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Abstract: Artificial intelligence (AI) is increasingly present in industrial applications and, in particular, in advanced 
robotics, both industrial and mobile. The main problem of these type of applications is that they use complex 
AI algorithms, in which it is necessary to establish numerous hyperparameters to achieve an effective training 
of the same. In this research, we introduce a pioneering approach to reinforcement learning in the realm of 
industrial robotics, specifically targeting the UR3 robot. By integrating advanced techniques like Deep Q-
Learning and Proximal Policy Optimization, we've crafted a unique motion planning framework. A standout 
novelty lies in our application of the Optuna library for hyperparameter optimization, which, while not 
necessarily enhancing the robot's end performance, significantly accelerates the convergence to the optimal 
policy. This swift convergence, combined with our comprehensive analysis of hyperparameters, not only 
streamlines the training process but also paves the way for efficient real-world robotic applications. Our work 
represents a blend of theoretical insights and practical tools, offering a fresh perspective in the dynamic field 
of robotics. 

1 INTRODUCTION 

Robotics in general and industrial robotics in 
particular are one of the sectors that has undergone a 
major technological revolution over the last decade. 
With the parallel development of the digitalisation of 
industrial processes (Savastano et al., 2019), the 
explosion of the use of artificial intelligence in 
industry (Peres et al., 2020), and the irruption of 
collaborative robots (Sherwani et al., 2020), the way 
of conceiving the use of robots in industry has 
changed radically. In our opinion, two main new 
trends can be identified when designing applications, 
which are as follows: 
 Flexibility and adaptability of robotic 

applications to new conditions (new product, 
change of operating conditions, etc.): In this case, 
it is necessary to provide the robot with the 
capacity to adapt to variations in the base process, 
with the capacity to adjust parameters and 
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operation offline, or in simulation, being of vital 
importance in order not to lose production time. 

 Related to the previous point, current robotics 
must adapt to operate in unstructured 
environments by intensively applying artificial 
intelligence for the automatic recognition of parts 
even when there are occlusions, human-robot 
collaboration, or for the autonomous learning of 
new tasks using simulation environments.  

In this context, to be able to design this kind of 
robotic applications, it is necessary to make intensive 
use of artificial intelligence, mainly using Deep 
Learning (Goodfellow et al., n.d.)  and Reinforcement 
Learning techniques (Sutton & Barto, 2020). Both 
techniques use in their different algorithms neural 
networks of varying complexity depending on the 
application, which require an effective adjustment of 
hyperparameters for their correct training. 

The work presented in 2013 (Kober et al., 2013) 
already established a formal definition of the main 
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aspects of RL, and of the problems and advantages 
arising from its application in a field as specific as 
robotics. 

More recently, the state of the art in 
Reinforcement learning presents some interesting 
works related to creating and obtaining robot 
trajectories autonomously. For example,  (Shahid et 
al., n.d.) presents an RL-based approach, using 
Proximal Policy Optimization (PPO), for the 
manipulation of parts. In another work, Bézier curves 
are used to obtain motion planning in autonomous 
industrial robots (Scheiderer et al., 2019). 

In another work presented in 2019, the authors  
use Deep Reinforcement Learning to obtain the 
planning of robot trajectories, focusing mainly on the 
optimisation of reward functions (Xie et al., 2019). 
Finally, another interesting work can be found in 
(Bhuiyan et al., 2023), where the authors use distance 
sensors to gather environmental measurements 
necessary for the RL algorithm. 

The use case presented in this paper is based on 
the use of Reinforcement Learning for the 
development of an optimal path planner for an 
industrial robot UR3. Therefore, the following 
sections of the paper will particularise the state of the 
art and the problem definition to this type of machine 
learning algorithms. 

Finally, it is interesting to mention three papers, 
published in the last three years, which address 
problems similar to the use case presented in this 
research work, but which do not use optimisation 
techniques for the configuration of the best parameter 
values in the algorithm used. 

