
∆ SFL: (Decoupled Server Federated Learning) to Utilize DLG Attacks
in Federated Learning by Decoupling the Server

Sudipta Paul a and Vicenç Torra b

Department of Computing Science, Umeå University, Sweden

Keywords: Federated Learning, Privacy, Attack, Data Poisoning.

Abstract: Federated Learning or FL is the orchestration of centrally connected devices where a pre-trained machine
learning model is sent to the devices and the devices train the machine learning model with their own data,
individually. Though the data is not being stored in a central database the framework is still prone to data
leakage or privacy breach. There are several different privacy attacks on FL such as, membership inference
attack, gradient inversion attack, data poisoning attack, backdoor attack, deep learning from gradients attack
(DLG). So far different technologies such as differential privacy, secure multi party computation, homomor-
phic encryption, k-anonymity etc. have been used to tackle the privacy breach. Nevertheless, there is very
little exploration on the privacy by design approach and the analysis of the underlying network structure of
the seemingly unrelated FL network. Here we are proposing the ∆SFL framework, where the server is being
decoupled into server and an analyst. Also, in the learning process, ∆SFL will learn the spatio information
from the community detection, and then from DLG attack. Using the knowledge from both the algorithms,
∆SFL will improve itself. We experimented on three different datasets (geolife trajectory, cora, citeseer) with
satisfactory results.

1 INTRODUCTION

In federated learning, an orchestration of edge devices
train machine learning models independently with the
data they have and send the updated gradients after
training to the central cloud. There, at the central
cloud, all the gradients get collected from the user de-
vices. Then an average of the gradients is calculated
by the central server and then the machine learning
model is updated centrally and it does not store the
gradients afterwards. In this way, the data at the users’
devices does not need to be uploaded to a centralized
dataset. In addition, this approach allows to use a
huge amount of data. Nevertheless, it has been shown
that this FL system is also prone to some vicious pri-
vacy attacks such as inverted gradient reconstruction
attack (Geiping et al., 2020), model reconstruction at-
tack (Krishna et al., 2019; Luo et al., 2021), backdoor
attack (Xie et al., 2019), poisoning attack (Cao et al.,
2019) etc. Also, there is a limit for the number of
devices to be used due to the lack of computational
resources in real-life FL setup. One solution is to an-
alyze the internal network structure of the data when

a https://orcid.org/0000-0001-6561-997X
b https://orcid.org/0000-0002-0368-8037

the gradients are updated. Acknowledging all that,
an open question has been asked in (Kairouz et al.,
2021), which is - “Is studying network structure suf-
ficient to provide defense against data poisioning and
privacy preservation in the FL setup?”.

All of these attacks intend to point out the vul-
nerabilities and faults in federated learning. This per-
mits the development of new solutions with stronger
privacy guarantees. Motivated by these types of at-
tacks, in this paper we propose a novel FL system
which depends on the analysis of the spatio structure
of the seemingly disconnected data from the users.
The system decouples the computation of the model
from users’ gradients to avoid data reconstruction by
the server. More precisely, our system includes a data
analyst who receives the gradients from clients, anal-
yses their structure and provides estimated data from
a randomised version of the gradient structure. Then,
a cloud central server updates the model using this es-
timated data, and send the model to the clients. Here
we use the DLG attack (deep learning from gradients)
(Zhu et al., 2019) to estimate the data. In this attack
with the help of distance between gradients, dummy
data and labels one can infer (highly accurate) data.
As stated above, these data are used by the server to

Paul, S. and Torra, V.
ÎŤ SFL: (Decoupled Server Federated Learning) to Utilize DLG Attacks in Federated Learning by Decoupling the Server.
DOI: 10.5220/0012150700003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 577-584
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

577

update the model. The analyst and the server are ex-
pected to be independent and that do not collide. We
call the system, ∆SFL for decoupled server FL.

The main contributions of this work are:
• We propose a new privacy-preserving updating

method for the FL framework where, from the
DLG attack, we are learning and updating the cen-
tral model. To our best knowledge, this is the first
of its kind.

• We propose to decouple the server into two parts,
i.e. the server and the analyst, where the honest
but curious analyst has the hold of the gradients
and the server has the hold of the model parame-
ters. Also, both of them do not have any knowl-
edge of each other’s hold of information.

• The time to converge of the machine learning
model in the proposed system is similar to that of
in the FedAvg setup

1.1 Privacy Setup in ∆SFL

To understand the privacy setup of this framework,
we need some concepts and definitions. They are re-
viewed in this section.

