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Abstract: In this paper, we study distributed and centralized approaches of Q-learning for multi-objective optimization

of binary problems and investigate their characteristics and performance on complex epistatic problems using

MNK-landscapes. In the distributed approach an agent receives its reward optimizing one of the objective

functions and collaborates with others to generate Pareto non-dominated solutions. In the centralized approach

the agent receives its reward based on Pareto dominance optimizing simultaneously all objective functions.

We encode a solution as part of a state and investigate two types of actions as one-bit mutation operators, two

methods to generate an episode’s initial state and the number of steps an agent is allowed to explore without

improving. We also compare with some evolutionary multi-objective optimizers showing that Q-learning

based approaches scale up better as we increase the number of objectives on problems with large epistasis.

1 INTRODUCTION

Multi-Objective Evolutionary Algorithms (MOEAs)

(Deb, 2001) have been widely applied to solve real

world multi-objective optimization problems, and

various types of algorithms have been proposed.

MOEAs require further improvements in order to per-

form an efficient optimization at limited computa-

tional cost and cope with problems of increased diffi-

culty, such as large-scale search spaces, many objec-

tive functions, and various shapes of the Pareto opti-

mal front set.

In this work we focus on epistatic problems,

where the performance of multi-objective optimizers

using conventional mutation and recombination op-

erators drops considerably as we increase the num-

ber of interacting variables. There is the expecta-

tion that in these problems operators guided by learn-

ing could lead to improvements. From this stand-

point, we study multi-objective optimization using Q-

learning (Drugan, 2019) (Watkins and Dayan, 1992),

a type of reinforcement learning (RL) (Sutton and

Brato, 1998). We want to understand whether Q-

learning based search methods perform an effective

exploration of large spaces in the presence of epis-

tasis, aiming to develop robust and scalable multi-
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objective optimization algorithms.

Related works fall broadly in two categories.

Namely, multi-objective reinforcement learning

(MORL) and multi-objective optimization combined

with reinforcement learning (MOO-RL). The em-

phasis of MORL is the multi-objective sequential

decision making of the agents to learn to perform

a task when the reward space is multi-dimensional.

Several MORL algorithms have been proposed. Most

of them use linear scalarization functions to map

the reward vector into a scalar (Lizotte et al., 2010)

(Gábor et al., 1998) (Barrett and Narayanan, 2008)

(Hayes et al., 2022) (Moffaert et al., 2013b) (Moffaert

et al., 2013a).

On the other hand, MOO-RL emphasises multi-

objective solution search supported by RL, i.e. blend-

ing multi-objective optimizers with RL. MOO-RL

can be subdivided in two major categories. One where

the solution search is carried out by the optimizer ap-

plying its operators of variation and selection whereas

RL is applied to select strategies or configurations for

the optimizer. There are a few works in this direction,

for example, Q-learning has been used in dynamic

multi-objective optimization to select global and local

search strategies to be applied by a memetic algorithm

(Shen et al., 2018) and to select strategies to initialize

the population of the multi-objective optimizer (Zou

et al., 2021) every time a critical dynamic event oc-

curs.
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The other major category for MOO-RL is where

RL is used as a multi-objective optimizer. That is,

a state includes the codification of a solution to the

optimization problem and actions act as operators of

variation to search in the solution space. There are

very few previous works on RL applied as a multi-

objective optimizer. For example, in (Mariano and

Morales, 2000) a distributed approached was used to

optimize 2 and 3 objective functions with two con-

tinuous variables. In (Jalalimanesh et al., 2017),

a distributed Q-learning algorithm similar to (Mari-

ano and Morales, 2000) is applied for multi-objective

optimization of radiotherapy aiming to find Pareto-

optimal solutions representing radiotherapy treatment

plans.

We focus on the latter category of MOO-RL and

study distributed and centralized approaches of Q-

learning for multi-objective optimization of binary

problems. In the distributed approach an agent re-

ceives its reward optimizing one of the objective func-

tions and collaborates with others to generate Pareto

non-dominated solutions. In the centralized approach

the agent receives its reward based on Pareto domi-

nance optimizing simultaneously all objective func-

tions.

