Technological Solution for Crime Prevention in Los Olivos

Juan-Pablo Mansilla, Matías Beteta and David Castañeda

Private University of Applied Sciences, Lima, Peru

Keywords: Citizen Security, Crime, Machine Learning, Naive Bayes.

Abstract: This research proposes a technological solution for citizen security and crime prevention based on machine learning in the district of Los Olivos, which alerts if the area in which a citizen is located is unsafe, showing a probability of the level of insecurity in each area, making more visible the areas with the highest level of insecurity; this was achieved using a machine Learning model, with the Naive Bayes algorithm exactly. A sample of 108 users was used for validation, with whom the technological solution was tested using a test scenario. In this sense, a questionnaire was elaborated to evaluate the perception of the users with an acceptance level of 93.5%. On the other hand, when using the Naive Bayes algorithm is ensured to obtain a better “Accuracy” and distribution by category in comparison with the following algorithms: classification forest, carboost classifier and KNN respectively. Therefore, it was with the use of one the Naive Bayes algorithm that the technological solution was carried out. The technological solution proposed is innovative for Peru because it uses machine learning as a technology. In addition, this solution could be replicated in any other district of Metropolitan Lima.

1 INTRODUCTION

There is no country in Latin America where the perception of insecurity is as high as in Peru, to the extent that 9 out of 10 people think they will be victims of crime in the next 12 months. Likewise, within Peru, Lima is considered one of the cities with the highest perception of insecurity and has become a national problem. For the development of this research, we have focused on the district of Los Olivos, since, according to the Citizen Security Technical Report N°4, it indicates that this district is the second most insecure in all of Lima (INEI, 2021). Also, only 15.5% of the victims of a criminal act formalize the complaint (Peruano, 2022). The purpose of the research proposal is to implement a technological solution for citizen security, which is capable of sending an alert signal in real time to the users of the district of Los Olivos indicating the probability of the occurrence of a criminal act. For example, robbery, aggravated robbery, theft, aggravated theft, homicide, murder and micro-commercialization of drugs, depending on the area where the user is located. It is proposed to develop a model based on machine learning using the Naive Bayes algorithm for crime prevention in the district of Los Olivos. In addition, the application will be like a social network, in the sense that it will have publications with photos, data, news, among others. Users will also be able to access communities by zones, in which they will be able to report assaults, robberies, among others, and thus send this information to the corresponding authorities through interactive reports, so that they can take the corresponding measures.

2 RELATED WORK

In (Hongning Wang a., 2022) Wang and Ma state that in predicting crimes against public health it is largely use the data analysis technology, and the data classification and prediction capabilities of the random forest algorithm. This system can effectively predict the relevant data of crimes that endanger society. Also, in (Md Amiruzzaman, 2021) the authors indicates that there is a classification of crime hotspots based on neighborhood visual appearance and police geonarratives using Machine Learning to study whether street level built environment images can be used to classify locations with high and low crime activities. In addition, it’s stated as a fact in (John R. Hipp, 2022) that crime can be detected using Google Street View images with a Machine Learning technique to extract various features of the built envi-

Mansilla, J., Beteta, M. and Castañeda, D.

Technological Solution for Crime Prevention in Los Olivos.

DOI: 10.5220/0012154000003543

In Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2023) - Volume 1, pages 115-122