Community Detection Algorithms: They build a
partition of a graph. The algorithms we use are:
a) Louvain algorithm (Blondel et al., 2008), b) Fast
Greedy (Clauset et al., 2004), c) Leading Eigen (New-
man, 2006), d) Edge Betweenness (Girvan and New-
man, 2002). Among these algorithms, Louvain and
Fast Greedy are similar in terms of speed and num-
ber of communities detected. The Edge Betweenness
algorithm is the slowest among these four.

Modularity: It is a benefit function to study the
graph structure where it reflects the concentration of
edges within the “communities” with respect to the
random distributions of edges between all nodes re-
gardless of the communities. Modularity is usually
denoted by Q and defined as follows:

Q = (Number of edges within communities)
− (expected number of such edges)

From the community structure of a graph, one can
infer the dynamics of the groups inside the graph net-
work. Metrics that characterise the communities can
be led to the leakage of sensitive information of users.
We have seen that the modularity function informs
about how concentrated are the communities inside
a graph network. The analyst has as a target to min-
imise the value of the modularity function to blur the
communities. This is achieved by adding more edges
between the communities randomly. In this way, it
becomes tough by the server to point out the ground
truth communities.

Density: The selection of nodes in a community
occurs on the basis of its density (Coleman and Moré,
1983). It is determined based on the number of edges
and nodes in that particular node’s adjacency graph.
It can be defined as the following:

Density(vi) =
|E ′j|

(|V ′j |(|V ′j |−1)/2)
(1)

where, v j is the jth node in the graph G and it’s ad-
jacency graph is A j < V ′j ,E

′
j > and |E ′j|, |V ′j | are the

number of edges and nodes in A j. Generally, the
nodes in the boundary have more density than the
nodes in the central. Therefore it is easier to attack
a node by knowing its density. We will give an exam-
ple later that after going through our protection frame-
work the density becomes almost similar for all the
nodes.

Privacy Cost: This can be measured as the number
of edges that have been added to change the commu-
nity structure for the lowest possible value of the mod-
ularity (Takbiri et al., 2019). Therefore privacy cost
reveals how much distortion has occurred while pro-
tecting the original graph structure. Suppose the set of
communities is C = {c1,c2,c3, ..,ci}, Total number of
nodes are |V |= N and divided into the i communities,
N = n1 +n2 +n3, ...+ni. As we will see in our algo-
rithm (Algorithm 1), the ways to have new edges are(i

2

)
× 1

(nc1−m) ×
1

(nc2−o) . Where, nc1 ,nc2 are the num-
ber of nodes in the chosen communities and m,o is
the number of nodes in both the chosen communities
that already has an edge with the other community.
Therefore, this is the maximum cost for our privacy
protection.

Degree of Anonymity Achieved: It is defined
as the normalised entropy achieved by the nodes
of the framework towards the attacker (Nilizadeh
et al., 2014; Cai et al., 2019). The maximum en-
tropy is Hmax = logN. The entropy of a node is
Hv j = −∑

i
j=1 p(ci) log2 p(ci), where p(ci) is the ra-

tio of node in A j to that of ci community. There-
fore, the normalised entropy would be (Hmax −
∑

N
j=1 Hv j)/Hmax. Also, 0≤normalised entropy ≤ 1

DLG Attack: We will use a method to infer data
from the newly arranged gradients after the edge ad-
dition. DLG attack (Zhu et al., 2019) is the first of
its kind and gets to retrieve data with very less mean
square error from the vanilla FL framework. DLG at-
tack uses a dummy model, data and labels to create
dummy gradients and then it minimises the distance
between the original and the dummy gradients. The
main basis of this attack is that the distance is twice
differentiable. The analyst discards the gradients and
the data after this step.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

578

Figure 1: A graph with 13 nodes and 3 communities.

Figure 2: After privacy protection with 1 community.

1.1.1 Some Examples

Let us consider the graph in Fig.1. The densities
for all the nodes are: A=0.6, B=0.6, C=0.6, D=0.5,
E=0.6, F=0.6, G=0.5, H=0.6, I=0.6, J=0.5, K=0.6,
L=0.5, M=0.5. In contrast, for Fig.2 densities are
A=0.4, B=0.4, C=0.5, D=0.4, E=0.5, F=0.5, G=0.3,
H=0.5, I=0.4, J=0.5, K=0.4, L=0.4, M=0.4. These
results show that the density value does not inform
which one is a boundary node and which one is
in the center. The normalised entropy for the pro-
tected graph is 0.289, which suggests that after go-
ing through our privacy framework the example graph
will only reveal approximately 30% of the data at
most against the attacker.

