
Compilation of Distributed Programs to Services Using Multiple
Programming Languages

Thomas M. Prinz a

Course Evaluation Service, Friedrich Schiller University Jena, Jena, Germany

Keywords: Service, Compiler, Distributed Programming, Programming Language, Engineering.

Abstract: Service-orientation recommends dividing software into separate independent services, with each service being
implemented in the programming language that best fits into the service’s problem space. However, data must
be shared between the distributed services, so common data models and interfaces must be defined in each
programming language used. This leads to a higher development effort and dependencies, while neglecting
the benefits. This paper explains a new idea that arranges a distributed program as if it is a single one, even
though it consists of different parts using possibly different programming languages. For this purpose, the
idea of meta network programming languages is introduced. They are based on network machines and hide
the complexity arising during development of distributed software. A compiler translates and distributes these
programs by splitting them into several parts. As a result, this should reduce the overhead of developing
distributed general purpose software. The intention of this position paper is to give new ideas to implement
distributed programs in the future. An implementation of the idea does not exist yet.

1 INTRODUCTION

The development and implementation of software
is a complex process. To deal with this complex-
ity, researchers and practitioners have defined dif-
ferent strategies. One strategy is to divide the soft-
ware into different modules, whereby each module
can be developed separately from the others. To
reduce functional implementation effort, each mod-
ule should be implemented in the programming lan-
guage and tool stack that best fits its problem space.
Emerging technologies like service-oriented architec-
tures (SOA) make this possible. If services are very
closed (atomic) in their functionality, they are called
microservices. A microservice communicates over a
network, is deployed independently from other ser-
vices, and uses the programming language and tool
stack that best fits its needs (Newman, 2015). For ex-
ample, if someone needs to develop a software, which
deals with objects, but also with machine learning,
parts can be implemented in Java, a typical object-
oriented language, and in Python, known for its data
science packages.

When software is divided into different subsys-
tems, the subsystems must communicate with each

a https://orcid.org/0000-0001-9602-3482

other to achieve the overall goal of the software.
Therefore, they need communication interfaces. In
software development with one programming lan-
guage, these interfaces are realized with function
(method) declarations. When using multiple pro-
gramming languages, however, not all functions are
located in the same execution environment; they
could be anywhere in the network or on the machine
and are called via network or other approaches.

The big difference between calls within a pro-
gramming language or outside via services is mainly
in their support (De Paoli, 2018). In monolingual
programming, most of the program code is known at
compile time, so most of the code is known during
development; integrated development environments
(IDEs) can use these information and, therefore, can
fully support the development. Modern IDEs iden-
tify, among other things, calls to undefined methods,
access violations, and incorrectly placed method pa-
rameters. In those cases, the IDE provides immediate
feedback during coding and, usually, some error han-
dling. Furthermore, since the software is developed
in a single language, compilers can translate it into
(virtual) machine code and — in most cases and by
defining the execution environment — they are imme-
diately executable. On the contrary, in the context of
service-based and distributed software architectures,

Prinz, T.
Compilation of Distributed Programs to Services Using Multiple Programming Languages.
DOI: 10.5220/0012151500003584
In Proceedings of the 19th International Conference on Web Information Systems and Technologies (WEBIST 2023), pages 191-198
ISBN: 978-989-758-672-9; ISSN: 2184-3252
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

191

Developers

Services

Configurations

Compilers/

Deployment

Network of

(virtual) machines

Developers

Services

(Network program)

(Network)

Compiler

Network of

(virtual) machines

(Network)

Machine

Current approach New approach

Figure 1: The current approach to develop distributed and service-oriented software (left) and our new approach (right).

such IDE support is weak. The reason is that the IDE
only knows one service and not the overall software
architecture. Developers need to control each service
and verify that they meet predefined specifications.
Without this quality check, services will not be called
properly — even if they are implemented correctly.