In (Ha et al., 2020) they use a multi-agent 
reinforcement learning algorithm, using a soft actor 
critic (SAC) algorithm with considerable internal 
complexity. In a second paper (Li et al., 2022), they 
also use an algorithm based on the actor-critic 
scheme, automatically adjusting and limiting entropy. 

Last but not least, in (Zhou et al., 2021) they use 
what has been defined as residual reinforcement 
learning. In all three works, the aim is to develop a 
motion planner for robotics, and the approach 
followed has been to use RL with more or less 
complex algorithms. 

In our research work, the aim is to obtain similar 
performance to the aforementioned works, but using 
a standard algorithm, such as PPO, and focusing the 
effort on the optimisation of the parameters of this 
algorithm. 

 

2 REINFORCEMENT LEARNING 
ALGORITHMS AND 
HYPERPARAMETERS 

Reinforcement Learning (RL) algorithms are a third 
group of algorithms in the machine learning branch, 
along with supervised and unsupervised learning 
(clustering). Unlike these two more common groups 
of algorithms, RL algorithms learn by trial and error. 
The agent to be trained interacts with the environment 
by executing actions and subsequently receives a 
reward signal, as well as observations (states) about 
the environment. This process is sequential and time-
dependent. A schematic of how this works can be 
seen in Figure 1. 

 
Figure 1: Schema of a RL algorithm (Shweta Bhatt, n.d.) 

For a process to be solved by RL techniques, it is 
necessary that the process follows a Markov decision 
process (MDP), as stated in (Sutton & Barto, 2020).  

A MDP is a Markov process in which the 
environment provides a reward and allows decisions 
to be taken. Mathematically, a MDP is a tuple 〈𝑆, 𝐴, 𝑃, 𝑅, 𝛾〉  where: 
 S is a finite set or continuous value for states. 
 A is a finite set or continuous value for 

actions 
 P is a state transition probability matrix 𝑃௦௦ᇲ௔ = 𝑃𝑟𝑜𝑏ሾ𝑆௧ାଵ = 𝑠ᇱ| 𝑆௧ = 𝑠, 𝐴௧ୀ௔ሿ        (1) 

 R is the reward function 𝑅௦௔ = 𝐸𝑥𝑝𝑒𝑐𝑡 ሾ𝑅௧ାଵ| 𝑆௧ = 𝑠, 𝐴௧ୀ௔ሿ           (2) 

 γ is the discount factor 𝛾 𝜖ሾ0,1ሿ 
The main characteristic of this type of 

environments is that for its learning, it depends only 
on the current state of the problem, ignoring its 
history or previous states. The objective is to obtain 
the maximum reward possible for the episode, with 
means to optimize actions in the problem given the 
current state. This fact is defined by Bellman's 
equation of optimality for the action-value function 
(Lapan, 2018; Sutton & Barto, 2020) 

Given the action-value function: 
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          𝑞గ(𝑠, 𝑎) = 𝑅௦௔ + 𝛾 ෍ 𝑃௦௦ᇲ௔௦ᇲఢௌ ෍ 𝜋(𝑎ᇱ|𝑠ᇱ)௔ᇲఢ஺ 𝑞గ(𝑠ᇱ, 𝑎′) (3)

The Bellman´s equation of optimality for the 
action value function is:  𝑞∗(𝑠, 𝑎) =  𝑚𝑎𝑥గ𝑞గ(𝑠, 𝑎)                 (4) 

Where π represents the optimal policy, the 
optimal behavioural function for the agent to solve 
the environment. 

Many of the RL environments to be solved 
present continuous observation spaces of the 
environment, i.e., the different observable states of 
the environment take infinite continuous values 
bounded between a maximum and minimum value. 
To solve this problem, current algorithms use neural 
networks to obtain the non-linear functions of the 
policy and the value of the states. Two of the most 
widely used algorithms that use this approach are 
Deep Q-Learning (DQN) (Mnih et al., 2013) and PPO 
(Schulman et al., 2017). Detailed technical 
implementations can be found in the references cited 
for each of these algorithms. 