In order to understand the characteristics of the RL

approaches, we conduct experiments solving MNK-

landscapes (Aguirre and Tanaka, 2007) varying the

number of binary variables N, the number of ob-

jectives M and the number of interacting variables

K (epistatic interactions). We compare results with

other MOEAs using 100 bits landscapes. We chose

for the comparison the multi-objective random bit

climber moRBC (Aguirre and Tanaka, 2005), the

NSGA-II (Deb et al., 2002) and the decomposition

based MOEA/D (Zhang and Li, 2008) algorithms,

which performance is known on MNK-landscapes

and thus allow us to better understand the effective-

ness of the actions and reward approaches of the RL

optimizers on terms of well known selection meth-

ods and operators of variation as we scale up ob-

jective space and epistatic interactions between vari-

ables. We show that Q-learning based approaches can

perform significantly better than the other algorithms

on incresingly non-linear problems for a broad range

of K. We also show that the comparison with the

other algorithms provides valuable insights on how to

further improve Q-learning approaches for epistatic

problems.

Figure 1: Q-learning.

2 METHOD

2.1 Q-learning

Reinforcement learning (RL) is a method in which an

agent learns what to do in given situations so as to

maximize a numerical reward signal. In RL an agent

is not told which actions to take, but instead must dis-

cover which actions yield the most reward by trying

them. Q-learning is a type of RL that uses an off-

policy temporal difference control algorithm to learn

an action-value function Q, which approximates the

optimal action-value function independently of the

policy being followed (Watkins and Dayan, 1992).

Fig. 1 illustrates the main components of Q-learning.

When an agent takes action a in state s, a reward r and

the next state s′ are passed from the environment. The

value of Q is updated by the following equation,

Q(s,a)←Q(s,a)+α[r+ γmax
a′

Q(s′,a′)−Q(s,a)]

(1)

where α is the learning rate and γ is the discount rate,

a constant between 0 and 1. The above updating equa-

tion means that when an action causes a transition

from the current state s to the next state s′, its Q-value

is brought closer to the value of the action a′ with the

highest Q-value in the next state s′. This means that

if a state has a high reward, that reward will propa-

gate to the states that can reach that state with each

update. This results in optimal learning of state tran-

sitions. The interaction between the agent and the en-

vironment is repeated until a terminal state has been

reached. Each time an interaction takes place is called

a step and an episode denotes the multiple steps of in-

teraction taken from the initial state to the terminal

state. Distributed Q-learning (Mariano and Morales,

2000) is a method where multiple agents interact with

the environment while usually referring to the same

Q-table.
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Figure 2: State.

2.2 Q-learning for Multi-Objective

Optimization

2.2.1 Main Components

To apply Q-learning, the environment, states, actions

and rewards have to be properly defined. In this work

we focus on the optimization of multi-objective bi-

nary problems and the Q-learning components are de-

fined to reflect that. Let us denote the vector x of bi-

nary variables as the environment where an agent can

move and allow an agent at a given time to be posi-

tioned in one of the variables of the vector. Hence,

a state s is represented by joining the binary solution

instantiated in x = (x0, · · · ,xn−1) and the position p

of the agent, where xi ∈ {0,1}, n denotes the number

of variables and p ∈ {0, · · · ,n− 1}. The total num-

ber of states is n× 2n with this representation. Fig.

2 illustrates the representation of a state s for n = 4

variables. An action causes the agent to move to an-

other variable and flip its value. In other words, an

action serves as a variation operator that mutates one

bit of a solution to create a new one. We investigate

two kinds of actions to transition from one state to an-

other, which are detailed later in this section together

with the way the reward is assigned.

We study a distributed and a centralized approach

for solving the task of multi-objective optimization.

In the distributed approach an agent focuses on a par-

ticular objective function of the problem and its ac-

tions are rewarded for its relative quality in that ob-

jective function. Thus, multiple agents are required

to cooperate, at least one agent per objective function,

to solve the task in the distributed approach. In the

centralized approach, an agent focuses on all objec-

tive functions and its actions are rewarded for its rel-

ative quality in the multi-objective space. In the fol-

lowing, for short, we refer to the agents used in the

distributed approach as single-objective agents and to

the agents used in the centralized approach as multi-

objective agents. In both cases the objective is to find

a set of Pareto solutions.