Besides the described disadvantages in IDE sup-
port, the current practice has further disadvantages
resulting in a high development effort. The shared
data models between services must be implemented
in all programming languages used, which leads to
a high and unnecessary programming overhead. In
addition, objects shared between services need serial-
izers and deserializers and Application Programming
Interfaces (APIs) must be implemented for services
as well as for calls to them. (Apel et al., 2019) have
shown in a real project that the ratio of implementa-
tion overhead is sometimes less than or equal to 1 : 3
between functional and additional code, i. e., for 100
lines of functional code 300 lines of organizational
code are required. In general, the current approach
leads to a high workload during programming, devel-
opment, specification, and maintenance and, there-
fore, to high costs and time expenditure. Especially,
for small development teams, these cost and time fac-
tors become crucial.

Figure 1 (left) visualizes the current approach of
distributed software development. Developers define,
implement, and deploy services separately, which
eventually run on different virtual machines and re-
alize the software.

Figure 1 (right) illustrates our new idea using
a compiler for distributed and service-oriented soft-
ware. At first, we reduce common properties of dis-
tributed, multiprocessor, and service-oriented systems
to a single, abstract base which we call a network ma-
chine. A network machine hides the complexity of the
network of (virtual) machines to simplify imagination
of the execution environment during development. In

addition, it organizes sharing of data, message ex-
change, and calls of distributed functionality (e. g.,
service calls). Thus, developers can imagine, their
program runs on a single machine, where researchers
claim that it is easier to think about and improves
code quality (Kozlovics, 2019). In ease, network ma-
chines describe runtime environments. These envi-
ronments execute so-called network programs. Net-
work programs describe the combination of all dis-
tributed parts of a distributed software but hiding its
complexity by ordinary method and function calls.
The advantage of a network program is the ability to
implement different functions of the software in dif-
ferent programming languages. It is the task of a net-
work compiler to split the program into separate mod-
ules and translate each module into a different lan-
guage with its own (shared) execution environment.

Advantages of our idea would be that IDEs
can support developers across service and language
boundaries and, when good algorithms are found to
split programs automatically in such a way that it
has the best performance neglecting communication
overhead, the overall program performance can be
improved. Furthermore, programming, development,
and specification would become easier and faster as
with conventional approaches, and, by the way, de-
velopment becomes also easier when using different
programming languages in a non-distributed context.
This paper introduces the idea and basic concepts
while there is no concrete implementation yet.

This paper is structured as follows: Section 2 con-
siders related work in distributed systems and their
implementation. Section 3 starts to generalize the
approach and defines network machines running net-
work programs defined in Section 4. Subsequently,
Section 5 describes a compiler architecture for net-
work programs. Section 6 concludes and briefly dis-
cusses the idea.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

192

2 RELATED WORK

The idea of implementing software in a unified lan-
guage is not new and came up early in research
and industry. For this reason, many approaches for
languages for data models and functionality have
evolved in the past. For example, the Unified Mod-
eling Language (UML) (Object Management Group,
2017b) is such a unified language, in which the soft-
ware development community and industry use vari-
ous diagrams that are widely used as modeling lan-
guage standard (Oquendo et al., 2016) (especially,
class, use case, and sequence diagrams (Dobing and
Parsons, 2006)). The Action Language for Foun-
dational UML (Alf) (Object Management Group,
2017a) and the Semantics of a Foundational Subset
for Executable UML Models (fUML) (Object Man-
agement Group, 2018) are standards for describing
complete systems in UML down to the behavior of
individual functions, but their application is not triv-
ial and requires scientific knowledge (Ciccozzi et al.,
2019). In contrary, our idea would be similar to usual
software development and should be easier to learn.

Interoperability of different systems, program-
ming languages, and platforms is the goal of the Com-
mon Object Request Broker Architecture (CORBA)
(Object Management Group, 2021). CORBA fol-
lows a strong object-oriented approach and consid-
ers each functionality to be bounded in (remote) ob-
jects as methods. Developers describe the signature
of such methods in an Interface Definition Language
(IDL), compile them into programming language spe-
cific interface stubs, and add their functionality. An
Object Request Broker (ORB) handles requests to the
methods and delegate them to specific implementa-
tions regardless where they are and how they are im-
plemented. Although CORBA has similarities with
our approach, it also differs. CORBA focuses on
interacting objects; our approach, however, handles
objects just as complex data structures and provide
functions/methods as (micro)services. Furthermore,
CORBA defines function signatures separately in the
IDL, compiles them into stubs, and force to imple-
ment them subsequently; however, our approach al-
lows to integrate both the implementation and the
“cross-language” signature. Finally and importantly,
CORBA is expensive for companies as ORBs are
complex and, therefore, usually are licensed from
commercial vendors; our approach, however, should
result in a less complex environment and, therefore,
should be more attractive for small companies.

