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Abstract: The focus of this research is proposing a nonparallel emotional voice conversion for Egyptian Arabic speech.
This method aims to change emotion-related features of a speech signal without changing its lexical content
or speaker identity. We relied on the assumption that any speech signal can be divided into content and style
code and the conversion between different emotion domains is done by combining the target style code with the
content code of the input speech signal. We evaluated the model using an Egyptian Arabic dataset covering
two emotion domains and the conversion results were successful depending on a survey conducted on random
people. Our purpose is to produce a state-of-the-art pre-trained model as it will be an unprecedented model in
the Egyptian Arabic language as far as we are concerned.

1 INTRODUCTION

Voice conversion (VC) focuses on extracting the acous-
tic features of the source voice and then, mapping them
to those of the target voice. After that, the waveforms
are synthesized from the generated acoustic features.
Pre-processing is done before training the mapping
function. Such pre-processing includes using dynamic
time warping (DTW) which is used to time align be-
tween the source and target voice features under study.
This is done when working on parallel data. Emotional
voice conversion approach is similar to that of the VC,
with the important role of prosody to express emotions
in speech (Choi and Hahn, 2021). Emotional voice
conversion focuses on converting the emotion-related
features from the source emotion domain to that in the
target domain while preserving the linguistic content
and speaker identity. Such emotion-related features
include prosodic and spectrum-related features.

Emotional voice conversion has various applica-
tions in conversational agents, intelligent dialogue sys-
tems, and other expressive speech synthesis applica-
tions (Luo et al., 2017). Additionally, it is promising
for applications in human-machine interaction, such
as enabling robots to respond to people with emotional
intelligence (Olaronke and Ikono, 2017). Speech not
only conveys information but also shows one’s emo-
tional state.

Given the significance of emotions in communi-
cation, we focused on emotion-voice transformation
in this work. Prosodic features like pitch, intensity,

and speaking rate can be used to help identify emo-
tions (Scherer et al., 1991). Emotional voice con-
version aims to change emotion-related features of
a speech signal without changing its lexical content or
speaker identity (Choi and Hahn, 2021).

It is proposed in (Huang and Akagi, 2008) that the
perception of emotion is multi-layered. Thus, from
top to bottom, the layers are represented by emotion
categories, semantic primitives, and acoustic features.
It is further suggested that emotion production and
perception are inverse processes. An inverse three-
layered model for speech emotion production was
proposed in (Xue et al., 2018). Studies on speech
emotion generally utilize prosodic features concern-
ing voice quality, speech rate, fundamental frequency
(F0), spectral features, duration, F0 contour, and energy
envelope (Schröder, 2006).

Early studies on emotional voice conversion mostly
relied on parallel training data, or a pair of utterances
that contain the same content but with different emo-
tions from the same speaker. Through the paired fea-
ture vectors, the conversion model learns mapping
from the source emotion A to the target emotion B dur-
ing training. The authors in (Tao et al., 2006) mainly
addressed prosody conversion by decomposing the
pitch contour of the source speech using classification
and regression trees, then utilizing Gaussian Mixture
Model (GMM) and regression-based clustering tech-
niques.

Recent works proposed deep learning approaches
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achieving remarkable performance. In (Luo et al.,
2016), an emotional voice conversion model is pro-
posed. This model is divided into two parts. In the first
part, Deep Belief Networks (DBNs) are used to mod-
ify spectral features, while in the second one Neural
Networks (NNs) are used to modify the fundamen-
tal frequency (F0). The STRAIGHT-based approach
was used for extracting features from the source voice
signal and the destination speech signal while intro-
ducing the spectral conversion part and F0 conversion
part. This model successfully adjusts both the acoustic
voice and the prosody for the emotional voice simul-
taneously when compared to traditional approaches
(NNs and GMMs). However, this work and other re-
cent emotional voice conversion techniques require
temporally aligned parallel samples, which is very dif-
ficult to attain in practical applications. Additionally,
accurate time alignment requires manual segmentation
of the speech signal, which is also time-consuming.

Beyond the parallel training data, new methods
for learning the translation across emotion domains
utilizing CycleGAN and StarGAN have been devel-
oped (Gao et al., 2019). In this paper*, we used the
CycleGAN architecture, which switches between two
emotion domains rather than learning a one-to-one
mapping between pairs of emotional utterances. The
training approach for the model is speaker-dependent.
It depends on extracting the emotion-related speech
features using WORLD vocoder. Such features include
the fundamental frequency (F0) and spectral envelope.
Gaussian normalization is applied to the F0 whereas,
spectral envelope is introduced to the auto-encoder
model. Disentanglement is applied to separate the con-
tent code from the style code. This is very beneficial
to preserve the lexical and speaker identity during the
learning process. A survey was conducted on random
people in which people were exposed to original and
converted samples. The survey included two emotions,
the neutral and the angry, accuracy of convergence to
neutral domain is about 63.42% whereas it is 56.19%
for convergence to the angry domain.