2.2.2 Multi-Agent Algorithm Framework

We implement a tunable multi-agent algorithm frame-

work to investigate multi-objective optimization using

Algorithm 1: Multi-objective optimization framework us-

ing Q-learning.

Data: init type,agent type,act type,E,M,τ
Result: P, the set of non-dominated solutions

found by the algorithm

1 Q← InitializeQ()

2 P←{}
3 for 1 to E do / ∗ episodes∗ /
4 S←{}
5 for i← 1 to M do / ∗ agents∗ /
6 s← InitializeState(init type,P)

7 x← GetSolution(s)

8 Pi← {x}
9 c← 0

10 while c≤ τ do

/ ∗ i− th agent steps∗ /
11 a← SelectAction(act type,s,Q)

12 s′← PerformAction(s,a)

13 x← GetSolution(s′)

14 r←
ObserveReward(agent type,x,Pi)

15 S← S+(s,a,s′,r)
16 Pi← Pi∪{x}
17 s← s′

18 c←
UpdateCounter(agent type,x,Pi)

19 end

20 end

21 foreach (s,a,s′,r) in S do

22 Q(s,a)← Q(s,a)+α[r+
γmax

a′
(Q(s′,a′))−Q(s,a)]

23 end

24 P←NonDominatedSolutions(P
⋃

i=1,··· ,M
Pi)

25 end

26 return P

Q-learning either in a distributed or centralized ap-

proach. Algorithm 1 illustrates the framework. In the

following we explain relevant details of the algorithm.

First, the quality table Q is initialized to zero

for each combination of state-action, i.e. ∀s ∧
∀a Q(s,a) = 0.0, and the bounded population P of

non-dominated solutions is set to empty (lines 1-2).

Next, the algorithm iterates for E episodes for each of

the M specified agents (lines 3-24) and returns the set

of non-dominated solutions found (line 26). In this

work, if P exceeds its specified size it is truncated us-

ing crowding distance (Deb, 2001) (line 24).

The information associated to a step taken by an

agent is given by the tuple (a,s,s′,r), where a is the

action, s is the current state, s′ is the next state and r is
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the reward. When an episode starts, the list S that will

contain the information of all the steps taken by all

agents during an episode is initialized to empty (line

4). Before the first step of an episode for the i-th agent

is taken, an initial state is defined, the population Pi

of solutions visited by the agent during an episode is

initialized with the solution x contained in the initial

state s, and the counter c used to verify the termination

of an episode is set to 0 (lines 6-9).

In each step of an episode, an action is selected

and executed so that the i-th agent transitions from

the current state s to a new state s′. The solution x

contained in s′ is compared with the population of so-

lutions Pi collected so far by the agent to compute the

reward of the action, the tuple (a,s,s′,r) is added to

S, the solution x is added to Pi, and the new state s′

becomes the current state s (lines 11-18).

Once all M agents have completed an episode, the

quality table Q is updated with the information col-

lected in S of all the steps taken by all agents during

the episode (line 21-23), and the set of non-dominated

solutions is updated with the solutions visited by the

agents contained in their respective populations Pi

(lines 24).

2.2.3 Initial State

Two methods for generating an initial state (line 6)

at the start of an agent’s episode are studied. One of

the methods generates randomly the solution x asso-

ciated to the initial state and the other one chooses a

solution x from the set of non-dominated solutions Pi

collected so far. In both methods, the position p of

the agent is randomly determined. We select between

these methods setting init type either to randomly or

continuously, respectively.

2.2.4 Types of Actions and Solution Generation

Two types of actions called rigth-left (rl) and any-

where are studied. The rl action moves the agents

from its current position p to either the right p+ 1 or

left p− 1 neighboring positions. On the other hand,

the anywhere action moves the agent from its current

position p to any of the n positions in the vector x,

including p again. In both kinds of actions, the bit in

the position where the agent moves is flipped.

