
Exploring the Test Driven Development of an Information
Retrieval System

Daniel Staegemann a, Sujith Sudhakaran, Christian Daase b and Klaus Turowski c
Magdeburg Research and Competence Cluster VLBA, Otto-von-Guericke University Magdeburg, Magdeburg, Germany

Keywords: Software Engineering, Information Retrieval, Test Driven Development, TDD, Testing, Quality Assurance.

Abstract: Today’s society is heavily driven by data intensive systems, whose application promises immense benefits.
However, this only applies when they are utilized correctly. Yet these types of applications are highly
susceptible to errors. Consequently, it is necessary to test them comprehensively and rigorously. One method
that has an especially high focus on test coverage is the test driven development (TDD) approach. While it
generally has a rather long history, its application in the context of data intensive systems is still somewhat
novel. Though, rather recently, a microservice-based test driven development concept has been proposed for
the big data domain. The publication at hand explores its feasibility regarding the application in an actual
project. For this purpose, a prototypical, microservice based information retrieval system is implemented in a
test driven way with particular consideration for scalability.

1 INTRODUCTION

Test driven development (TDD) is a popular
approach for developing software. However, despite
the associated potential advantages and some
corresponding works (Daase et al. 2023; Staegemann
et al. 2022b; Staegemann et al. 2022a), it is still rather
underexplored in the context of big data (BD) and the
related applications. Here, in our study we apply TDD
to implement an information retrieval system. While
the presented prototypical implementation is rather
small in a BD context, it still showcases a typical BD
use case (Volk et al. 2020) and the presented
architectural approach allows for further scaling. For
this purpose, we write unit tests starting from
tokenization to similarity computation.

However, it has to be noted that the primary focus
of the publication at hand is to further explore the use
of the TDD approach itself. Therefore, the
information retrieval system is just a vehicle to
achieve this. Thereby, it is in our interest to further
increase the complexity, which we did my adding an
explainability component to the posed task.

Oftentimes, machine learning models are black
box models which compute the results without

a https://orcid.org/0000-0001-9957-1003
b https://orcid.org/0000-0003-4662-7055
c https://orcid.org/0000-0002-4388-8914

explaining how the results were computed. These
black box models are difficult to interpret making it
very hard to understand the reason behind the
outcome. In order to make it more interpretable, the
features of the model can be exploited to provide
basic explanations to at least somewhat open the
black box. This helps to verify the outcome if the
model works correctly and helps in gaining more trust
from the user.

In our proposed system, we try to improve the
trust and fairness of the retrieval system by providing
valid explanations on how results are retrieved. We
try to transfer the system into a white box system by
providing necessary explanation and analyse how the
system performance can be improved using such
explanations. We follow test driven development
during each phase of the development cycle, and we
develop the system as microservice architecture so
that the components are loosely coupled and largely
scalable.

The publication is structured as follows.
Succeeding this introduction, the test driven
development approach is described. Afterwards, the
general design of the prototypical application is
outlined. This is followed by a section dedicated to

104
Staegemann, D., Sudhakaran, S., Daase, C. and Turowski, K.
Exploring the Test Driven Development of an Information Retrieval System.
DOI: 10.5220/0012147700003552
In Proceedings of the 20th International Conference on Smart Business Technologies (ICSBT 2023), pages 104-113
ISBN: 978-989-758-667-5; ISSN: 2184-772X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

the actual implementation. Then, the findings are
discussed. Finally, a conclusion of the work is given.

2 TEST DRIVEN DEVELOPMENT

When consulting the scientific literature (Staegemann
et al. 2021), the application of TDD is highlighted as
a promising way to improve the quality of an
implementation as long as the associated increase in
development time and effort is considered an
acceptable trade-off.

In general, the approach aims at improving the
quality of the product under consideration by mainly
influencing two aspects. It aims to increase test
coverage, which helps to find and subsequently fix
problems that occurred during the implementation of
the artifact under consideration. Further, TDD also
influences the design process itself by leading to a
more manageable and pre-planned structure that
helps to avoid errors and incompatibilities (Crispin
2006; Shull et al. 2010). The main application area is
software development, but process modelling (Slaats
et al. 2018), the special case of BD application
implementation (Staegemann et al. 2020), and
ontology development (Davies et al. 2019; Keet and
Ławrynowicz 2016) can also be found in the literature.