Alternative approaches try to minimize the effort
between design and implementation. For example,
Swagger (Swagger, 2023a) allows the specification

of REST APIs in an OpenAPI specification (Swag-
ger, 2023b) and the generation of client and server
code skeletons. JHipster (Raible, 2018) generates
complete applications within a predefined technol-
ogy stack. Both Swagger and JHipster are limited
by ignoring the system behavior. The framework
Flutter (Google, 2023) describes applications in Dart
and compiles them into native cross-platform applica-
tions, but does not translate parts of the program into
individual target machines and languages. Some web
template and behavioral languages, e. g., pug (pug,
2023), Haml (Catlin, 2023), and GWT (Tacy et al.,
2013), allow software descriptions and compile them
into web applications. They are powerful but limited
to web applications, JavaScript, and Java.

Although limited to C++, C, and Fortran,
OpenMP (OpenMP Architecture Review Board,
2018) has similarities to our ideas and has become
a standard for programming shared memory systems
in High Performance Computing (HPC). Rather than
focusing on multiprocessors on the same machine as
OpenCL (Khronos OpenCL Working Group, 2023),
it enables high-level parallel programming and porta-
bility (Yu et al., 2020) over a network. Programs are
translated into heterogeneous multiprocessor systems,
but this complexity is hidden from the programmer.
After compilation, the OpenMP environment auto-
matically moves different machine code to the proces-
sors and handles data exchange between them. Our
idea is similar by hiding details about the infrastruc-
ture. However, our focus is not on HPC, but on pro-
gramming for general purpose.

The game development engine Unity (Unity Tech-
nologies, 2023) follows a similar idea like ours. It al-
lows to describe games in a subset of C# running on
Mono (Mono Project, 2023), an open-source .NET
framework. Mono is based on the Common Lan-
guage Infrastructure (CLI) standard (Ecma Interna-
tional, 2012), which allows programs to run on dif-
ferent operating systems. The use of C# as a de-facto
meta programming language follows our idea to de-
fine data models and services independently of pro-
gramming languages. However, instead of translat-
ing the models and services into a single language
and runtime environment, our approach is to dis-
tribute them across different languages and environ-
ments. Another example in game development is
the GameEngine of (Apel, 2018) for the definition
of massively multiplayer online games (MMOG). The
novelty of his approach was the automatic generation
of code for communication, controllers, etc. as well as
their compilation at runtime. This made games leaner
in terms of shortened implementation times and lines
of code. However, its focus on MMOGs makes it dif-

Compilation of Distributed Programs to Services Using Multiple Programming Languages

193

ficult for use in general development.
Instead of simplifying the development of soft-

ware with a specific execution environment as intro-
duced in the previous examples, the web computer
hides the complexity during the development and ex-
ecution with an own operating system (Kozlovics,
2019). It addresses similar problems in software de-
velopment as we do, focusing on the assumption that
the software should be implemented for a single com-
puter, a single user, and as single executed program.
Its main approach is to hide all network and mem-
ory sharing specific issues from the developer by dis-
tributing memory changes across all physical devices
and automatically creating network communications.
The approach seems promising, but it is still unclear
how web computer applications are developed and
compiled. It is also limited to web applications.

There are only a few papers that try to compile
complete service systems, examples are Singer et al.
(Singer, 2016; Geisriegler et al., 2017) and Prinz et
al. (Prinz et al., 2014; Prinz et al., 2015). However,
both research groups have a background in business
process management and focus on business processes.
However, current process modeling languages are not
able to describe the full functionality of general pur-
pose software.