Fig. 3a shows an example of moving to the right

from the current position p = 1, when the type of ac-

tion is rl. The position after the move is p′ = 2, and

the next state s′ is formed by joining x′ and p′. We

consider the vector x as a circular array. That is, the

position to the right of p = n− 1 is p′ = 0. Simi-

larly, the position to the left of p = 0 is p′ = n− 1.

When the type of action is rl, the number of the ac-

(a) rl.

(b) anywhere.
Figure 3: Types of actions.

tions an agent can choose from is 2, either right or

left, independently of the dimension n of the vector x.

Fig. 3b shows an example of moving from the cur-

rent position p = 1 to p′ = 3 when the type of action

is anywhere. Since this example is a 4-bit problem,

the number of actions an agent can choose from is

4. In general, when the type of action is anywhere,

the number of actions an agent can choose from is n,

the dimension of the vector x. In the framework, we

select between these two types of actions by setting

act type to either rl or anywhere. In this work, the

agents select probabilistically the action in the current

state using an ε-greedy strategy. That is, with proba-

bility 1− ε the action with the highest Q-value in the

current state s is chosen, and with probability ε the

action is chosen randomly.

2.2.5 Reward Assignment

Rewards are given in different ways depending on the

type of agent. In the case of distributed agents, if the

generated solution x improves the fitness value of the

best solution in Pi, in the fitness function the agent is

in charge of, the agent recieves a positive reward equal

to the size of Pi. Otherwise, the reward is negative and

equal to the number of solutions in Pi that are better
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(a) distributed agents.

(b) centralized agents.
Figure 4: Distributed and centralized agents behavior.

than x. In the case of centralized agents, the generated

solution x is compared using the Pareto dominance

relationship with the non-dominated solutions in Pi.

If x is dominant, the agent receives a positive reward

equal to the number of solutions that x dominates. If

x is dominated, the reward is negative and equal to the

number of solutions that dominate x. Otherwise, if x

is nondominated by Pi, the reward is −1.

2.2.6 Agent’s Episode Termination Condition

To determine whether an agent has reached a termi-

nal state (line 10) we keep a counter c of the num-

ber of consecutive times an agent i fails to improve

the best solutions in its corresponding population Pi.

Once this counter goes above a threshold τ, c > τ, the

episode for that agent ends. In the case of distributed

single-objective agents, the counter c increases if the

fitness value of the solution x extracted from the new

state (line 13), in the corresponding fitness function

the i-th agent is assigned to, does not improve the fit-

ness value of the best solution in Pi. In the case of

centralized multi-objective agents, the counter c in-

creases if solution x extracted from the new state (line

13) is Pareto dominated by at least one solution in

Pi. Fig. 4a and 4b illustrate the single-objective and

multi-objective agents search and how the counter c is

Table 1: Parameters: MNK-landscapes.

parameter MNK-landscapes

Objectives M 2,3,4
Variables N 100

Interacting Variables K 1,2,3,5,7,10,15,20

Variables Interaction random

Table 2: Parameters: Q-learning.

parameter Q-learning

Episodes ≤ 2× 106 evaluations

Agent Type single, multi

Action Type rl, anywhere

Initial State continuously

τ 0

ε,α,γ 0.1,0.1,0.6
Population size 100

updated when they optimize a two objective problem.

3 EXPERIMENTS

We compare the performance of Q-learning based

multi-objective optimization with NSGA-II (Deb

et al., 2002), the multi-objective random bit climber

moRBC (Aguirre and Tanaka, 2005) and MOEA/D

(Zhang and Li, 2008) using large MNK-landscapes

with M = 2,3 and 4 objectives, N = 100 bits, varying

the number of epistatic bits K from 1 to 20. In these

experiments all algorithms run until 200,000 fitness

evaluations have been completed. Parameters of the

MNK-landscapes used in our study are summarized in

Table 1. Parameters used for Q-learning are summa-

rized in Table 2 and parameters for the other MOEAs

in Table 3.