In "traditional" software development, a function
or change to be realized is implemented and then
tested. In contrast, the test-driven approach reverses
the order of implementation and testing. That is, after
the desired change is designed, it is broken down into
its smallest meaningful parts (Fucci et al. 2017). For

these, one or more tests are written to ensure that the
required functionality is provided. Then the tests are
run, and are expected to fail because the actual
functionality is not yet implemented (Beck 2015).
Only then is the production code written to provide
the new functionality. Factors such as the elegance of
the code are not yet considered; instead, the simplest
solution is sought. Once the code is created, it must
pass the previously written tests (Crispin 2006). If it
is successful, the code is revised to improve aspects
such as readability or compliance with standards and
best practices (Beck 2015). In this process, its
functionality is constantly validated against the tests.

However, this approach not only affects test
coverage, but also the design of the software, since
small work packages are generated instead of large
tasks. In addition, this focus on incremental changes
(Williams et al. 2003), where testing and
implementation are interwoven, provides more timely
feedback to the developer by creating short test cycles
(Janzen and Saiedian 2005). Although most tests are
written specifically for these small units, other tests
such as integration, system, or acceptance tests can
also be used in TDD (Sangwan and Laplante 2006).

In addition, to fully exploit the potential of TDD
without tying up the developers' attention by forcing
them to manually execute the tests, TDD is often used
in conjunction with test automation in a continuous
integration (CI) context (Karlesky et al. 2007; Shahin
et al. 2017). Here, to ensure the latest code addition
or change does not negatively impact existing parts of
the implementation, a CI server automatically starts
and re-executes all applicable tests when a new code
commit is registered by the versioning system.

Figure 1: The implemented microservices.

Exploring the Test Driven Development of an Information Retrieval System

105

3 THE DESIGN

As suggested in (Staegemann et al. 2020), we chose
to design the application as a microservice
architecture, which is more modular and scalable
compared to a monolithic implementation (Ataei and
Staegemann 2023). Figure 1 shows all the services
that are part of our information retrieval system.

We have developed multiple services which use
their own database. For the login service, we had to
choose between relational and non-relational
databases. Since the login data of the user is
structured, we decided to implement it in the postgres
relational database. For convenience reasons, we
decided to use an on-premise database to run the
postgres database locally. We used the java
programming language and the Spring Boot
framework for development of the login microservice.
Besides that, we used the python programming
language and the flask framework for the
development of other services such as the Data
Exploration Service, the Feature Extraction Service,
and the Information Retrieval Service. In this
prototypical implementation, these services use the
computer’s internal file system for processing and
storage of documents. However, in a real-world
scenario, this would of course also be handled
through distinct databases. The information retrieval
components are developed in python as there are
plenty of libraries available as open source to use
them for various functionalities.

Benjelloun at al. (2020) did a comparative study
of different techniques used for processing data in
data heavy applications. These data processing
methods adhere to the same cycle such as the data

collection, data preparation, data input, data
processing, data output/interpretation, and data
storage. The different methods of processing data are
batch processing, stream processing, and real time
processing. The proposed system doesn’t require data
to be processed frequently in real time. Therefore, we
designed a pipeline that can process data in batches
and schedule the data to be extracted as chunks. The
data that we processed consisted of 13499 books in
varying sizes and the size of the dataset was almost
seven GB.

Although this is already a somewhat big size, it is
still a rather low scale in the context of BD. Yet, for a
prototypical scenario it should be sufficient. However,
the goal is, naturally, to showcase the suitability in a
BD scenario. Therefore, to process it, we employed a
pipeline, which we term as Combi-Pipeline, for
feature extraction. The term Combi-Pipeline refers to
the pipeline that we designed which has the
combination of data from google drive and the local
file system and merged them to feature vectors. As
shown in Figure 2, we used this Combi-Pipeline to
extract the features such as named entity recognition
and term frequency-inverse document
frequency (tf-idf) vectors. The features were
extracted by dividing the data into 14 chunks having
1000 books in each chunk except the last chunk which
has 499 books. This shall show the general possibility
to distribute the processing across multiple different
(types of) workers.