2 OUR FRAMEWORK

In our framework we decouple the server to avoid data
reconstruction attacks from the gradients. Then, a
data analyst receives the gradients and use it to pro-
duce synthetic data which is sent to the server. The
community structure of the gradients is blurred by the
analyst to improve the privacy guarantees. Algorithm
1 details the computations. We give a flow-chart of
this algorithm in Fig. 3. The FL system starts initial-
ising the model of the central server (global model)
and then proceeds in each round as follows.

Algorithm 1: ∆ SFL
The K clients are indexed by 1, 2, 3, 4, . . . , k, . . .
b is the batch size, α is the learning rate, t is the number of
training round, DBk is the data at device k.

Require: w (This is the pre-trained model at the cen-
tral server)
dgt = φ (an array to save the gradients)
nk← set of ready clients

At the Server:
for each round t = 1,2,3, ... do

Train w with inferred data
Send the model back to the user devices for test-
ing

end for
Keep the model if it reaches to better testing accu-
racy or to a threshold

At the Analyst:
dgt .store = ∇g(w)
Compute the Graph G from dgt
Calculate L from G (Community Detection step)
for (Q≃ 0) do

Choose communities to pick nodes from at ran-
dom
Choose nodes at random from the picked com-
munities
Connect the nodes if they already do not have an
edge between them

end for
Form a new graph G′

Update Q and L from G′

return the inferred data from G′ to the central
server

At the Clients:
Train w with DBk
return ∇g(w) = α∇gi(w) to the Analyst

1. The server sends the model parameters and model
to the ready user device pool,

2. The devices train the model with their data,

3. The model sends the trained gradients to the ana-
lyst

4. The analyst predicts the graph,

5. A round of community detection is done by the
analyst,

6. The analyst tries to decrease the modularity by
adding edges among the communities,

7. When the modularity converges a DGL attack is
being done by the analyst to infer the data from
the converged graph

8. The analyst sends the inferred data to the server

ÎŤ SFL: (Decoupled Server Federated Learning) to Utilize DLG Attacks in Federated Learning by Decoupling the Server

579

Figure 3: Flow chart of ∆SFL.The explanation is given in Section 2.

9. The model at the central server get trained by the
inferred data

10. This model again sent back to the user devices for
testing,

11. If the tested model gets better testing accuracy or
reaches a certain threshold of accuracy the server
will keep the model, else another cycle will start

We change the number of users in every training
round. The tunable hyperparameters of the machine
learning model involved in the whole setup are local
epoch e, learning rate α and batch size is b. They
are the same for all the local devices as well as at the
central server.

3 EXPERIMENT AND ANALYSIS

This section is dedicated to the study of the proposed
algorithm by using different datasets. Here we are
using three real-life dataset. The description of the
dataset and the results are separated in three different
subsections.

3.1 System Description

For the reproducibility purpose, we describe the sys-
tem on which we did our experiments. As one can
see, we do not use any GPU. The system specifica-
tion is - UBUNTU 20.04.2 LTS, 64-bit Kernel Linux
5.8.0-44-generic x86 64 FOCAL FOSSA 1.20.4 OS
with 32.6 GiB of memory and Intel(R) Xeon(R) W-
1250P CPU 4.10GHz. The R-studio with R-version
3.6.1, Keras(version 2.2.5.0) and Tensor Flow(version
2.0.0) have been used, with a steady internet connec-
tion of 881.83 Mbit/s download speed and a 898.74
Mbit/s upload speed. For experiment purposes, we
used R version 4.2.0 (2022-04-22) - “Vigorous Cal-
isthenics” and the following packages: igraph, tidy-
verse, sqldf, dplyr, tensorflow, keras.

3.2 Results

In the next subsections we review the results on three
datasets we have considered.

3.2.1 Geolife Trajectory Dataset

This GPS trajectory information (Zheng et al., 2008;
Zheng et al., 2009) was gathered over four years by
178 users in the (Microsoft Research Asia) Geolife
project (from April 2007 to October 2011). This
dataset’s GPS trajectory is represented as a series of
time-stamped points, each of which comprises lati-
tude, longitude, and altitude information. There are
17,621 trajectories in this dataset, with a total dis-
tance of 1,251,654 kilometers and a length of 48,203
hours. Different GPS recorders and GPS phones cap-
tured these trajectories, which have a variety of sam-
pling rates. Every 15 seconds or 510 meters per point,
91 percent of the trajectories are logged in a dense
representation.