The paper is organized as follows. Section 1 is an
introduction that gives a general overview of the sub-
ject under research. Section 2 covers related work. In
Section 3, we introduce the structure of our model, the
loss function used in the training, and the experimental
setup followed by a description on the training dataset.
In Section 4, we discuss the results obtained from the
training. Dashboard graphs are used to demonstrate
these outputs. Section 5 shows the survey outputs and

*The conversion system code is uploaded to the follow-
ing repository: https://github.com/MohamedElsayed-22/no
n-parallel-training-for-emotion-conversion-of-arabic-spe
ech-using-cycleGAN-and-WORLD-Vocoder.

an analysis of the results. Section 6 summarizes our
work and gives general ideas about future work.

2 RELATED WORK

Earlier conversion models changed prosody-related
emotional features directly. According to (Xue et al.,
2018), the acoustic features of spectral sequence and
F0 have the highest effects in converting emotions,
with duration and the power envelope having the least
impact. Traditional approaches to conversion include
modeling spectral mapping using statistical techniques
such as partial least squares regression (Helander et al.,
2010), sparse representation (Sisman et al., 2019), and
Gaussian Mixture models (GMMs) (Toda et al., 2007).

2.1 Emotion in Speech

Emotion is introduced in both the spoken linguis-
tic content and acoustic features (Zhou et al., 2021).
Acoustic features play the important role in human
interactions. Emotions can be characterized by either
the categorical or the dimensional representation.

The categorical approach is easier and more
straightforward where emotions are labeled and the
model architecture is built based on that. Ekman’s six
basic emotions theory (Ekman, 1992) is one of the
most famous categorical approaches, where emotions
are categorized into 6 categories which are anger, dis-
gust, fear, happiness, sadness, and surprise. The down-
side of the categorical approach is that it ignores the
minor differences in human emotions. However, the
dimension-representation approach models the phys-
ical properties of emotion-related features. Russell’s
circumplex model is one of the models that represent
emotion in terms of arousal, valence, and dominance.
In this paper, we use the categorical way of represent-
ing emotions. The process of generating emotion from
the speaker is opposite to that of the emotion percep-
tion of the listener. Consequently, we assume that
the encoding of the speaker’s emotion is the opposite
process of the listener’s decoding of that emotion.

In (Gao et al., 2019), an approach was introduced
to learn a mapping between the distributions of of two
utterances from distinct emotion categories, x1 " X1
and x2 " X2 . However, the joint distribution p�x1,x2�
cannot be directly determined for nonparallel data.
Therefore, they assume that the speech signal can be
broken down into an emotion-invariant content compo-
nent and an emotion-dependent style component and
that the encoder E and the decoder D are inverse func-
tions. These assumptions allow estimating p�x1¶x2�
and p�x2¶x1� conversion models.
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2.2 Disentanglement

Based on the results obtained from disentangled rep-
resentation learning in image style transfer (Gatys
et al., 2016), (Huang et al., 2018) , Such approach
can be utilized similarly in speech. Each speech sig-
nal taken from either domain X1 or X2 can be divided
into a content code (C) and a style code (S), as pro-
posed in (Gao et al., 2019). The content code carries
emotion-independent information, while the style code
represents emotion-dependent information.

The content code is shared across domains and
contains the data that we wish to retain. The style code
is domain-specific and includes the data we wish to
alter. As shown in fig. 1, we take the content code of
the source speech and merge it with the style code of
the target emotion during the conversion stage.

Figure 1: Nonparallel training inspired by disentanglement
(Gao et al., 2019).

2.3 WORLD Vocoder

WORLD (Morise et al., 2016), fig. 2, a vocoder-based
system, is a high-quality real-time speech synthesis
system. It consists of three algorithms for analysis
through retrieving three speech parameters, in addition
to a synthesis algorithm that takes these parameters as
inputs. The fundamental frequency contour (F0), spec-
tral envelope, and excitation signal are the parameters
obtained. The F0 estimation algorithm is DIO (Morise
et al., 2009). The spectral envelope is determined
by Cepstrum and linear predictive coding algorithms
(LPC) (Atal and Hanauer, 1971). Those two parame-
ters, as mentioned before, are emotion-related speech
features. They are taken as input to the auto-encoder
and the Gaussian normalization for the process of con-
version. Furthermore, the outputs are taken to the
synthesis part of the WORLD to retrieve the resulted
converted voice.