3 NETWORK MACHINES

Business processes, HPC, distributed, and service-
oriented software have their differences in imple-
mentation and execution. However, they also have
strong similarities: They are implemented to run on
a network of possibly different (virtual) machines,
which may have their own supported programming
languages and tool stacks. From an abstract perspec-
tive, in multiprocessor systems such as those used
in HPC, each multiprocessor can perform a different
function that can be executed on one machine with a
different instruction set than on the other machines. In
SOA, services are the interfaces of functions, where
the service could be implemented in different pro-
gramming languages, run on different machines, and
have its own or a shared and distributed memory. Be-
cause of the strong similarities between them, our idea
is to combine them into a common ground of dis-
tributed software that we call a network machine.

A network machine is a lightweight runtime en-
vironment for distributed software. From the devel-
oper’s point of view, a network machine executes a
network program that is defined in detail in the next
section. The final compiled files of a network pro-
gram are containers, which contain various services,

Network Machine

Container Container ContainerContainer

Loc. Mem.

VM

Network

Loc. Mem.

Computer
Instruction

Set 2

Loc. Mem.

VM

Service 4Service 3Service 2Service 1

VM

Java

JVM
R

Interpreter

R

CPython

python

Loc. Mem.

Machine

C

Address register
Service 1: 192.1.2.3/service1

Service 2: 128.3.42.12/service2

...

Service 1

Persistence

Interface

Container

Loader

Common

Interface

Common

Interface

Common

Interface

Common

Interface

Common

Interface

Figure 2: A network machine with containers that define
services, (virtual) machines (devices), used programming
languages, and execution environments with local and dis-
tributed memories. In addition, the network machine pro-
vides a container loader, a persistence interface, a common
interface for services, and an address register where it stores
the network addresses of the services.

but all services within a container are compiled from
the same programming language, e. g., there could be
containers for Java, R, C, and Python services. Basi-
cally, one technology that can be used and imagined
for containers is Docker (Docker Inc., 2023) and Ku-
bernetes (Burns et al., 2019). The network machine
loads these containers and makes them available. At
this moment, the software is running and accessible.
Since the network machine knows all services, if one
service calls another, the machine can redirect the call
to the right service. Figure 2 illustrates the conceptual
idea of network machines.

From a technical point of view, a network machine
hides the complexity of a set of different, possibly vir-
tual, computing machines (devices) connected to each
other over a network (as shown in Figure 2). The net-
work serves as bus for the exchange of data and mes-
sages between the devices. Each device hosts a con-
tainer and, therefore, provides all the container’s ser-
vices. Since the network machine knows the network,
it can assign specific addresses to each service (like
memory addresses on normal machines) and store
them in an address register. All services can be ac-
cessed via a common interface, which processes data
input and output. This is comparable to the handling
of functions in machine languages: The common in-
terface deserializes each input parameter and puts the
result into the service context so that the service can
access it. Then the interface calls the service func-
tionality. The results of the service call are serialized
by the interface and sent back to the caller.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

194

The service functionality is executed in a sepa-
rate (possibly virtual) environment. These are ac-
tual runtime environments for the programming lan-
guages used in the services, e. g., Java Virtual Ma-
chines (JVM) (Lindholm et al., 2014) or Python and
R runtime environments. Since a network machine
is also a runtime environment, behind a service can
again be an own network machine. In addition, each
service has its own local memory and shares data only
via the interfaces. Global data should be used with
caution, as with any distributed software. Network
machines provide global data via a persistence inter-
face for all data structures defined in the network pro-
gram and shared by the services. This persistence in-
terface allows easy and continuous storage of data,
its access, modification, and deletion. Since services
could run in parallel when asynchronous service calls
are used, this interface solves the race condition be-
tween parallel accesses, e. g., by locking mechanisms.

4 NETWORK PROGRAMS

Programming distributed software is a challenge be-
cause the developer cannot simply call another func-
tion in a distributed part of the program, but must call
an external service using the right parameters, for-
mat, etc. It is helpful during development to imag-
ine that all functions of a program are located in the
same environment, regardless of where they are ac-
tually located (Kozlovics, 2019). The idea of net-
work programs creates this situation. Network pro-
grams are executed on the previously defined network
machines and are written in a so-called network pro-
gramming language that mainly defines data models
and the software structure as services. The advan-
tages of such network programs are: (1) they define
the interfaces of all services, (2) service calls are more
similar to function/method calls, and (3) they describe
shared data models only once.