This dataset recoded a wide range of users’ out-
side activities, including not just daily activities like
going home and going to work, but also recreational
and sporting activities like shopping, sightseeing, eat-
ing, hiking, and cycling. Many study domains can
benefit from this trajectory dataset, including mobil-
ity pattern mining, user activity detection, location-
based social networks, location privacy, and location
recommendation. There are 182 user’s data in total,
out of which 73 are being labeled with the mode of
transportation. We used these 73 users’ data to pre-
train the neural network model. The task for the FL
framework is to recommend a mode of transport for
a user. In Fig. 4a we can see the trend of testing ac-
curacy vs the number of users in the rounds of train-
ing after certain number of edges have been added.
The detected communities for different algorithms are
given in Fig.6 and the converged graph is given in the
Fig.9a. In the time of experiment, for every partition

SECRYPT 2023 - 20th International Conference on Security and Cryptography

580

Table 1: Some statistics of the experiment.

Dataset
name

No. of
Communities

at the beginning

No. of
communities

at the end

Accuracy at
the beginning

(rounded)

Accuracy at
the end

(rounded)

Overall time
in proposed

system
(in seconds,
averaged)

Overall time
in FedAvg

(in seconds,
averaged)

Geolife
Trajectory 11 1 90.88±1.35 97.62±1.12 7363.67 7022.89

Citeseer 450 1 92.62±0.62 99.12±0.3 43,496.82 39852.18
Cora 110 1 95.683±0.5 99.87±0.2 40,185.63 36998.26

of users we do the experiment for 100 times and take
an average of the testing accuracy.

From the result in Fig.4 it is evident that we need
atleast 20 users on the average in a round for this
dataset to learn something. We also can see that the
more users the better the learning and that adding
more edges does not reduce the testing accuracy at
all.

By comparing Fig.6 and Fig.9a we can see that
there are significant visual changes in the structure of
the graphs occurred by the process of adding edges.
From Table 1 we can also see the same which has
been depicted in the Fig.9a.

3.2.2 Citeseer Dataset

The CiteSeer (Getoor, 2005; Sen et al., 2008) collec-
tion contains 3312 scientific papers that are divided
into six categories. There are 4732 linkages in the ci-
tation network. A 0/1-valued word vector describes
each publication in the dataset, indicating the exis-
tence or absence of the associated term from the dic-
tionary. There are 3703 distinct terms in the dic-
tionary. In the Citeseer dataset nodes correspond to
documents, and edges correspond to citations, where,
each node feature corresponds to the bag-of-words
representation of the document and belongs to one
of the academic topics. Both of them are benchmark
datasets in graph learning. Here, the task is the clas-
sification of the scientific papers. In Fig.4b we can
see the trend of the no. of users vs the testing accu-
racy for this dataset. Even when an abundant number
of edges have been integrated, the testing accuracy is
never less than 90% in the learning task.

From the result in Fig.4b it is evident that we need
atleast 20 users on the average in a round for this
dataset to learn appropriately. From the results in
Fig.7 and Fig. 9c we observe that adding edges is
changing the number of detected communities.

3.2.3 Cora Dataset

The Cora dataset (learning group At UMD, 2015)
contains 2708 scientific papers that are divided into
seven categories. There are 5429 linkages in the ci-
tation network. A 0/1-valued word vector describes
each publication in the dataset, indicating the exis-
tence or absence of the associated term from the dic-
tionary. There are 1433 distinct terms in the dictio-
nary. Here too, the learning task is the classification
of the scientific papers. In Fig.4c we can see the trend
of no. of users vs the testing accuracy for this dataset.

From the result in Fig.4c it is evident that we need
at least 30 users on average in a round for this dataset
to learn. From the results in Fig.8 and Fig.9b it is evi-
dent that adding edges is indeed changing the number
of detected communities.

3.3 Analysis

There are three main new parts in the updating part
of the proposed ∆SFL algorithm, i.e. the community
detection, addition of new edges among the commu-
nities and the DLG attack.

Suppose, that after the step “Compute the graph
G = (V,E) from dgt” in Algorithm 1 we get the graph
G. Then after the addition of edges between commu-
nities we get the graph G′ =G⊕g where G′ = (V,E ′),
g = (V ′, p) and |V ′| ≤ |V |, V ′ ∈ V . Now, in G′ as
the number of nodes remains constant and g is be-
ing made randomly, the probability of having or not
having an edge between two nodes is independent of
whether it was in the original graph or not. Therefore,
after the DLG attack on the gradient network G′ in the
retrieved data the previous relationship of the original
distributed data is preserved with an addition of ex-
tra noisy edges. Therefore, privacy is being preserved
here locally by default of the system design.