For the design and development of front-end web
pages, there are multiple frameworks such as
AngularJS, React, Marko js etc. available. The
JavaScript framework AngularJS was developed to
enhance HTML’s syntax. By using this framework,
developers may create rich internet applications more

Figure 2: The feature extraction pipeline.

ICSBT 2023 - 20th International Conference on Smart Business Technologies

106

quickly and easily. Further, AngularJS allows the
development of application as single page
applications and provides techniques for boosting
HTML, whereas many JavaScript frameworks
concentrate on enhancing the capabilities of
JavaScript itself. AngularJS enables developers to
avoid the complicated workarounds that are typically
required when attempting to construct responsive
web apps with HTML front ends by introducing
features like data-binding. Therefore, we chose
Angular JS for developing the front-end of our system.

4 THE IMPLEMENTATION

The entire retrieval system architecture is shown in
Figure 3. There are two back-end blocks and a front-
end block in our retrieval system. As mentioned
earlier, the front-end web application is developed in
Angular JS, a framework based on typescript and the
back end units are developed using python and java.
We have used Springboot (a java-based framework)
for the implementation of the login service. The user
data is persisted in the postgres database as shown.

We have used flask (a python-based framework)
for the implementation of the data exploration service,
the feature extraction service, and the information
retrieval service. As described in the previous section,
in this prototypical implementation, these services
use the local file system as the database storage. The
user communicates with the front-end web
application, which, in turn, queries from the login
service for authentication. Once the authentication is
successful, the python service for retrieval is invoked.

The services for feature exploration and
extraction were already invoked and loaded into the
file system so as to reduce the response time for each

query. The architecture is designed based on diverse
languages such as java script, java, and python for the
purpose of highlighting the possibility of mixing
different programming languages when using a
microservice architecture (Shakir et al. 2021). Further,
it also allowed to explore the test driven methodology
with different frameworks that are used by the
languages.

4.1 Login Service

We developed the service starting with writing the
tests for the functionalities involved with the service.

The login service has three major methods used
for login purposes. The getUser() method is used for
logging an existing user into the application. The user
triggers a post request with username and password
in the request payload. The addUser() method is used
for registering a new user to the application. This is a
post http request, which gets parameters such as
username, email, password, and designation. The
designation is an enum variable and it can be
“student”, “researcher” or “others”. This is tracked so
that we can perform analytic on who is searching for
what books in the future. The updataUser() method is
designed for updating the existing user information.
The user shall update their username, email,
designation and password by triggering a PUT http
request. Further, there is also a getUsers() method to
fetch all the users from the database. This is not used
currently but it can be used in the future to report
certain metrics based on the users in the system. As
we store information about the designation of users,
we shall use this to derive certain analytics such as
users tagged as "Researchers" search for a particular
book genre and users tagged as "Students" search for
particular books.

Figure 3: The architecture of the retrieval system prototype.

Exploring the Test Driven Development of an Information Retrieval System

107

The following unit test cases were derived from
our use cases of adding user, updating user, getting
user and deleting user:

 Successful addition of user into database
on correct values

 Error message on passing incorrect
username and password

 Encryption of password while inserting
into database

 Decryption of password while
authenticating users from database

 Test to check if the user is updated
correctly for the PUT http request

4.2 Data Exploration Service

The data is extracted from dataset “The book Corpus”
(Zhu et al. 2015) since there are many researches
being performed in the field of NLP using the book
corpus dataset. Bandy et al. (2021) discuss certain
limitations involved with the book corpus dataset but
also highlight how it is used in popular systems such
as Open-AIs GPT models, further emphasizing its
significance.