2.1 The Importance of 
Hyperparameters 

The following table presents the implementation 
steps of the DQN algorithm: 

Table 1: DQN algorithm implementation (Lapan, 2018). 

1. 
Initialize parameters for Q(s,a) and Q^(s,a) with 
random weights, ε=1.0 and empty the replay 
buffer with N samples 

2. With prob. Ε, select a random action a, otherwise 
a=  𝑎𝑟𝑔𝑚𝑎𝑥௔ 𝑄௦,௔ 

3. Execute action a in the environment and observe 
the reward r and the next state s’ 

4. Store transitions (s,a,r,s’) in the replay buffer 

5. Sample a random minibatch of transitions from 
the replay buffer 

6. 
For every transition in the buffer, calculate target 
y=r if the episode has ended at this step or 𝑦 =𝑟 + 𝛾𝑚𝑎𝑥௔ᇱఢ஺𝑄^(𝑠ᇱ, 𝑎′) otherwise 

7. Calculate loss 𝐿 = (𝑄௦,௔ − 𝑦)ଶ 

8. 
Update Q(s,a) using  the SGD algorithm (Bottou, 
1991) minimizing the loss in respect to model 
parameters 

9. Every M steps, copy network weights from Q(s,a) 
to Q^(s,a) 

10. Repeat from step 2 until convergence 
 

As can be seen in table 1, the correct training and 
operation of the algorithm depends on numerous 
hyperparameters, some relating to the DQN algorithm 
itself and others relating to the neural network used to 
model the value function in this case. In our 
experience, the hyperparameters that most influence 
the learning of this algorithm are: 

 Policy: Neural network architecture for 
estimating the problem value function. 

 Learning rate: The learning rate set for 
policy training. 

 Buffer size: size of the replay buffer to 
obtain an initial uncorrelated dataset for 
policy training. 

 Batch size - Minibatch size for each gradient 
update of the policy. 

 gamma: Discount factor to weight the 
importance of future states. 

 Train frequency - Update frequency of the 
neural network model of the policy. 

 Exploration fraction (ε): Exploration factor 
for moving from exploration to exploitation 
of results in the solution of the problem. 

 Exploration initial eps: Initial value of 
exploration fraction. 

 Exploration final eps: Final value of the 
exploration fraction. 

In the case of the PPO algorithm, rooted in the 
actor-critic model, offers a structured approach to 
reinforcement learning, ensuring effective training 
and robust performance. A closer examination of its 
design reveals the intricate interplay of various 
hyperparameters, each contributing uniquely to the 
algorithm's efficacy. 

The Policy defines the neural network 
architectures for both estimating the problem's value 
function (critic) and the policy function (actor). Its 
design and complexity can significantly influence the 
algorithm's ability to generalize and learn from the 
environment. 

The Learning Rate is pivotal in determining how 
quickly the algorithm updates its knowledge. A high 
learning rate might lead to rapid convergence but 
risks overshooting the optimal solution, while a low 
rate ensures more stable learning at the expense of 
longer training times. 

The number of steps to execute per environment 
update influence the granularity of learning and the 
responsiveness of the model to changes in the 
environment. 

Batch Size determines the number of experiences 
used in each update, striking a balance between 
computational efficiency and gradient accuracy. 
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The Gamma discount factor emphasizes the 
importance of future rewards. A value closer to 1 
gives more weight to long-term rewards, while a 
lower value prioritizes immediate rewards. 

The N Epochs represents the number of iterations 
when optimizing the loss function, determining the 
depth of refinement for each batch of experiences. 

Lastly, the Clip Range and Clip Range vf ensure 
that the updates to the policy and value functions 
remain bounded. These parameters prevent drastic 
changes that could destabilize learning by ensuring 
that the policy doesn't change too much in a single 
update.  

 
Figure 2: Different rewards and problem solutions obtained 
depending on hyperparameters. 

In essence, the choice and tuning of these 
hyperparameters are not mere technicalities but are 
central to the algorithm's success. Their optimal 
values can vary based on the specific problem and 
environment, underscoring the importance of 
systematic experimentation and tuning. 