In all experiments, results are reported for 10 trials

of the algorithms in the same MNK-landscape with

different random seeds. We use Hypervolume (HV)

(Zitzler, 1999) as the evaluation metric setting the ref-

erence point to (0, · · · ,0).

4 RESULTS AND DISCUSSION

In this section we observe the performance of the cen-

tralized and distributed approaches using the two dif-

ferent types of action, varying the number of objec-

tives M from 2 to 4 and the number of interacting bits

K from 1 to 20. This allows us to understand bet-

ter the Q-learning based approaches when we scale

up the dimension of the objective space and the com-

plexity of the landscape. In the following experiments

A Study on Multi-Objective Optimization of Epistatic Binary Problems Using Q-learning

167



Table 3: Parameters: Other MOEAs.

parameter NSGA-II moRBC MOEA/D

Generations 2000 2000 2000

Population size 100 100 100

Crossover two-point - two-point

Mutation bit flip bit flip bit flip

Neighborhood size - - 20

Scalarized function - - Tchebycheff

we fix τ to 0, the threshold for the counter of the num-

ber of consecutive times an agent fails to improve the

best solutions in its corresponding population. This

threshold has shown best results in our experiments.

Also we use a solution selected from the population

P of non-dominated solutions to generate the initial

state of an episode, i.e. continuously strategy.

Fig. 5 plots HV over K for all four possible combi-

nations agent type and action type. Results show the

HV of the final population P of nondominated solu-

tions after 200,000 fitness evaluations. Note that for

2 objectives, the multi-objective agent perform bet-

ter when K is low, and the single-objective agent with

anywhere action performed better when K is high. For

3 and 4 objectives, the single-objective agents with

anywhere action achieves the highest HV. Note that

the centralized approach with a multi-objective agent

and anywhere action can perform better than the dis-

tributed approaches only for M = 2 objectives and

2 <= K <= 5. In all other cases, M = 2 for K >= 7

and M = 3,4 for all values of K, the distributed ap-

proach with single-objective agents and anywhere ac-

tion overall performed better. As the dimension of

the objective space increases it becomes clear that the

centralized approach using a reward given by Pareto

dominance does not scale up well, as seen in Fig. 5c

for M = 4. A centralized approach offers the pos-

sibility to reduce the number of agents required for

the multi-objective search. However, results in this

work clearly suggest that a reward based on Pareto

dominance could only be effective in a very limited

subset of problems. It could be worth exploring in

the future other forms to assign rewards for a central-

ized agent. The rl action overall does appear supe-

rior to anywhere in terms of performance. However,

the combined states-action space by rl is significantly

smaller than by anywhere. Actions rl and anywhere

can be seen as extreme cases in terms of the size of

the neighborhood of the position codified in the state

where a bit can be mutated. It could be useful to ex-

plore actions where the size of the current position’s

neighborhood is between 2 (rl) and n (anywhere).

Next, we compare the Q-learning distributed ap-

proach using action anywhere for multi-objective op-

(a) M2N100.

(b) M3N100.

(c) M4N100.
Figure 5: Agent Types and Action Types (100-bits).

timization with NSGA-II, moRBC and MOEA/D run-

ning for the same number of fitness evaluations as the

Q-learning based approaches (200,000) setting their

population to 100. Fig. 6 shows HV over K, similar

to Fig. 5.
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(a) M2N100.

(b) M3N100.

(c) M4N100.
Figure 6: Comparison to NSGA-II, moRBC and MOEA/D.

Before we discuss in detail this figure it is worth

remembering some properties of MNK-landscapes.

By enumeration it has been shown that increasing

K > 0 the landscape becomes rugged and the peaks’

height increase until medium values of K. There-

after the peaks remain of similar height for medium

to large values of K. The hypervolume of the true

Pareto front follows a trend similar to the height of

the peaks (Aguirre and Tanaka, 2007).