Figure 3 shows an example of a small network
program. It is written in a Java-like language only
as an example. At the beginning, the program de-
fines the data model (class) Pair with two fields
a and b and a constructor. It also defines a class
Computation, which contains two methods. The
method handlePairs is written in Java and transfers
a nested integer array of pairs into a list of objects of
type Pair. At the end, the method returns the sum of
the list of pairs by calling the computeSums method,
which is written in R. The method computeSums re-
quires an array (or list) of pairs defined by the class
Pair. It then calculates the sum of the two fields a
and b of each Pair object and returns it as an array.

1 class Pair {

2 public int a, b;

3 Pair(int a, int b) {

4 this.a = a; this.b = b;

5 }

6 }

1 class Computation {

2 @Java

3 public int[] handlePairs(int[][] pairs) {

4 Pair[] pairList = new Pair[pairs.length];

5 for (int i = 0; i < pairs.length; i++) {

6 int a = pairs[i][0], b = pairs[i][1];

7 pairList[i] = new Pair(a, b);

8 }

9 return this.computeSums(pairList);

10 }

11 @R

12 public int[] computeSums(Pair[] pairs) {

13 sapply(pairs , function(pair) {

14 pair$a + pair$b

15 })

16 }

17 }

Figure 3: An example of a network program.

The implementation of the program with the cur-
rent state-of-the-art is not a challenge but time con-
suming. First the data structure Pair must be im-
plemented in Java and in R. Then, the Java part of
the program must be implemented and made avail-
able as a service, e. g., with REST. In addition, de-
velopers must implement the R part of the program
and also make it available as a service. Since data
is transferred, a protocol must be defined or an exist-
ing one like JSON (Ecma International, 2017) must
be used for the exchange. Furthermore, the data must
be mapped to the correct parameters.

The implementation overhead can cause develop-
ers to implement the program/software in a single
language instead of multiple ones. However, some
problems can be solved, computed, and implemented
much more efficient in other programming languages.
This advantage is then missing and, therefore, leads to
increasing implementation costs (Apel et al., 2019).
Network programs should improve this situation since
developers avoid the previous described steps.

5 COMPILER ARCHITECTURE
FOR NETWORK PROGRAMS

Network programs are transferred to a runnable soft-
ware with the help of a compiler. Basically, the archi-
tecture of such a compiler can follow a similar struc-
ture as classical compilers (e. g., (Cooper and Torc-

Compilation of Distributed Programs to Services Using Multiple Programming Languages

195

Code Service Call

Extender

Target 1

Code Generator

Target n

Code Generator

...

Target 1

Exec. Environment

Generator

Target n

Compiler

Target 1

Compiler

Target n

Exec. Environment

Generator

Code Splitting
Docu.

Generator

Target 1

Files

Target n

Files

Target 1

Environment files

Target n

Environment files

Scanner

Parser

Optimizations

Semantic Analyzer

Transformer

Source Code

Documentation

files

Target 1

Optimizer

Target n

Optimizer

Target 1

Container

Target n

Container

F
ro

n
t

en
d

S
p
li

tt
in

g

Back end

Figure 4: The compiler architecture for network programs.

zon, 2011)). It consists of a front end, which pro-
cesses the source program (the input) and translates
it into an internal intermediate representation (IR),
and a back end that translates it into the output lan-
guage. Although so-called cross compilers are capa-
ble of generating code for different output languages,
they produce code for the entire program in one lan-
guage. Our idea of a compiler architecture overcomes
this limitation and allows to split the source program
into parts and compile each part into a different pro-
gramming language. Furthermore, it generates addi-
tional code that allows the parts to communicate with
each other (i. e., method/function calls). The splitting
itself is part of the optimizations of the compiler.

Figure 4 shows the phases of the compiler archi-
tecture we propose for network programs. The front
end of the compiler has the same structure as in the
classical compiler architecture. First, the scanner pro-
duces a stream of tokens from the source program,
which is used in the parser to check the grammar
of the programs and build the Abstract Syntax Tree
(AST). The semantic analyzer executes various algo-
rithms to find errors in the program as early as pos-
sible, e. g., (static) type violations, access violations,
undefined variables, and so on. The compiler trans-
lates the confirmed AST into a an internal represen-
tation — the IR — in the transformer to make some

optimizations easier to apply to it. All optimizations
are independent with respect to the target code(s).