Figure 2 shows the difference in training 
efficiency of a simple problem, in this case the 
CartPole problem available in the Gymnasium 
library (Gymnasium: A Standard API for 
Reinforcement Learning, n.d.)., using DQN. 
Depending on the training hyperparameters 
established the reward evolution of the problem, 
differs.  

3 PROBLEM DESCRIPTION 

The goal of the proposed research is to develop a 
motion planner using RL techniques, enabling a UR3 
robot to accurately position its tool anywhere within 
the workspace, maintaining the correct orientation. 

Following this objective, the motion planner's 
design becomes paramount. It must address the 

nuanced problem of determining a sequence of valid 
configurations that guide the UR3 robot from its 
current position to the desired location. In this 
specific context, the challenge isn't about navigating 
around external obstacles, but rather ensuring that the 
robot avoids collisions with itself and the floor. The 
primary input to the motion planner is the robot's 
current configuration and the desired goal position 
and orientation. 

Additionally, information about the robot's 
structure and the floor's geometry is essential to avoid 
self and floor collisions. The output from the motion 
planner is a sequence of configurations that the robot 
should adopt to reach the desired goal without any 
collisions. In this scenario, the motion planner, 
underpinned by RL techniques, aims to navigate the 
robot's own structure and the immediate environment, 
ensuring smooth and safe movement while 
maintaining the tool's precise orientation. 

The following figures shows in detail the 
simulation environment used for this problem, based 
on the physics engine PyBullet (Coumans, n.d.). 

This problem is defined with continuous 
observation space of dimension 14 according to the 
equation 5: 𝑂𝑏𝑠𝑆𝑝𝑎𝑐𝑒 = (𝑥, 𝑦, 𝑧, 𝑜𝑋, 𝑜𝑌, 𝑜𝑍, 𝑜𝑊, 𝜃ଵ, 𝜃ଶ, 𝜃ଷ, 𝜃ସ, 𝜃ହ, 𝜃଺, 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛) (5)

Where x, y, z are the cartesian distances to the 
target point, oX, oY, oZ, oW are the orientation 
differences to the desired orientation at the target 
point given in quaternions, θi are the values of the 
angles of the different joints and finally a collision 
flag is included, in order to obtain valid trajectories. 

 
Figure 3: Simulation environment (view 1). 

The action space has 6 dimensions. Each of these 
values are bounded between -1 and 1, using these 
results per joint as a multiplicative factor of the angle 
of movement per maximum step established for each 
one of the joints (θmax). according to the equation 6: 𝐴𝑐𝑡𝑆𝑝𝑎𝑐𝑒= 𝜃௠௔௫(𝛼ଵ, 𝛼ଶ, 𝛼ଷ, 𝛼ସ, 𝛼ହ, 𝛼଺) | 𝛼௜𝜖ሾ−1,1ሿ 

(6)
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In the context of the UR3 robot's operation, these 
values need to be translated into meaningful 
commands. To achieve this, the float values are 
scaled to match the permissible angle range of each 
of the robot's joints. By doing so, each normalized 
action value is converted into a joint angle between    
-2π and 2π, allowing for direct command execution 
by the robot.  

The reward for this problem is defined using the 
following algorithm: 

Algorithm 1: Reward function. 

Data: ObsSpace; p1, q1, collision 
    EnvironmentInf: p2, q2, prev_dist  

if collision  == 1 then 
 return -250 
d (p1, p2) = euclidean_distance (p1, p2)  
d (q1, q2) = 1 − 〈𝑞1, 𝑞2〉ଶ 
if d (p1, p2) < 0.01 & d (q1, q2) < 0.01 then 
 return 300 

      ∆d = prev_dist – d(p1, p2) -d(q1, q2) 
prev_dist = d(p1, p2) + d(q1, q2) 
return ∆d * 100 

As the training progresses and the motion planner 
refines its policy, these joint angle commands 
collectively form a coherent and valid trajectory. 