We have also extracted metadata of the dataset
from a GitHub account that also had the actual dataset
(soskek 2019). Note that the actual book dataset and
metadata json listed in the GitHub are fetched from
different scraped sources and so they have different
book counts and orders. While the book dataset
comprised 17869 titles, the metadata set had only
15000 entries.

Hence, we had to find the intersecting books in
the two datasets to merge the two datsets to construct
the master dataset. This is done in the
create_meta_data() method. The pick
_book_document_from_file_system method is
created because we require to choose only the books
that are available in the metadata dataset to perform
all subsequent tasks such as pre-processing and
feature extraction. To do so, we decided to go with a
simple approach. We created a new column called
“exists” in the meta data. This column determines if
the book title in the metadata exists in the books in
file system. The “exists” value is true if the book
exists in our file system or false if it does not exist in
the file system. All the book names in the file system
are scanned and the column “exists” is populated if
the book is present in the file system.

Further, as the name suggests, the save_into_csv
method saves the updated meta_data.csv into the file
system. In the service’s other methods, we modify the
existing meta data file and save the updated version
into the file system. Thereby, this service acts as a

helper method to accomplish the task of saving the
metadata into the local disk.

The data exploration service is developed in the
python programming language using the flask
framework to facilitate the microservice architecture.
We have written the tests using the unittest library in
python and we used the mock class from the same
library for mocking method calls. Before starting with
the functionalities on the data extraction and
exploration, we began with the test cases that are
listed below:

 Test if the specific directory in the local disk
is being scanned for the books and meta data
is created

 Tests asserting the size of metadata records,
number of columns, books retrieved are
verified

 Since we are excluding books which have a
number of words greater than 200000 from
the dataset (to have a more homogeneous
set), there is a test that explicitly checks if
the dataset includes any book over 200000
words

 As we have two different datasets extracted
from different sources one containing meta
data in json format and the other containing
the books as compressed files, we had to
write a test to match the metadata with the
book dataset within the directory. So, only
the books that are present in the local
directory are used for processing while the
books that only have meta data and don’t
have an actual book associated in the local
directory are ignored

All these tests were written keeping in mind that
the core functionality of the data extraction should not
be hindered, and any possibility of functional errors
must be eliminated.

4.3 Feature Extraction Service

The data that is extracted from the previous step is
passed to the feature extraction step where we derive
the features from the books and the meta data
available. The feature extraction service is developed
with the python programming language using the
flask framework. In this step, we extract the features
by converting books to tf-idf vectors and combined it
with a set of handcrafted features to yield better
results for the retrieval system. The feature extraction
pipeline can be divided into three parts with their own
functionalities. These are further described in the
following.

ICSBT 2023 - 20th International Conference on Smart Business Technologies

108

4.3.1 Extraction of Hand-Crafted Features
Such as Named Entities and NRC
Emotions

We decided on a few handcrafted features such as
Named Entities and NRC emotions for our retrieval
system.

Named Entity Recognition (NER) is an important
feature (Mansouri et al. 2008) in the text retrieval
domain as it can detect the person, place, quantity,
time etc., which is useful for retrieval systems. We
used a popular library called spaCy (spaCy 2023) for
detecting the named entities in the books. SpaCy
provides pre-trained model with set of named entities
and it recognises the tokens and predicts the named
entity for the token.

Moreover, sentiment analysis is an important
aspect of information retrieval. In our work, we have
used the NRCLex library (Bailey 2019) to detect the
emotions from the book. This library uses the
lexicons from the NRC Word-Emotion Association
Lexicon (Mohammad and Turney 2011). This library
scans the dataset for specific words and classifies the
words based on the emotions. The output of this is the
word count of emotions such as anticipation, joy, fear,
or sadness.

4.3.2 Extraction of the tf-idf Vectors from
the Books

In all the NLP tasks, the natural language should be
converted to tokens for identifying the features. In our
tokenization process, we scan through the dataset and
convert all the books as corresponding tokens. The
nltk library (NLTK Project 2023) in python is used
for creating tokens out of the books. Thus, we
tokenize the entire document corpus using the library.