ISBN: 978-989-758-670-5; ISSN: 2184-2809

Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)
environment, and use this information to assess their relationship with crime in street segments. To avoid that, Forradellas and others propose in (Reier Forradellas and Rodriguez, 2021) a crime prediction model through a neural network called multilayer perceptor in order to obtain future information not only regarding possible crimes, but with a level of detail adequate for their definition. In addition, in (Ana Amante, 2021) it is indicated that conclusions are drawn based on the experiences of municipalities, police and administration, which contribute to the debate on community crime prevention and highlight the need for multidisciplinary, multilevel and place-specific approaches. Likewise, Janakiramaiah and others (B. Janakiramaiah, 2021) describes and proposes an automated method for detecting abnormal human behavior in intelligent surveillance systems. On the other hand, in (Kimihiro Hino, 2021) Hino and Chronopoulos reviews crime prevention policies in the Adachi district where the Beautiful Windows Movement and Action Plan is discussed. In another case, as stated in (William E, 2020) by William and others, it was developed a detection algorithm that incorporated facets of teacher-reported outsourcing problems and other known risk factors. We examined detection approaches based on logistic regression and machine learning algorithms. While it is true that, Van Steden (Steden, 2021) based his research on categorizing the following items: effect, mechanisms, moderators, implementations, and economics. It was concluded that these groups can generate a greater problem for citizens, since they try to confront crime directly (without the presence of authorities), which can generate the exposure of more people and lead to new crimes. Communication and technology can be a good way to support against the crime rate they are facing in the Netherlands. In addition, in (Hongjie Yu and Lan, 2020) it is demonstrated the complexity of the spatial and temporal distribution of criminal activities and stressed that the construction of covariates based on classical crime theory and fine-scale data are effective for crime prediction. Another research by Niu and others (Niu, 2019), is based on being able to create, test and compare crime prediction algorithms based on the patterns of criminal activity and why they are influenced in the community areas of the city of Chicago. In addition, K-means (KNN), decision tree (DT), Naive Bayes (NB) and Support Vector Machine (SVM) algorithms were used. Moreover, in (Waija Safat, 2021) is described improved efficiency for accurate crime prediction compared to what was previously achieved with additional analysis based on different machine learning algorithms. In addition, Albahli and others (Albahli, 2021) propose a prediction method using Machine Learning technology (Naive Bayes, Random Forest, KNN, Decision Tree, Deep Learning) and selection methods such as: FAMD (Mixed Data Factor Analysis and PCA (Principal Component Analysis). Also, the proposed method has as its main objective to predict the factors that most affected crimes in Saudi Arabia. In addition, in (Myung-Sun Baek and Lee, 2021) MYUNG-SUN and others reports that different prediction models were developed to detect the type of crime, of which respective tests were made to verify their performance and authentication at the time of analysis of criminal cases. It was verified that their differences are minimal, ranging between 7% and 8% difference in results, and that they can be viable for the use of case analysis. On the other hand, in (Obagbuwa and Abidoye, 2021) is indicated that crime data analysis can extract vital unknown information from raw data and thus help the government speed up procedures to solve crimes. It would enable the relevant government authorities to gain a better understanding of crime trends and mitigate them. When crime is prevented it can boost different economic areas and attract more people to invest in the locality. Along with, Kim and others (Kim, 2021) indicate that using predictive technology in geographic areas where they suffer from burglary will reduce the triggering of potential burglaries in areas surrounding the burglarized areas. Likewise, Verma and others (Verma, 2021) perform model training, validation and testing using the Random Forest and Gradient Boost Machine (GBM) ensemble approach with a hyperparameter optimizer using the “CSE-CIC-IDS2018-V2” dataset and demonstrating performance testing with attack categories such as infiltration, SQL Injection, etc. In (Aziz and Kumar, 2022) Aziz, Hussein and others detail a Machine Learning based soft computing regression analysis approach for analyzing crime data occurred in India. Different regression algorithms will be used, which are simple linear regression, multiple linear regression, decision tree regression, support vector regression, and random forest regression. Also, in (Muchin, 2021) is indicated that privacy and security of shared information in cognitive cities become critical issues that need to be addressed to ensure the proper deployment of cognitive cities and the fundamental rights of individuals. Dahlstedt and Foulquier (Dahlstedt and Foulquier, 2021) point out as a point of improvement the promotion of peer safety and the feeling of support among citizens, and as a specific approach, schools and municipalities are mentioned as key points where important citizen information can be imparted to reduce the crime rate. Likewise, in (Chaparro L., 2021) Chaparro and
others provide a general approach to security perception metrics, an innovative way to measure people’s security index, involving not only the number of publications in social networks but also the tone of these, under the premise that the polarity of the tone realistically expresses the fear of crime that the population could have or perceive. On the other hand, Al-Taleb and Saqib (Al-Taleb, 2022) indicates that the quality of life could be improved through continuous data analysis to improve services provided by governments and other organizations. Although the presence of many devices and the flow of data on networks could mean an increased likelihood of cyberattacks and intrusion detection. Monitoring this huge amount of data traffic can be handled by a Machine Learning algorithm that has enormous potential to support this task. Likewise, in (Cozzubo A. and J, 2021) Cozzubo and others indicate that the analysis focuses on crime victimization expressed in robberies or attempted robberies, for two main reasons. First, robbery is the most prevalent crime in the country. Almost 39% of the population suffered at least one robbery in the last thirty-six months before being surveyed.