For the first part or for the analysis of the perfor-
mance of the community detection algorithm with re-
spect to the FL framework, we need to go through
Table 2. Here we can see that, for different datasets,
the Edge Betweenness algorithm performs the worst

ÎŤ SFL: (Decoupled Server Federated Learning) to Utilize DLG Attacks in Federated Learning by Decoupling the Server

581

with respect to the time. Louvain and Fast Greedy
algorithms works almost similar and best for our ap-
proach. Time-wise the Leading-Eigen algorithm also
performs similar as the previous two algorithms. Here
we took “time” as the quantity to measure the perfor-
mance because we need to produce gradient updates
that are similar to that of the Fedavg algorithm. The
same can be observed for the overall proposed algo-
rithm and that off Fedavg in Table 1. From the de-
scription in Section 1.1 and Algorithm 1 it is clear
that they are capable of revealing the hierarchical and
spatio information of a dataset in the form of detect-
ing communities. Therefore, this community detec-
tion is itself a form of information retrieval and is cre-
ating the basis of adding more random edges among
the communities and the DLG attack.

We observe the effects of adding extra edges till 10
edges in Fig.4 for three different datasets as discussed
above. From the results it is evident that though we
are adding more abundant edges (which can be seen
as abundant data or “noise”) the testing accuracy is
not getting destroyed by it at all. Another result that
can be deducted roughly from this result is that if the
total number of users is N then our proposed algo-
rithm approximately needs N/3 number of devices in
a round to start reaching testing accuracy above 50%.
From Fig. 5, 6, 7, 8 and 9 we can observe the effect of
adding edges on top of different “communified graph
networks” for different datasets at the beginning and
at the end of modularity convergence. With the help
of these figures and Table 1 we can conclude that
more single vertices in a dataset the more the number
of communities, more time overhead but less number
of devices to be needed in a round to reach more than
50% testing accuracy in a round of edge addition.

The third part is to see the effect of the DLG
attack. With the help of the distance between the
gradients, a dummy model, dummy data and a ma-
chine learning task – this attack can retrieve a dataset
with (high accuracy) only from the gradients. In our
approach the referred data from the DLG attack is
formed with the help of the protected graph and the
gradients. As the protected graph is a changed ver-
sion of the original one and the DLG attack itself does
not reveal all the data but a portion of it — the new
referred data is different from the actual data, which
is full of redundant information. Nevertheless, it ac-
tually increases the testing accuracy of the machine
learning model as shown in the Table 1 by comparing
the columns “Accuracy at the beginning (rounded)”
and “Accuracy at the end (rounded)”. The analyst
do not store the referred data or any gradients or any
information about it, and the central server only has
the hold of the referred data and the machine learning

model. The central server similarly, never stores the
referred data but only stores the model parameters.

Therefore, through these three new parts the pri-
vacy of the users is preserved and the machine learn-
ing model is gaining better testing accuracy.

4 CONCLUSIONS

In this paper, we have introduced a framework for fed-
erated learning in which we decouple a data analyst
and the central server. This is to increase the privacy
guarantees of the model. We have described some of
the experiments performed with adequate examples
and experiments.

For future work, we intend to extend this work
in the domain of dynamic graphs and node churning.
Where we will see how the federated learning frame-
works can be described in terms of these techniques
with privacy protection benefits and utility.

Table 2: Statistics about the Community Detection algo-
rithms.

Algorithm Dataset

Community
Detection

Time
(averaged in seconds)

Louvain

Geolife
Trajectory 0.16

Citeseer 4.05
Cora 3.67

Fast
Greedy

Geolife
Trajectory 0.16

Citeseer 4.18
Cora 3.61

Leading
Eigen

Geolife
Trajectory 0.19

Citeseer 5
Cora 4.32

Edge
Betwenness

Geolife
Trajectory 0.58

Citeseer 62.34
Cora 59.8

ACKNOWLEDGEMENTS

This research was partially funded by the Wallen-
berg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg
Foundation.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

582

(a) Geolife Trajectory Dataset. (b) Citeseer Dataset. (c) Cora Dataset.
Figure 4: Testing accuracy vs Number of Users.