In our approach we used tf-idf to convert the
books to vectors using the python based library
sklearn (scikit-learn 2023). In order to perform tf-idf
vectorization using sklearn, we passed the optional
parameter max_features to the method
TfidfVectorizer in the library.

Further, we have filtered the stop words occurring
in the documents. We have set a maximum features
limit of 300000 so as to include only the first 300000
features with the highest weightage. Therefore, after
the tokenization step, the tokens are moved to the stop
word removal where we remove stop words from the
tokens. Then we perform stemming where words with
the same stem are grouped into one word and finally,
we perform the tf-idf vectorization on the remaining
words. After the vectorization we collect the features
in a pandas dataframe data structure and store it into
a csv file in the file system.

4.3.3 Principal Component Analysis and
Feature Combination

After the steps described above, it is necessary to
group all features that we constructed into a single file
so that it becomes easy for processing. It is important
to perform principal component analysis (PCA) on
the tf-idf features so to reduce the error caused by a
high dimensionality. We also merged all the meta
data with the PCA features and performed label
encoding to our feature set.

In (Korenius et al. 2007), the authors explain how
the search space can be reduced for text retrieval
systems using PCA. They also establish the relation
between cosine measure and the euclidean distance in
association with PCA. Performing PCA on the entire
dataset was challenging as we could not fit the entire
feature space in the main memory for processing.

Additionally, when considering that this is only a
prototypical implementation geared towards BD
applications, this issue would be even bigger on larger
scale. In response, we tried out multiple approaches
to perform PCA. The first approach is to split the data
into chunks and perform PCA. The chunk size was set
to 1000 books and after computing PCA for all the
books, we combined the PCA vectors. As we are
performing TDD, we started by writing the test for
this approach. However, when running it, we
identified that the results are not identical and so we
cannot proceed chunking books for PCA as it yields
incorrect results.

Another approach is discussed in (Bai et al. 2014).
Here, the authors propose an incremental learning for
a robust visual tracking systems which performs the
PCA in an incremental way without the results being
impacted. We used the method IncrementalPCA in
the sklearn library (scikit-learn 2023) to perform PCA
for the books dataset so that we arrive at the correct
values for PCA.

The reason why we highlight the first (failed)
attempt is to emphasize that the test driven approach
helped in arriving at the correct method and yielding
correct results when performing PCA. This was one
such instance where TDD helped to detect the flaws
in the methods chosen for the development of our
retrieval system. After performing PCA, we have
reduced the multi-dimensional feature space into a
three-dimensional space and thus reduced 300000
terms (features) to three features.

After effectively performing the PCA on the tf-idf
features and reducing the dimensions, our PCA
features were ready to be integrated with the other
features. To do so, we merged the PCA features with
NER features, NRC emotions, and the meta data to
construct the final feature set. This feature set consists

Exploring the Test Driven Development of an Information Retrieval System

109

Figure 4: Operational sequence of the information retrieval service.

of 37 features. These features had to be further taken
for encoding as the text features should be converted
to numbers.

The retrieval system that we developed works on
similarity metric (cosine similarity) to find the
similarity between the data points (books). In order to
compute similarity, it was necessary to convert all the
text to numbers. We have features such as authors,
category1 (genre 1), category2 (genre 2) and
category3 (genre 3), which are text-based features.
The number of unique authors in the dataset found is
8283. The category1 feature consist of two unique
categories which are fiction or non-fiction. The
category2 feature consist of 63 unique categories
whereas the category3 feature consist of 889 unique
categories. Thus, these features are converted to
numbers using label encoders in the sklearn library
(scikit-learn 2023).

4.4 Information Retrieval Service

The Information retrieval service is the user facing
service where the user interacts with the system and
searches for the required books. As the name suggests,
this service retrieves the books matching to the query
book provided by the user. Its operational sequence is
depicted in Figure 4.

In (Ristanti et al. 2019), the authors describe how
the cosine similarity measure was used to detect
similarity in documents and evaluate the performance
after applying K-fold validations. As explained in the
paper, we have also used the cosine similarity
measure, mainly because it is not affected by length
of the document and thus yields a better result for
identifying the document similarity.