At this point, it is important to mention that the
front end should mainly process those parts of a net-
work program that are written in a network program-
ming language. Code which is already written in
the target languages is not checked in the front end.
For them, it uses the language-specific compilers and
provides the whole context (e. g., data models and
method schemes with arguments) in the back end.

After the front end, the compiler architecture has a
splitting section, comparable to an optimization. The
compiler tries to split the IR into a distributed IR,
where each distributed part of the IR can be translated
into a different target language and machine. The
compiler takes the code that is already available in all
target languages and adds translations of data models
to them if necessary. For example, the network pro-
gram in Figure 3 abstractly describes the class Pair.
Since this class is needed in the Java and R sections
of the program, this class should be available in both
Java and R. For this reason, the compiler translates
the abstract definitions of the classes into program-
ming language specific definitions in both languages.

Since splitting the code into different parts leads
to a more complex software architecture, the result-
ing architecture should be well documented. The
compiler should provide a Documentation Generator
phase, which generates both an architectural descrip-
tion and information about defined data models, e. g.,
in the form of class diagrams.

After code splitting and assignment of target pro-
gramming languages, the compiler extends the differ-
ent parts with additional code in the IR. The Code
Service Call Extender wraps each part with a service.
In other words, they can be called by other program
parts with the common interface explained for the net-
work machines. Therefore, the extender also has to
add code for serialization and deserialization of data.
For example, most modern programming languages
have libraries allowing to define RESTful service in-
terfaces (Fielding and Taylor, 2002) and to import and
export complex data models as JSON (Ecma Interna-
tional, 2017) or CSV (Shafranovich, 2005). These
implementations can be used.

Following the code extender compiler phase, the
back end translates the program parts step by step in
the target programming language. Since this transla-
tion is language dependent, the compiler can perform
some optimizations in additional Optimizer phases.
For the optimized partial code, a language depen-
dent Code Generator produces high-level code in the
target programming language. Compiling the partial
program itself is outside the compiler’s scope — for

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

196

most programming languages there are compilers that
generate executable files.

Many modern programming languages, such as
Java, R, Python, and JavaScript, require special en-
vironments to be executable. Fortunately, there are
tools to create such environments (e. g., (Docker Inc.,
2023) and (Burns et al., 2019)). One goal of the com-
piler is to generate containers for each partial pro-
gram describing their execution environments and the
services. This is done in the Execution Environment
Generator and bundled in containers. As a result, the
compiler generates a complete distributable and exe-
cutable network program.

6 CONCLUSION / DISCUSSION

This paper presented a new idea for developing dis-
tributed programs. An implementation would allow
to arrange each distributed program as if it is an undis-
tributed one, although it consists of different parts,
no matter which programming language they use. A
compiler distributes the program by splitting it into
several parts in different programming languages. To
achieve this, the program must be defined in a so-
called network programming language. A network
program defines data models and services, where the
service functionality is described in an individually
available programming language chosen by the de-
veloper. That language that best solves the function-
ality can be used. The overall concept is based on
principles of network machines, which generalize ar-
chitectures of distributed and multiprocessor systems
and are a runtime environment for network programs.
In this paper only the idea of network programs and
a conceptual compiler architecture are described. It
shall give a new view on developing distributed sys-
tems and state-of-the-art approaches. Therefore, an
implementation does not exist yet.

Of course, the proposed approach does not have
only advantages. If development teams do not imple-
ment services separately, the resulting services (and
their interfaces) might be less reusable and more cou-
pled. This problem depends more on architecture and
design decisions than on implementation decisions,
which are the focus of our approach. Furthermore,
our approach leads to new middleware (the network
machine) that must be installed and maintained by en-
terprises, although the goal is to keep this to a mini-
mum. Finally, some developers specialize in a small
number of programming languages. For this reason,
such developers might have problems writing, read-
ing, and understanding network programs.