Figure 2: WORLD Vocoder Working Mechanism (Morise
et al., 2016).

2.4 CycleGAN

Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014) have produced remarkable results in
various fields like image processing, computer vision,
and sequential data (Gui et al., 2021). The main goal is
to generate new data based on the training data, which
is done through concurrently training two models: a
generative model, the generator G, which captures the
data distribution, and a discriminative model, the dis-
criminator D, which classifies/decides whether a given
sample is real or fake. The learning behavior of G is
designed to maximize the probability of D making a
mistake. This typically produces a two-player min-
imax game. In this paper, we are concerned with a
particular GAN-based network architecture called Cy-
cleGAN (Zhu et al., 2017). CycleGAN learns mapping
GX�Y from a source domain X to a target domain Y
without the need for parallel data. It is also combined
with an inverse mapping GY�X .

CycleGAN is based on two losses: the first one is
adversarial loss, which is defined as follows.

LADV �GX�Y ,DY ,X ,Y� � Ey�P�y��DY �y���
Ex�P�x��log�1�DY �GX�Y �x���

(1)

It shows how matching the distribution of gener-
ated images GX�Y �x� is to the distribution in the target
domain y.Thus, as long as the distribution of the gen-
erated images P�x� to that of the target domain P�y�
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becomes closer, the loss will consequently become
smaller. The generator GX�Y works on generating im-
ages while trying to maximize the error of the discrim-
inator DY , as mentioned before, whereas, DY works
in the opposite direction. The second loss is cycle
consistency loss, which is defined using the L1 norm,
is as follows.

LCYC�GX�Y ,GY�X�

� Ey�P�y��½GX�Y �GY�X�y��� y½1�

�Ex�P�x��½GY�X�GX�Y �x��� x½1�

(2)

It focuses on preventing the learned mappings
GX�Y and GY�X from contradicting each other. As
explained in (Kaneko and Kameoka, 2018) working
on the adversarial loss will not guarantee that the core
information of X and GX�Y �x� are preserved.

X, Y are for the domain, while x, y are for the sam-
ples, as explained earlier in section 2.1: x1 " X1 and
x2 " X2 This is because the main target of the adver-
sarial loss function is to guarantee whether GX�Y �x�
follows the distribution of the target domain. Cycle-
consistency loss function focuses on making GX�Y
and GY�X find a pair �x,y� having the same core in-
formation.

An identity mapping loss is also introduced
in (Kaneko and Kameoka, 2018).

LID�GX�Y ,GY�X� � Ey�P�y��½GX�Y �y�� y½�
�Ex�P�x��½GY�X�x�� x½�

(3)

To achieve identity transfer, the features we are
concerned about must be transferred without modifi-
cation from the source domain to the target domain.
GX�Y and its inverse generator GY�X are directed to
find a mapping to achieve this target.

3 EXPERIMENTAL WORK

3.1 Methodology

In this paper, we propose a nonparallel training ap-
proach for the Egyptian Arabic Language emotional
voice conversion, since using the traditional parallel
approach is inefficient and infeasible to create parallel
datasets. Thus, we concentrated on learning the spec-
tral sequence and the fundamental frequency F0 conver-
sion using the CycleGAN and Gaussian Normalization
models. Moreover, the use of cycleGAN architecture
is due to its breakthrough in style transfer in images,
a scope similar to that of our proposed problem, men-
tioned in Section 2.4. The concept of disentanglement,
Section 2.2, is used to separate the emotion-related fea-
tures, style code (S), from the speech content (C) thus,

training is undergone on these features separately with-
out affecting the content (C). We used World Vocoder,
Section 2.3, which extract the emotion-related features
that are fed to the training architecture, described in
detail in Section 3.3.

3.2 Non-Parallel Training

In a nonparallel training method, we train a conver-
sion model between two partially shared emotion do-
mains (X1 � X2). Unlike the parallel training approach
which depends on the mapping between two utterances
which are the same for all features except for the as-
pects under study. In this way, nonparallel training
is more practical and of less cost making it feasible
for industrial applications. Parallel training requires
time alignment of the samples. This can be done man-
ually, which is difficult for large datasets, or using
dynamic time warping (DTW) (Berndt and Clifford,
1994) which depends on pattern detection in time se-
ries to match word templates against the waveform of
discrete time series of the continuous-waveform voice
samples.

