New Orleans Hornets 49 55 

New York Knicks 32 27 

Oklahoma City Thunder 23 11 

Orlando Magic 59 72 

Philadelphia 76ers 41 38 

Phoenix Suns 46 54 

Portland Trail Blazers 54 60 

Sacramento Kings 17 9 

San Antonio Spurs 54 60 

Toronto Raptors 33 30 

Utah Jazz 48 55 

Washington Wizards 19 6 

MAE (Mean Absolute 
Prediction Error) 

 6.93 
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showing the actual cumulative wins for each team 
against those predicted by the winning probability 
model can also be found on GitHub5. 

Table 13: Predicted final position for each team in the 
Western Conference by the winning probability model 
compared with the real observations. 

 

Table 14: Predicted final position for each team in the 
Eastern Conference by the winning probability model 
compared with the real observations. 

 

It can be seen that the mean absolute prediction error 
for the winning probability model in Table 12 is 
considerably inferior to that of the negative binomial 
model in Table 11, and also inferior to that of the 
Poisson model.  

However, it can also be seen in Tables 13 and 14, 
that the winning probability model has been just as 
effective as the negative binomial model in correctly 
predicting all teams which pass through to the 
playoffs from both conferences. Furthermore, it has 
also proven to be better at predicting the standings 
than the negative binomial model. For the Western 
conference, the model using the Bernoulli distributed 
model showed 2 position changes, while for the 
Eastern conference, the Bernoulli distributed model 
showed 5.  

Finally, for the 2008/2009 NBA season, we also 
have the mean of the strength parameters for the 

 
5 bayesianhierarchicalbasketball/CumulativeWP.pdf at main 

davidsuda80/bayesianhierarchicalbasketball(github.com) 

winning probability model, sorted by the mean 
strength, displayed in Figure 7. This plot puts 
Cleveland Cavaliers and Los Angeles Lakers at the 
very top in terms of strength, while Sacramento Kings 
and Los Angeles Clippers are the weakest two (in that 
order). 

 
Figure 7: Means plot of the estimated means of the posterior 
distribution for the team strength parameter by team (in 
descending order) according to the winning probability 
model. 

6 CONCLUSIONS 

In this paper we have analysed the performance of 
two Bayesian hierarchical models intended to model 
scoring intensity in basketball, based on the Poisson 
and negative binomial distributions, and one 
Bayesian hierarchical model intended to model the 
winning probability in basketball, based on the 
Bernoulli distribution. The data under study was 
taken to be the NBA 2008/2009 regular season.  

It was concluded, from the RMSEs of the different 
models and the MAE of the overall prediction on the 
number of wins for each team, that making the 
negative binomial assumption on the distribution of 
the scoring intensities of the different scoring types in 
basketball provides a superior performance than 
making the Poisson assumption. The negative 
binomial model was also better in determining which 
teams qualify to the playoffs with 100% accuracy, 
while the Poisson model got one team wrong. 
Furthermore, the model based on the negative 
binomial distribution was also used to determine the 
attack and defence strengths of the different teams for 
the different scoring types displayed by cross-plots.  

The winning probability model, on the other hand, 
was inferior to the Poisson type model and, even more 
so, the negative binomial type models in predicting 
the number of wins for each team. The winning 

Team Name Observed Final Position Predicted Final Position  Change 
+/- 

Dallas Mavericks 6th 6th 0 
Denver Nuggets 2nd 2nd 0 

Golden State Warriors 10th 10th 0 
Houston Rockets 5th 5th 0 

Los Angeles Clippers 14th 15th 1 
Los Angeles Lakers 1st 1st 0 
Memphis Grizzlies 11th 11th 0 

Minnesota Timberwolves 12th 12th 0 
New Orleans Hornets 7th 7th 0 

Oklahoma City Thunder 13th 13th 0 
Phoenix Suns 9th 9th 0 

Portland Trail Blazers 3rd 3rd 0 
Sacramento Kings 15th 14th 1 
San Antonio Spurs 4th 4th 0 

Utah Jazz 8th 8th 0 

Team Name Observed Final Position Predicted Final Position Change 
+/- 

Atlanta Hawks 4th 4th 0 
Boston Celtics 2nd 2nd 0 

Charlotte Bobcats 10th 10th 0 
Chicago Bulls 6th 6th 0 

Cleveland Cavaliers 1st 1st 0 
Detroit Pistons 8th 8th 0 
Indiana Pacers 9th 9th 0 

Miami Heat 5th 5th 0 
Milwaukee Bucks 11th 13th 2 
New Jersey Nets 12th 11th 1 

New York Knicks 13th 14th 1 
Orlando Magic 3rd 3rd 0 

Philadelphia 76ers 7th 7th 0 
Toronto Raptors 13th 12th 1 

Washington Wizards 15th 15th 0 
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probability model, however, was just as good as the 
negative binomial model for predicting the teams 
which qualify to the playoffs, and was even better at 
predicting the exact positionings on the scoreboard. A 
means plot of the overall strengths of the different 
teams could also be obtained for the different teams. 
 It can therefore be concluded that the negative 
binomial model is the superior model when it comes 
to predicting specific game outcomes, while the 
winning probability model is the superior model 
when it comes to predicting final standings as it 
proves to be more effective at determining the overall 
strengths of each team. 
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