The implementation effort of our approach de-

pends on the number and types of programming lan-
guages initially supported. The network program-
ming language itself should be less complex, as
should its compiler. One difficulty will be recognizing
calls to distributed functions in the target program-
ming languages. The use of a (language-dependent)
library could be a solution for a first prototype. The
network machine should be the most complex part, as
it provides several runtime components. A first pro-
totype should reuse an existing technology stack to
keep the implementation simple and feasible. How-
ever, compared to other approaches, such as CORBA,
the implementation effort and the hurdle to use our
approach should be lower.

Future work includes the definition of a first gram-
mar of a network programming language, which al-
lows to include existing languages in the description
of functionality. The next step defines a parser of this
language and the phase of code extensions for service
calls in the compiler. Fortunately, the back end of the
compiler is lightweight, since it can reuse all existing
compilers for the programming languages used in the
program. All this future work contains challenges, but
could be feasible in a few years.

REFERENCES

Apel, S. (2018). Reducing Development Overheads with
a Generic and Model-Centric Architecture for On-
line Games. In IEEE International Conference on
Software Architecture, ICSA 2018, Seattle, WA, USA,
April 30 - May 4, 2018, pages 21–28. IEEE Computer
Society.

Apel, S., Hertrampf, F., and Späthe, S. (2019). Towards
a Metrics-Based Software Quality Rating for a Mi-
croservice Architecture - Case Study for a Measure-
ment and Processing Infrastructure. In Lüke, K., Eich-
ler, G., Erfurth, C., and Fahrnberger, G., editors, Inno-
vations for Community Services - 19th International
Conference, I4CS 2019, Wolfsburg, Germany, June
24-26, 2019, Proceedings, volume 1041 of Communi-
cations in Computer and Information Science, pages
205–220. Springer.

Burns, B., Beda, J., and Hightower, K. (2019). Kubernetes:
Up and Running — Dive into the Future of Infrastruc-
ture. O’Reilly, California, USA, 2 edition.

Catlin, H. (2023). Haml. http://haml.info/. Last visit in
September 2023.

Ciccozzi, F., Malavolta, I., and Selic, B. (2019). Execution
of UML models: a systematic review of research and
practice. Software & Systems Modeling, 18(3):2313–
2360.

Cooper, K. D. and Torczon, L. (2011). Engineering a Com-
piler. Morgan Kaufmann, USA, 2nd edition.

De Paoli, F. (2018). Challanges in services research: A
software architecture perspective. In Lazovik, A. and

Compilation of Distributed Programs to Services Using Multiple Programming Languages

197

Schulte, S., editors, Advances in Service-Oriented and
Cloud Computing, pages 219–227, Cham. Springer
International Publishing.

Dobing, B. and Parsons, J. (2006). How UML is used. Com-
munications of the ACM, 49(5):109–113.

Docker Inc. (2023). Empowering App Development for De-
velopers — Docker. https://www.docker.com/. Last
visit in September 2023.

Ecma International (2012). Standard ECMA-335: Common
Language Infrastructure (CLI) — 6th edition (June
2012). http://www.ecma-international.org/publica
tions/files/ECMA-ST/ECMA-335.pdf.

Ecma International (2017). Standard ECMA-404: The
JSON Data Interchange Syntax — 2nd edition (De-
cember 2017). http://www.ecma-international.org/p
ublications/files/ECMA-ST/ECMA-404.pdf.

Fielding, R. T. and Taylor, R. N. (2002). Principled design
of the modern Web architecture. ACM Trans. Internet
Techn., 2(2):115–150.

Geisriegler, M., Kolodiy, M., Stani, S., and Singer, R.
(2017). Actor based business process modeling and
execution: A reference implementation based on on-
tology models and microservices. In 43rd Euromicro
Conference on Software Engineering and Advanced
Applications, SEAA 2017, Vienna, Austria, August 30
- Sept. 1, 2017, pages 359–362. IEEE Computer Soci-
ety.

Google (2023). Flutter - Beautiful native apps in record
time. https://flutter.dev/. Last visit in September 2023.

Khronos OpenCL Working Group (2023). The OpenCLTM

Specification. https://registry.khronos.org/OpenCL/
specs/3.0-unified/html/OpenCL\ API.html.

Kozlovics, S. (2019). The web computer and its operat-
ing system: A new approach for creating web applica-
tions. In Bozzon, A., Mayo, F. J. D., and Filipe, J., edi-
tors, Proceedings of the 15th International Conference
on Web Information Systems and Technologies, WE-
BIST 2019, Vienna, Austria, September 18-20, 2019,
pages 46–57. ScitePress.