The approximate word matching that DTW relies
on can be a drawback for their work, as it might include
a wide range of pronunciations and map them to the
same word, even though each pronunciation may carry
a different emotion. This can lead to inaccuracies in
emotional conversion.

3.3 Model

The conversion system, shown in fig. 3, takes the
emotion-related features, more specifically fundamen-
tal frequency F0 and spectral sequence, of both the
source and target domains which are extracted by
WORLD vocoder. The F0 of the source emotion do-
main is then transformed by a linear transformation
using log Gaussian normalization to match the F0 of
the target emotion domain.

Aperiodicity, which is analyzed from the input sam-
ple, is mapped directly since it is not one of the features
under study. Low-dimensional representation of spec-
tral sequence in mel-cepstrum domain is introduced to
the auto-encoder. Gated CNN is used to implement the
used encoders and decoders. A GAN module is used to
produce realistic spectral frames. In this way, each fea-
ture is converted separately without being dependent
on other features under study. Lastly, the converted
emotion-related features are introduced to the World
vocoder for recombining them back with the content
code of the speech signal.

The introduced neural network architecture con-
sists of an autoencoder, content encoder, style encoder,
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Figure 3: Voice emotion conversion mechanism.

decoder, and GAN discriminator. They work sequen-
tially to generate the output as shown in fig. 4.

For an emotional speech signal xi that is mapped
between two partially shared emotion domains
�X1,X2�, Instance normalization (Ulyanov et al., 2016)
was used to remove the emotional style mean and vari-
ance. The content encoder Ec

i is responsible for ex-
tracting the content code ci of signal sample xi:

Ec
i �xi� � ci (4)

A 3-layer MLP (Huang and Akagi, 2008) was used
to encode the emotional characteristics, The style en-
coders Es

i is responsible for extracting the style code
Si of signal sample xi:

Es
i �xi� � si (5)

The decoder Gi�ci,s j� is responsible for recombin-
ing the content code from one emotion with the style
code of another, for example, it uses c1 and s2 to get
x¬

2�1:

Gi�ci,s j� � x¬

j�i (6)

Note that the style code is learned from the entire
emotion domain. This was accomplished by adding
an adaptive instance normalization layer (Huang and
Belongie, 2017).

Finally, The GAN discriminator is responsible for
distinguishing real samples from machine-synthesized
samples.

Figure 4: Network Structure.

3.4 Loss Function

The auto-encoder, fig. 1, consists of an encoder and
a decoder thus, to keep them inverse operations to
each other (Gao et al., 2019). Reconstruction loss is
applied in the direction of xi� �ci,si�� x¬

i. The recon-
struction loss, as calculated in 7 where E represents
the expected value, focuses on quantifying the model
ability to regenerate the original sample xi from the
synthesized sample x¬

i in the same domain.

Lxi
rec � Exi�½xi� x¬

i½1� (7)

The spectral sequence ought to remain unchanged
following the process of encoding and decoding:

x¬

i � Gi�Ec
i �xi�,E

s
i �xi�� (8)

The latent space is partially shared between the
two emotions, specifically the content code is the
shared space, so semi-cycle consistency loss is pre-
ferred which is applied in the direction of encoding.
In content code, the content of an arbitrary sample
x1 " X1 represented as c1 is coded to that of the equiv-
alent sample x¬

2�1 in the target domain X2, this is done
as follows: c1� x¬

2�1� c¬

2�1. The coding direction
can not be represented as x¬¬

1�2�1 � x1 because we
take the semi-cycle consistency loss approach as the
latent space of the content code is shared and such
coding direction will lead to changes to the content
of the speech. In the style code, the following coding
direction is implemented as well: s1� x¬

2�1� s¬

2�1.
Consequently, we can construct the loss functions for
the content and style codes separately equations 11
and 10 respectively similar to that in the reconstruc-
tion loss 7.

Lc1
cycle � Ec1,s2�½c1� c¬

2�1½1�,

c¬

2�1 � Ec
2�x¬

2�1�
(9)

Non-Parallel Training Approach for Emotional Voice Conversion Using CycleGAN

21



Ls2
cycle � Ec1,s2�½s2� s¬

2�1½1�,

s¬

2�1 � Es
2�x¬

2�1�
(10)

A GAN module is used to keep the converted sam-
ples indistinguishable from that in the target emotion.
Thus, we improve the quality of the synthesized sam-
ples. The GAN loss is computed on x¬

i� j where i j j

Li
GAN � Ec j ,si�log�1�Di�x¬

i� j���

�Exi�logDi�xi��
(11)

Thus the used loss function is the weighted sum of
the three loss functions Lrec, Lcycle, and LGAN .