3 MACHINE LEARNING

Technology that enables prediction from learning data, rather than using explicit programming; by using the algorithm to import training data, it is possible to generate more accurate models. An autonomous learning model is the information output that is produced when you train your data-driven algorithm. In addition, you have different forms of learning: supervised learning, unsupervised learning, reinforcement learning and deep learning respectively (IBM, 2021).

3.1 Components of Autonomous Learning

3.1.1 Dataset

It is defined as consolidated data of a similar genre, which is captured from different environments. Once the dataset is ready, we proceed to train, validate and test the machine learning model, it should be noted that the larger the dataset, the better the learning opportunities for the model and the greater the chances of achieving accuracy in the results (Daffodil, 2020). When building a dataset, it must have the following characteristics:

- **Volume:** Data scalability is important, as the larger the dataset the better it is for the machine learning model (Daffodil, 2020).

- **Variety:** The dataset may be in different forms, such as images or videos, the variety of which is important to ensure the accuracy of the results (Daffodil, 2020).

- **Speed:** It matters how fast the data accumulates in the dataset (Daffodil, 2020).

- **Value:** The dataset should have valuable and meaningful information (Daffodil, 2020).

- **Truthfulness:** Data accuracy is important to ensure accurate results (Daffodil, 2020).

3.1.2 Algorithm

It is defined as a mathematical or logical program that converts a set of data into a model, different types of algorithms can be chosen depending on the type of problem the model is trying to solve. Autonomous learning algorithms use computational models to “learn” information directly from the data without relying on a predetermined equation as a model (Daffodil, 2020). Some examples are as follows:

- **Regression Algorithm:** Estimates the presence of relationships between variables that are part of the object of study, this focuses on setting a variable as dependent and see their respective behavior with another set of independent variables (Grapheverywhere, 2021).

- **Naive Bayes Algorithm:** They are based on the famous Bayes Theorem, within the operation of the algorithm, classifications of each value are made as independent of another, this allows us to predict a class or category within a given set of characteristics through probabilistic models (Grapheverywhere, 2021).

- **Clustering Algorithm:** These allow us to establish categories within unlabeled data, i.e., data belonging to undefined groups can be sorted (Grapheverywhere, 2021).

3.1.3 Model

Computational representation of processes, a machine learning model recognizes patterns when trained on a data set using relevant algorithms, once a model is trained, it can be used to make predictions (Daffodil, 2020).

3.1.4 Feature Extraction

Feature extraction aims to reduce the number of variables in a new data set with features from existing ones (Daffodil, 2020).
3.1.5 Training

The process by which the model learns autonomously by detecting patterns and making decisions. There are different ways of doing this, including supervised learning, unsupervised learning, reinforcement learning, and deep learning (Daffodil, 2020).