Once the training is complete, this trajectory 
ensures that the robot can smoothly and accurately 
move its tool to the desired position and orientation 
within the workspace. 

 
Figure 4: Simulation environment (view 2). 

4 PARAMETER OPTIMIZATION  

As explained in previous sections, the optimisation of 
the different hyperparameters of the RL algorithm to 
be used for the solution of a problem is fundamental 
for the optimal learning of the algorithm, thus making 
it possible to solve the problem in an optimal number 
of steps. 

This consideration becomes even more critical in 
complex problems where the algorithm's learning 

time is substantial. For the hyperparameter 
optimization in the problem described, we utilized the 
Optuna library (Akiba et al., 2019). 

For the optimisation of hyperparameters in the 
problem described above, the Optuna library (Akiba 
et al., 2019) has been used. This Python library is used 
for general mathematical optimisation problems, 
where objective functions can be defined to be 
maximised or minimised, depending on the problem. 

In the case of RL problems such as the one we are 
dealing with, the way to optimise parameters 
effectively is to train the RL algorithm within this 
objective function. 

At its core, Optuna requires the definition of an 
objective function, which serves as the benchmark 
against which the performance of different 
hyperparameter configurations is evaluated. The 
process begins with Optuna suggesting feasible 
values for each hyperparameter based on predefined 
search spaces. For this purpose, the following search 
spaces are used: 

• Policy: More precisely, the number of 
neurons per layer. Categorical value of 
[32, 64, 128, 256] neurons. 

• Learning rate of the policy and critic 
networks. Floating number range [ 3 ൉10ିସ, 1 ൉ 10ିସ]. 

• Batch size for network training. Integer 
number range [1, 24]. 

• Discount factor (gamma). Floating 
number range [0.9, 0.99] 

• Number of epochs. Integer number 
range [3, 20]. 

• Clip range. Floating number range 
[0.1, 0.3]. 

With these values, an RL training session is 
initiated using the suggested hyperparameters. To 
ensure efficiency and relevance, the number of 
training steps is benchmarked against the baseline, 
providing a constraint that guides the optimization 
process. For every RL training session, the final mean 
reward of the policy is used as the Optune objective 
output. 

As the iterations progress, Optuna intelligently 
adjusts its suggestions based on the objective function 
output of previous configurations, aiming to find the 
optimal set of hyperparameters that maximize the 
objective function’s output. This iterative and 
adaptive approach ensures that the RL model is 
trained with the most suitable hyperparameters, 
enhancing its performance and reducing the overall 
training time. 
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5 OBTAINED RESULTS 

Hyperparameter optimisation using Optuna has been 
used to optimise the learning process and maximise 
the reward obtained in the RL problem presented in 
section 3 of the paper. 

According to the literature and to the state of the 
art, the PPO algorithm has been selected for the 
solution of this problem. 

A total of 100 parameter optimisation iterations 
have been performed, training each of these iterations 
for 150,000 steps. 

This number of steps has been established by 
observing the convergence of the reward for this 
problem taking the default parameters established for 
the PPO algorithm. 

Of the 100 hyperparameter optimisation tests 
performed, trials 47 and 70 are the best performers 
according to the reward plots obtained for training. 

Table 2 shows the PPO baseline parameters and 
the optimum parameters calculated in the 47 and 70 
trials. 

Table 2: Optimization parameters obtained with Optuna 

Parameter PPO 
baseline 

Trial 47 
Optuna  

Trial 70 
Optuna

Network 
size 

64 neuron 
per layer, 
two layers 

64 neuron 
per layer, 
two layers 

64 neuron 
per layer, 
two layers

Learning 
rate 

0.0003 553.52e-
10 

0.00076

N. Steps 2048 300 300
Batch size 64 12 12
N. Epochs 10 11 8 
Gamma 0.99 0.9 0.9
Clip 
Range 

0.2 0.2 0.2

As can be seen in the table above, the optimised 
parameters in iterations 47 and 70 have similar values 
for almost all parameters, and in turn differ quite a lot  

 
Figure 5: Optimization history (Optuna). 

from the default parameters provided by the PPO 
algorithm in the Stable Baselines 3 reinforcement 
learning library (Raffin et al., 2021). 