3.5 Experimental Setup

Although there are several speech emotion databases
for different European and Asian languages, there are
very few Arabic speech emotion databases in literature.
Moreover, those datasets were recorded in Arabic spo-
ken by Syrian, Saudi, and Yemeni native speakers, so
there is a deficiency in Egyptian Arabic datasets and
research. The Egyptian Arabic dataset that we used
consists of a total of 0.9 hr of audio recordings from 1
native Egyptian speaker covering 2 different emotion
categories (neutral and angry). It was recorded using
Audacity sound engineering software in a silent room
with a sampling rate of 48KHz. The Dataset contains
1000 utterances for each emotion. The training and
testing sets were randomly selected (80% for training,
20% for testing). The training set was sampled with a
fixed length of 128 frames 5ms each.

4 RESULTS

The focus is mainly on the results of the loss functions
discussed earlier in 3.4. In fig. 5, the discriminator loss
curve has significant oscillations. This is because of
the small batch size chosen which is 1. We tested var-
ious values including 8, 16, etc., however, a batch of
size 1 was the most suitable as far as we are concerned
to keep a trade-off with the generator loss. The gener-
ator loss keeps converging to a fair extent, indicating
how the generation of utterances to the target domain
is improving.

The semi-cycle loss convergence shown in fig. 6
is a reflection of the naturalness of the reconstructed
utterances. It causes the utterance generation in both
emotion domains to demonstrate low generation losses
which are explicitly clarified in fig. 7. Discriminator
losses in both emotion domain directions demonstrated
in fig. 8 provide robust evidence on the naturalness of
converted samples since they represent the model’s

Figure 5: Generator Loss and Discriminator Loss.

ability to distinguish between the real and synthesized
samples.

Figure 6: Semi-cycle Loss.

Figure 7: Generator Loss from Angry to Neutral and Gener-
ator Loss from Neutral to Angry.

Figure 8: Discriminator Loss of the Angry Domain and
Discriminator Loss of the Neutral Domain.

The speaker’s identity was almost steady and no
much change happened to it as shown in fig. 9. More-
over, alongside the training steps, the identity loss
decreased significantly at the beginning and then kept
steady at a relatively low value. Since the model train-
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ing approach is speaker-dependent, the pre-trained
model will be for one speaker. Consequently, the train-
ing dataset for each pre-trained model will be of one
speaker. Thus, the speaker’s identity is preserved.

Generally, the generation loss decreased signifi-
cantly at the beginning, it rose up a little bit, neverthe-
less, it ended at a relatively sufficient value to generate
the target emotion. The discriminator loss is oscil-
lating, however, keeping the cycle loss at low values
and generating utterances in both domain directions
efficiently.

Figure 9: Speaker Identity Change.

5 DISCUSSION

The assessment of the results is based on a survey
through which participants rated the clarity of the
voice, emotion, and speaker identity out of 10. About
105 participants took place in the assessment. Each
one listened to 5 different utterances for both the angry
and neutral emotions. The mean accuracies of con-
vergence to neutral and angry are 63.42% and 56.19%
respectively based on the survey results. The assess-
ment results are shown in fig. 10. The results might
not be up to our expectations regarding the model ar-
chitecture. This is due to the fact that angry emotion
in the dataset is more shouting than expressing anger,
however, our model performed better than VC- Star-
GAN (Kameoka et al., 2018) in terms of conversion
ability (average 59.8% vs 44%). Regarding the newly
proposed model EVC-USEP (Shah et al., 2023), our
model performed better (average 59.8% vs 41.5%).
Further modifications to the dataset might introduce
better results. In addition to taking into considera-
tion the other emotion-related features that affect the
delivery of emotions. They might not be of much sig-
nificance to affect the output, however, they will surely
introduce improvements to the model results.

Figure 10: Survey Results.

6 CONCLUSION

This research proposes a nonparallel speaker-
dependent emotional voice conversion approach for
Egyptian Arabic speech using CycleGAN. The pro-
posed method successfully changes emotion-related
features of a speech signal without altering the lexi-
cal content or speaker identity. However, the results
might not be up to expectations due to the nature of
the dataset. Further modifications to the dataset and
considering other emotion-related features are likely
to introduce improvements to the model results. Fu-
ture work includes using continuous wavelet transform
(CWT) to decompose F0 into 10 different scales so it
can observe abrupt changes, modifying the model to
be speaker independent. Overall, this study provides
a significant contribution to the development of emo-
tional voice conversion for Egyptian Arabic speech
and can pave the way for further research in this area.
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