This functionality was written in python and we
used the sklearn library (scikit-learn 2023) to detect
the cosine similarity. When the user queries for a
book, the information retrieval service computes the
cosine similarity between the query vector and all the
feature vectors in the database and computes the
result, which is the cosine similarity of the query with
all the other books in the document corpus.

After finding the similarity score for all the
documents with the query vector, it is important to

retrieve the top similar books and return them to the
user. To retrieve only the top n books, where n is set
to 10 from the list of all the books in the corpus, we
created the get_top_n_neighbour method. It identifies
only the top 10 retrieved books, which are similar to
the query books and acts as a utility method, which
can be used by other services.

Before writing the code, we started with the test
scenarios, which ensured that the functionality of the
service was complete. In the test, we are passing a test
dataframe whose similarity values are already known,
and assertions are performed to test if the retrieved
similarity rankings are correct. This test was useful
because we figured out from the test that the
cosine_similarity() method from the sklearn library
(scikit-learn 2023) returns similarity scores in
ascending order. Consequently, we modified our code
so that it returns the similarity in descending order,
which means that the books with highest similarity
score should be fetched first.

4.5 Explanation Service

The explanation service is a user facing service,
meaning it consists of a front-end user interface,
which would be exposed to the user on click of a
button that explains why the query book matches with
the selected book. Explainability in NLP systems has
been explored in various researches to open the black
box layer and provide the interpretability to the users.

In (Zini and Awad 2023), a survey on the
explainability of deep models is presented and the
authors decompose the explainability methods into
three categories such as word embeddings, inner
working of NLP models, and model’s decision. Out
of these aspects, we provide explanation that focusses
only on the inner working of the model. Further, in
(Danilevsky et al. 2020), the authors present a survey
on explanations in NLP systems, discussing the types
of explanations. The paper also talks about the self-
explanations generated by the models and post-hoc
explanations provided by generating explanations as
post processing techniques after prediction. In our
prototype, we focussed on two major kinds
of explanation which are generated as post-hoc

ICSBT 2023 - 20th International Conference on Smart Business Technologies

110

Figure 5: Local explanation template.

explanations. While they might not exhaustively
explain the exact position of a retrieved item in the
ranking, they at least help the user to get somewhat of
an idea on the reasoning behind the assessment,
allowing them to evaluate the reasonability and
suitability for their purpose.

4.5.1 Global Explanation

The global explanation explains the retrieval system
on the whole by giving an explanation to the user to
understand the factors behind retrieving the results by
the system.

It helps the user in understanding the assessment
on a high level. This explanation is written in the
frontend side of the application where the features on
which the retrieval system works are displayed to the
user. We used the AngularJS framework, which is
based on typescript to design and develop the front-
end of the application. We explain that the major
features considered while retrieving are content of
books, meta data information such as author, genre,
named entities, and emotions of the contents.

4.5.2 Local Explanation

The local explanation is a backend service written in
the python flask framework. When the user clicks on
the corresponding button in the web page, it invokes
the local explanation functionality. It checks the
similarity and constructs the explanation in a specific
syntax and returns the explanation as a json response.

As shown in Figure 5, we constructed the
explanation telling the user about the primary and
secondary genre of the book. We also provide
explanation about the author of the book and the most
occurring named entities in the book.

5 DISCUSSION

Even though the created prototype in its current scale
is not necessarily a BD application, it still serves as a
demonstration of the utility of TDD for the

implementation of data intensive systems. This is
because it is implemented test driven and shows the
processing of heterogeneous data from different
sources in a distributed manner, which are then fused
for further utilization. Hence, for a real-world
application, it could be scaled up, still using the same
principles that were applied here.