In the following images you can see the 
optimisation history carried out by Optuna (figure 5) 
and the relative importance of each of the 
hyperparameters in the final result of the optimisation 
(figure 6). 

Finally, to demonstrate the effectiveness of 
hyperparameter optimisation in RL problems, this 
section finally presents the reward and episode length 
plots for the problem proposed in section 3, both for 
the default PPO parameters (baseline of the problem) 
and for the optimal parameters obtained and 
previously presented in table 2.  

On the one hand, the reward plot shows the 
learning convergence speed of the problem, 
estimating it when it is taken to the maximum value 
of reward and this is kept constant. It also allows us 
to observe the maximum reward obtained, also 
showing the effectiveness of the agent in solving the 
problem.  

The graph illustrating the average episode lengths 
for each set of chosen hyperparameters further 
underscores the effectiveness of our solution 
approach. The shorter the length of the episodes, the 
fewer steps the agent needs to solve the problem, so 
it is a more effective agent. 

 
Figure 6: Hyperparameter relative importance to optimize 
the final objective value. 

Figure 7 shows the average reward obtained 
during the training process, the values obtained by the 
baseline PPO are represented in the blue graph, while 
Optuna iteration 47 is shown in green, and 70 in red. 

As shown, the baseline PPO needs 125k steps for 
the convergence of the training, while the other two 
options reach the optimal result in 50k, i.e., the 
learning capacity of the problem is improved, taking 
3 times less time. 
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Figure 7: Reward graph for PPO baseline (orange),  
Optuna iteration 47 (grey) and Optuna iteration 70 (blue). 

Moreover, figure 8 shows the average episode 
lengths during training for these three configurations. 
As is logical after observing the previous reward plot, 
the average episode lengths for the Optuna 
configurations are much shorter than those obtained 
by the baseline PPO, showing a superior effectiveness 
in training the RL agent. 

 
Figure 8: Episode length for PPO baseline (orange),  
Optuna iteration 47 (grey) and Optuna iteration 70 (blue). 

While the performance of the robot remains 
relatively consistent as it converges to the optimal 
policy, a notable advantage emerges in the speed of 
this convergence. The research indicates that, even if 
the end performance metrics of the robot do not show 
substantial improvement, the time taken to reach this 
optimal policy is significantly reduced. This faster 
convergence can lead to more efficient training 
processes and quicker deployment of robotic 
solutions in real-world scenarios, emphasizing the 
importance of optimizing the learning process even if 
the end performance remains unchanged. 

6 CONCLUSIONS AND FUTURE 
WORK 

In this research work, a practical study and parameter 
optimisation method has been carried out on a 

reinforcement learning algorithm, PPO, used to 
control a UR3 industrial robot. 

It has been shown that the correct choice of 
optimal hyperparameters for the resolution of a 
problem of this type is fundamental to reach a fast 
convergence and to obtain an effective policy in the 
shortest possible training time of the algorithm. 

This last point, the necessary training time, is of 
special importance in problems based on RL 
techniques, since it grows exponentially with the 
complexity of the problem, being usual to need to 
execute millions of training steps for any typical 
problem in the field of robotics. 

For this reason, the method is of particular value 
for the efficiency of training this type of algorithms. 

As future work, it would be necessary to carry out 
a scientific study of the influence that each of the 
hyperparameters has on the convergence of a given 
reinforcement learning algorithm. 

In this first work in this respect, the parameters 
have been selected empirically, observing which ones 
were particularly relevant in the learning stage of the 
algorithm. Once those considered most relevant have 
been selected, they have been optimised using the 
Optuna library. 

An important advance to this procedure would be 
scientific justification of the choice of 
hyperparameters to be optimised, which is considered 
the missing step for a complete optimisation process 
of the training of RL algorithms. 
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