Now, looking at the Fig. 6, it should be noted that

the increase in hypervolume varying K from 1 to 5

for all algorithms is in accordance with the properties

of the landscapes. However, for K >= 7 the hyper-

volume decreases monotonically with K for all algo-

rithms, which means that the performance of all al-

gorithms drops substantially for K >= 7. Also, note

that there is not a dominant algorithm for all K and

M. However some important trends can be observed.

The Q-learning based approach is the best perform-

ing algorithm in 3 and 4 objectives for K >= 5 and

K >= 10, respectively, and the second best for 2 ob-

jectives and K >= 7. It is also notoriously weak in all

objectives for K <= 3. On the other hand, MOEA/D

is a very strong algorithm in 2, 3 and 4 objectives

for K <= 5, but its performance drops faster than

moRBC and the Q-learning approach for K >= 7.

The moRBC is overall the strongest algorithm in 2 ob-

jectives for K >= 3 and similar or better than NSGA-

II for all K and M. NSGA-II is competitive only in 2

objectives for K <= 2 and scales up badly for 3 and 4

objectives for all K.

The difference in performance among algorithms

is due to the combined effectiveness of the opera-

tors of variation and selection included in the al-

gorithms. The Q-learning based approach, moRBC

and NSGA-II use Pareto dominance based ranking

in their selection mechanism. It is well known that

increasing the dimension of the objective space al-

gorithms with this kind of ranking scale up poorly,

compared to a decomposition based approach like

MOEA/D. In addition, in smooth landscapes the re-

gions of non-dominance are broad and solutions in

the Pareto front are evenly distributed. Thus, it is

not surprising that MOEA/D with its uniform distri-

bution of weights outperforms the other algorithms

for small K. However, as K increases and the land-

scapes become rugged the regions of non-dominance

become fragmented and smaller, inducing not uni-

form Pareto fronts where solutions are more separated

in objective and decision space (Aguirre and Tanaka,

2007). Here the effectiveness of the operators of vari-

ation becomes more relevant, in addition to selection.

MOEA/D for large K keeps the relative advantage of

its selection mechanism for 3 and 4 objectives, but

the combination of crossover and mutation loses ef-

fectiveness. The better performance by moRBC com-

pared with NSGA-II is explained by the thorough ex-

ploration of local optima by one-bit mutations rather

than by more disruptive operators like crossover. The

actions in the Q-learning approach are also one-bit

mutations. The Q-table offers a path to improving

moves once an episode is restarted, guiding the ex-

ploitation of promising regions and climbing to bet-

ter local optima, which becomes more difficult with-

out learning as evidenced by the results for large K.

However, different to moRBC, the actions in the Q-

learning approach allow transitions to states with non-

improving solutions and are far less comprehensive to

explore local optima.

A Study on Multi-Objective Optimization of Epistatic Binary Problems Using Q-learning

169



The results by all algorithms compared in this

section provide valuable insights to improve the Q-

learning approach. They suggest that incorporating

some of the functionality of the moRBC climber into

the transitions allowed for the Q-learning approach

could improve its effectiveness. In addition, ways

to include selection principles that are more robust in

objective spaces of larger dimensions should be con-

sidered. This implies different ways to compute the

rewards and the selection of the solution to restart an

episode.

5 CONCLUSION

In this work, we studied distributed and centralized

approaches of Q-learning for multi-objective opti-

mization of binary epistatic problems using MNK-

landscapes. We showed that the Q-learning based

approaches scale up better than moRBC, NSGA-II

and MOEA/D as we increase the number of objec-

tives on problems with large epistasis. Also, we iden-

tified their weaknesses particularly in low epistatic

landscapes. In addition, we analyzed results of other

MOEAs taking into account their selection method

and operators of variation together with properties of

MNK-landscapes to better understand the Q-learning

based approaches and suggested forms to improve

them. Our conclusions regarding the parameters of

the Q-learning based approaches are as follows. The

action that flips any bit is overall slightly superior to

the action that flips the left or right neighboring bits.

The centralized approach, using a reward based on

Pareto dominance, does not scale up well with the di-

mension of the objective space.

In the future, we would like to study other ways to

assign rewards for the centralized approach, enhance

the selection of solutions for the initial state of an

episode, and constraint transitions to non-improving

states. We would also like to study the Q-learning ap-

proaches for many-objective optimization and analize

the optimization history obtained by Q-learning.
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