3.2 Neural Network Based on Naive Bayes Algorithm

For the development of the training model, use has been made of the Naive Bayes algorithm, which has methods based on the application of Bayes’ Theorem with the “Naive” assumption of conditional independence between each pair of features given the value of the class variable. Bayes’ Theorem establishes the dependence between each pair of features given the class variable. With the “Naive” assumption of conditional independence, methods based on the application of Bayes’ Theorem have been made use of the Naive Bayes algorithm, which has been made of the Naive Bayes algorithm, which has been made of the Naive Bayes algorithm, which has

\[
P(y|x_1, \ldots, x_n) = \frac{P(y)P(x_1, \ldots, x_n|y)}{P(x_1, \ldots, x_n)}
\]

(1)

Using the naive conditional independence assumption that

\[
P(x_i|y_1, x_1, \ldots, x_n) = P(x_i|y)
\]

(2)

for all i, this relationship simplifies to

\[
P(y|x_1, \ldots, x_n) = P(y) \prod_{i=1}^{n} P(x_i|y)
\]

(3)

Given \(P(x_1, \ldots, x_n)\) which is constant given the input, we can use the following classification rule:

\[
P(y|x_1, \ldots, x_n) \propto P(y) \prod_{i=1}^{n} P(x_i|y)
\]

(4)

\[
\hat{y} = \text{argmax} P(y) \prod_{i=1}^{n} P(x_i|y)
\]

(5)

Naive Bayes models are a special class of machine learning classification algorithms that assume that predictor variables are independent of each other, i.e., that the presence of some feature within a dataset is unrelated to the presence of another feature. In addition, they provide a simple way to build models with optimal behavior, and they achieve this by providing a way to calculate the “posterior” probability of a certain event occurring, given some probabilities of “prior” events.

4 PROPOSED SOLUTION

4.1 Physical Architecture

The physical architecture of the solution has a component that starts when the client, administrator, or authority accesses either the application itself, on the part of the client and administrator, or the dashboard, on the part of the authority, after which the login will be validated. On the API side is where they will access the application or reporting itself. However, the load balancer is the one that will distribute the traffic, whether you want to access the application or the reports. From the dataset training model, a labeled dataset containing prerecorded classification codes is extracted from Amazon Redshift, which is reserved in an Amazon Simple Storage Service (Amazon S3) repository. The data is encrypted at rest with server-side encryption using an AWS Key Management Service (AWS KMS) key. This is known as server-side encryption with AWS KMS (SSE-KMS). The extract query uses the AWS KMS key to encrypt the data when it is stored in the S3 repository. Each time the required dataset is loaded into the S3 repository, a message is sent to an Amazon SQS queue. This generates a Lambda function. Amazon SQS is used to ensure resiliency. If the Lambda function fails, the message is automatically retried. In general, the message is either processed successfully or ends up in a queue of failed messages that are monitored. If the message is processed successfully, the Lambda function generates the necessary input parameters. It then initiates a Step Functions workflow execution for the training process. The training process involves orchestrating Amazon SageMaker processing jobs to prepare the data. Once the data is prepared, a hyperparameter optimization job invokes multiple training jobs. These

![Figure 1: Example of Naive Bayes model probabilities.](image1.png)

![Figure 2: Physical Architecture.](image2.png)
are run in parallel with different values of a range of hyperparameters. The model that performs best is chosen to proceed. Once the model is successfully trained, an EventBridge event is requested, which will be used to invoke the performance comparison process. The functionalities of the components used in the physical architecture will be explained next:

- **Redshift**: Database that will allow storing the values of the data set to be recorded, i.e. it would fulfill the role of a transactional database (AWS, 2022).
- **KMS**: It works for the encryption of the data to be passed to the next component, the S3 (AWS, 2022).
- **S3**: Stores the data required for training, so that Sagemaker can consume it at the time of the training process (AWS, 2022).
- **SQS QUEUE**: Messaging queue manager, which allows balancing the load and delivery of the required operations, in this case an event (message) is executed in order to launch the “start” of execution that would be the whole training process, it should be noted that a lambda is needed for the SQS to be executed (AWS, 2022).
- **Lambda**: Serverless execution environment in which code of each language can be executed, through this component communication with Sagemaker is performed (AWS, 2022).
- **Sagemaker**: ML training tool, a Step Function will be used to mash up the whole training process (AWS, 2022).
- **Training Step Function**: The cycle starts as follows: Create data set group, create data set, import data, train predictor, evaluating a predictor, host model and generate forecasts, consult forecast and finally, export forecast (AWS, 2022).
- **Model**: Result of the data training, which will be used to make the corresponding predictions (AWS, 2022).
- **Flutter App**: Application through which the client and administrator will access the system, this is developed in Flutter, as it will have a standard for both Android and IOS with a single code base (AWS, 2022).
- **Dashboard**: Iterative report developed for the authorities, which will be developed with the React framework for its development (AWS, 2022).
- **Cognito**: Enables you to incorporate registration, login and user access control into your web and mobile applications (AWS, 2022).
- **API Gateway**: Service for creating, publishing, maintaining, monitoring, and securing REST, HTTP, and WebSocket APIs at any scale (AWS, 2022).
- **Network Load Balancer**: Automatically distributes incoming traffic among multiple destinations, e.g. EC2 instances, containers and IP addresses in one or more availability zones (AWS, 2022).
- **Node JS**: Asynchronous event-driven JavaScript runtime environment, Node.js is designed to create scalable network applications (AWS, 2022).
- **Fargate**: Serverless computing engine that allows us to focus on building applications without having to manage the servers (AWS, 2022).
- **AWS Firewall Manager**: Security management service that enables centralized configuration and management of firewalls rules across and applications (AWS, 2022).

### 4.2 Logical Architecture

In the Motivation Layer we will describe who will be part of this project, directly and indirectly, such as the PO, developers, among others, and the roles they will play, in addition to the validations they must perform, as can be seen in Figure 3, it is an overview of the proposed technological solution. In addition, scopes, adjustments of objectives, compliances and a final validation by the user are established.

The Business Layer reflects the flow of the proposed solution, i.e., the different processes and functions it has, in addition, it details the step by step of each process assigned to its respective role (client, authority and administrator). As can be seen in Figure 4, this layer maps a more detailed view of the solution itself, since it shows the development of each process and the interaction of the processes with their respective role.
The Application Layer shows the necessary components for the solution software, which support the Business Layer with the services it offers. In summary, this layer shows the technological solution at a more technical level, since it touches technological components in charge of supporting the Business Layer.

Finally, the technology layer contains the services and components that will support the Application Layer, in short, this layer is similar to the physical architecture shown in the solution, in this layer the different components and services used in the presented solution are evidenced.

5 VALIDATION

The dataset obtained from the “Datacrime” platform was used for this research, in which the data was exposed from 2017 to 2022. Using the platform’s delimitation tools, the amount of 300 thousand to 100 thousand data was reduced, considering groupings and filters that represent the incidents that occurred within the district of Los Olivos, 70% of the final dataset was used for the training of the machine learning model proposed, 20% for experimentation with users, and the final 10% for prediction.

5.1 Validation with Users

In order to validate the technological solution, a questionnaire was used as a measurement instrument, considering the following variables: functionality, usability and level of satisfaction, and the following questions were asked: Which of the functionalities did you like the most, this question refers to the functionality of the solution, since the corresponding query is made about the key functions of the application; Would you recommend the application? this question refers to the usability of the solution, since the user explains his experience with the application; finally, Do you think this application helps to prevent and deter possible incidents that occur in Los Olivos? this question refers to the level of satisfaction, since it shows the acceptance of the application. Taking into account that the population of Los Olivos is approximately 380 thousand inhabitants, it is taken into account that 250 thousand inhabitants are within our target audience, people between 15 and 55 years old with knowledge of technology, once the size of the population is defined, a 99% confidence level is taken with a 12.5% margin of error, in order to obtain the final size of the sample, which in this case is approximately 108 people.