(a) Geolife trajectory dataset. (b) Cora Dataset. (c) Citeseer Dataset.
Figure 5: Before Community Detection.

(a) Louvain. (b) Leading Eigen. (c) Fast Greedy. (d) Edge Betweenness.
Figure 6: Community detection in the beginning for Geolife Trajectory Dataset.

(a) Louvain. (b) Leading Eigen. (c) Fast Greedy. (d) Edge Betweenness.
Figure 7: Community detection in the beginning for Citeseer Dataset.

(a) Louvain. (b) Leading Eigen. (c) Fast Greedy. (d) Edge Betweenness.
Figure 8: Community detection in the beginning for Cora Dataset.

ÎŤ SFL: (Decoupled Server Federated Learning) to Utilize DLG Attacks in Federated Learning by Decoupling the Server

583

(a) Geolife trajectory dataset. (b) Cora Dataset. (c) Citeseer Dataset.
Figure 9: After Convergence Achieved in modularity by adding edges in case of Louvain Algorithm.

REFERENCES

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefeb-
vre, E. (2008). Fast unfolding of communities in large
networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008.

Cai, B., Zeng, L., Wang, Y., Li, H., and Hu, Y. (2019).
Community detection method based on node density,
degree centrality, and k-means clustering in complex
network. Entropy, 21(12):1145.

Cao, D., Chang, S., Lin, Z., Liu, G., and Sun, D. (2019).
Understanding distributed poisoning attack in fed-
erated learning. In 2019 IEEE 25th International
Conference on Parallel and Distributed Systems (IC-
PADS), pages 233–239.

Clauset, A., Newman, M. E., and Moore, C. (2004). Finding
community structure in very large networks. Physical
review E, 70(6):066111.

Coleman, T. F. and Moré, J. J. (1983). Estimation of sparse
jacobian matrices and graph coloring blems. SIAM
journal on Numerical Analysis, 20(1):187–209.

Geiping, J., Bauermeister, H., Dröge, H., and Moeller, M.
(2020). Inverting gradients-how easy is it to break pri-
vacy in federated learning? Advances in Neural Infor-
mation Processing Systems, 33:16937–16947.

Getoor, L. (2005). Link-based classification. In Advanced
methods for knowledge discovery from complex data,
pages 189–207. Springer.

Girvan, M. and Newman, M. E. (2002). Community struc-
ture in social and biological networks. Proceedings of
the national academy of sciences, 99(12):7821–7826.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cor-
mode, G., Cummings, R., et al. (2021). Advances and
open problems in federated learning. Foundations and
Trends® in Machine Learning, 14(1–2):1–210.

Krishna, K., Tomar, G. S., Parikh, A. P., Papernot, N.,
and Iyyer, M. (2019). Thieves on sesame street!
model extraction of bert-based apis. arXiv preprint
arXiv:1910.12366.

learning group At UMD, S. (2015). Relational dataset
repository.

Luo, X., Wu, Y., Xiao, X., and Ooi, B. C. (2021). Fea-
ture inference attack on model predictions in vertical

federated learning. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pages 181–
192.

Newman, M. E. (2006). Finding community structure in
networks using the eigenvectors of matrices. Physical
review E, 74(3):036104.

Nilizadeh, S., Kapadia, A., and Ahn, Y.-Y. (2014).
Community-enhanced de-anonymization of online so-
cial networks. In Proceedings of the 2014 acm sigsac
conference on computer and communications secu-
rity, pages 537–548.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. (2008). Collective classification in
network data. AI magazine, 29(3):93–93.

Takbiri, N., Shao, X., Gao, L., and Pishro-Nik, H. (2019).
Improving privacy in graphs through node addition.
In 2019 57th Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton), pages
487–494. IEEE.

Xie, C., Huang, K., Chen, P.-Y., and Li, B. (2019). Dba:
Distributed backdoor attacks against federated learn-
ing. In International Conference on Learning Repre-
sentations.

Zheng, Y., Li, Q., Chen, Y., Xie, X., and Ma, W.-Y.
(2008). Understanding mobility based on gps data. In
Proceedings of the 10th international conference on
Ubiquitous computing, pages 312–321.

Zheng, Y., Zhang, L., Xie, X., and Ma, W.-Y. (2009). Min-
ing interesting locations and travel sequences from
gps trajectories. In Proceedings of the 18th interna-
tional conference on World wide web, pages 791–800.

Zhu, L., Liu, Z., and Han, S. (2019). Deep leakage from
gradients. Advances in Neural Information Processing
Systems, 32.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

584