Lindholm, T., Yellin, F., Bracha, G., and Buckley, A.
(2014). The Java Virtual Machine Specification, Java
SE 8 Edition. Addison-Wesley Professional, Califor-
nia, USA, 8 edition.

Mono Project (2023). Mono — Cross platform, open source
.NET framework. https://www.mono-project.com/.
Last visit in September 2023.

Newman, S. (2015). Building Microservices: Designing
Fine-Grained Systems. O’Reilly, California, USA, 1
edition.

Object Management Group (2017a). Action Lan-
guage for Foundational UML (Alf). Concrete Syn-
tax for a UML Action Language, Version 1.1.
https://www.omg.org/spec/ALF/1.1.

Object Management Group (2017b). OMG Uni-
fied Modeling Language — version 2.5.1.
https://www.omg.org/spec/UML/2.5.1.

Object Management Group (2018). Semantics of a Founda-
tional Subset for Executable UML Models (fUML),
Version 1.4. https://www.omg.org/spec/ALF/1.1.

Object Management Group (2021). Common Object Re-
quest Broker Architecture Specification, Version 3.4.
https://www.omg.org/spec/CORBA/3.4.

OpenMP Architecture Review Board (2018).
OpenMP Application Programming Interface
— version 5.0. https://www.openmp.org/wp-
content/uploads/OpenMP-API-Specification-5.0.pdf.

Oquendo, F., Leite, J., and Batista, T. (2016). Execut-
ing Software Architecture Descriptions with SysADL.
In Tekinerdogan, B., Zdun, U., and Babar, A., ed-
itors, Software Architecture, pages 129–137, Cham.
Springer International Publishing.

Prinz, T. M., Heinze, T. S., Amme, W., Kretzschmar, J., and
Beckstein, C. (2015). Towards a Compiler for Busi-
ness Processes - A Research Agenda. In de Barros,
M. and Rückemann, C.-P., editors, SERVICE COM-
PUTATION 2015: The Seventh International Confer-
ences on Advanced Service Computing, Nice, France,
March 22–27, 2015. Proceedings, pages 49–54.

Prinz, T. M., Spieß, N., and Amme, W. (2014). A first
step towards a compiler for business processes. In
Cohen, A., editor, Compiler Construction - 23rd In-
ternational Conference, CC 2014, Held as Part of the
European Joint Conferences on Theory and Practice
of Software, ETAPS 2014, Grenoble, France, April 5-
13, 2014. Proceedings, volume 8409 of Lecture Notes
in Computer Science, pages 238–243. Springer.

pug (2023). Getting Started - Pug. https://pugjs.org/. Last
visit in September 2023.

Raible, M. (2018). The JHipster mini-book. C4Media,
USA, 5.0.1 edition.

Shafranovich, Y. (2005). RFC 4180: Common Format
and MIME Type for Comma-Separated Values (CSV)
Files. https://datatracker.ietf.org/doc/html/rfc4180.

Singer, R. (2016). Business process modeling and execu-
tion - A compiler for distributed microservices. CoRR,
abs/1601.05976.

Swagger (2023a). The Best APIs are Built with Swagger
Tools. https://www.swagger.io/. Last visit in Septem-
ber 2023.

Swagger (2023b). OpenAPI Specification. https://swagger.
io/specification/. Last visit in September 2023.

Tacy, A., Hanson, R., Essington, J., and Tokke, A. (2013).
GWT in Action. Manning Publications Co., Green-
wich, CT, USA, 2nd edition.

Unity Technologies (2023). Unity — Game Engine.
https://unity.com/. Last visit in September 2023.

Yu, C., Royuela, S., and Quiñones, E. (2020). OpenMP
to CUDA graphs: a compiler-based transformation to
enhance the programmability of NVIDIA devices. In
Stuijk, S. and Corporaal, H., editors, SCOPES ’20:
23rd International Workshop on Software and Com-
pilers for Embedded Systems, St. Goar, Germany, May
25-26, 2020, pages 42–47. ACM.

WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies

198