After completing the questionnaire of validation, 58% of users accepted both functionalities (Community and Report Incidents), being both favorites. Regarding usability and satisfaction level, 99% of users expressed their satisfaction with the application and 93.5% of users thought that the technological solution will help deter and prevent criminal incidents in Los Olivos. Among the recommendations, users indicated that alert notifications should be added and that an emergency button should be implemented to allow direct communication with police authorities.
5.2 Algorithm Validation

To validate the Bayesian algorithm, a comparison was made with different algorithms, these are: Classification Forest Algorithm, Catboost Classifier and KNN, using the confusion matrix in SageMaker which gives us the percentages of each category that has the dataset, this matrix works with numerical values looking for the “TruePositive (TP)”, “FalseNegative (FN)”, “TrueNegative (TN)” and “FalsePositive (FP)”, these values are shown as percentages (Terence, 2020). For the present project, priority is given to the “Accuracy” value of the algorithms and the distribution by category, respectively.

The following formulas will be taken into account:

- **Accuracy**: Accuracy is the same as the correct proportion of models that are correctly classified (Terence, 2020).

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]  

(6)

- **Precision**: Known as the predictive value which shows the proportions of relevant instances among the retrieved instances (Terence, 2020).

\[
\text{Precision} = \frac{TP}{TP + FP}
\]  

(7)

- **Recall**: Are the total number of relevant instances actually recovered (Terence, 2020).

\[
\text{Recall} = \frac{TP}{TP + FN}
\]  

(8)

- **F1-Score**: It is the measure of the accuracy of a test; it is the harmonic mean of precision and recall (Terence, 2020).

\[
F1\text{-Score} = \frac{2TP}{2TP + FP + FN}
\]  

(9)

A comparison was made, with the confusion matrix, of the Naïve Bayes, Classification Forest, Catboost Classifier and KNN algorithms respectively, with a dataset of 10,000 data, from this analysis it was obtained that the Naïve Bayes algorithm has the best variable distribution per category. Therefore, this algorithm was chosen because it will provide us with a more accurate percentage by category in order to evaluate different areas of Los Olivos with small ranges delimited by the location of the users and thus have more realistic values according to the reports and incidents that occur in these places. Although it is true that the Classification Forest algorithm presents a distribution similar to that of Naïve Bayes with a similar value in the “Accuracy”, the Naïve Bayes algorithm is chosen because of the speed of prediction of the model.

6 CONCLUSIONS

The objective of this project was to develop a technological solution for citizen security and crime prevention based on machine learning in the district of Los Olivos, which allows sending an alert signal in real time to users in the district, notifying them if the area where they are located is unsafe. In addition, a probability about the insecurity of each area can be evidenced, so that the user can be aware of the exact information. This objective could be achieved through the development of the technological solution presented in section 4. To demonstrate the results of the project, a test was carried out on the basis of the categories handled in the technological solution. To this end, the dataset was fed with data from the robbery category, and then the training of the model was updated to obtain greater visibility in this category per zone, demonstrating the optimal functioning of the technological solution presented. A sample of 108 users was used to test the proposed technological solution. A questionnaire was prepared to evaluate the perception of the users, 93.5% of whom indicated that the proposed technological solution helps prevent criminal incidents occurring in Los Olivos. The technology used in this project can be applied to different problems, for example, it is proposed as a continuation of the project to apply the same technology and structure to monitor traffic accidents by zones, that is, users will create precedents by zones where different traffic accidents occur, and thus, the probability in those zones can be reflected.

ACKNOWLEDGMENTS

We would like to express our gratitude to the Universidad Peruana de Ciencias Aplicadas (UPC) for providing us with the necessary resources and quality for our higher academic education. In addition, we are especially grateful to our professors Álvaro Chavarri and Juan-Pablo Mansilla for their constant support and dedication throughout this process; their experiences and knowledge were a key factor in the successful completion of our research project.

REFERENCES