While the prototype delivers satisfying results as
determined during manual system testing, showing
that the followed approach was generally suitable, the
use of TDD also explicitly benefitted the
development in several ways. For once, it helped to
detect and avoid errors during the code writing and
helped to install confidence in the created code.
Further, it helped to shape the design not only by
breaking the functionality down, but also by showing
that a considered problem solving approach did not
deliver the desired results and an alternative had to be
found (cf. section 4.3.3). On top of that, it also
allowed to save some time in one instance by helping
to figure out the specificities of a utilized function
without the need to consult the documentation (cf.
section 4.4).

Thereby, the application of TDD based on
microservices showed its worth for the
implementation of data intensive systems by
benefiting the development process. Hence, it
generally seems reasonable to apply it also on large
scale projects, at least if they are heavily relying on a
high quality, and also to further explore the approach
in the future.

6 CONCLUSION

While TDD is generally not a new approach, it is still
somewhat underexplored in the context of data
intensive systems. Yet, with their growing influence
on today’s society, assuring their quality becomes
increasingly important. To bridge this gap, in the
publication at hand, the test driven implementation of
an information retrieval system was demonstrated
and discussed. This is done on the basis of

Exploring the Test Driven Development of an Information Retrieval System

111

microservices, making use of the architecture’s
property that varying programming languages and
frameworks can be mixed to use the most favourable
combination. Further, while the implemented
application is only a prototype, it already comprises
elements of distributed processing, which would
allow for further upscaling. However, already on this
size, indications for its feasibility and usefulness
could be determined.

To gain further insights on the applicability of the
approach as well as its strengths, weaknesses,
challenges, and opportunities, in the future, additional
data intensive applications of varying scales should
be implemented in a test driven manner. Moreover,
the knowledge and opinions of experienced
practitioners should be gathered through expert
interviews, to be able to also incorporate the industry
perspective on the proposed approach and its
application in a real-world scenario.

REFERENCES

Ataei, P., and Staegemann, D. (2023). “Application of
microservices patterns to big data systems,” Journal of
Big Data (10:1) (doi: 10.1186/s40537-023-00733-4).

Bai, S., Liu, R., Su, Z., Zhang, C., and Jin, W. (2014).
“Incremental robust local dictionary learning for visual
tracking,” in 2014 IEEE International Conference on
Multimedia and Expo (ICME), Chengdu, China.
14.07.2014 - 18.07.2014, IEEE, pp. 1-6 (doi:
10.1109/ICME.2014.6890262).

Bailey, M. M. (2019). “NRCLex 4.0,” available at
https://pypi.org/project/NRCLex/, accessed on May 3
2023.

Bandy, J., and Vincent, N. (2021). “Addressing
"Documentation Debt" in Machine Learning Research:
A Retrospective Datasheet for BookCorpus,”

Beck, K. (2015). Test-Driven Development: By Example,
Boston: Addison-Wesley.

Benjelloun, S., Aissi, M. E. M. E., Loukili, Y., Lakhrissi,
Y., Ali, S. E. B., Chougrad, H., and Boushaki, A. E.
(2020). “Big Data Processing: Batch-based processing
and stream-based processing,” in 2020 Fourth
International Conference On Intelligent Computing in
Data Sciences (ICDS), Fez, Morocco. 21.10.2020 -
23.10.2020, IEEE, pp. 1-6 (doi:
10.1109/ICDS50568.2020.9268684).

Crispin, L. (2006). “Driving Software Quality: How Test-
Driven Development Impacts Software Quality,” IEEE
Software (23:6), pp. 70-71 (doi:
10.1109/MS.2006.157).

Daase, C., Staegemann, D., Volk, M., and Turowski, K.
(2023). “Creation of a Framework and a Corresponding
Tool Enabling the Test-Driven Development of
Microservices,” Journal of Software, pp. 55-69 (doi:
10.17706/jsw.18.2.55-69).

Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas,
B., and Sen, P. (2020). “A Survey of the State of
Explainable AI for Natural Language Processing,” (doi:
10.48550/arXiv.2010.00711).

Davies, K., Keet, C. M., and Lawrynowicz, A. (2019).
“More Effective Ontology Authoring with Test-Driven
Development and the TDDonto2 Tool,” International
Journal on Artificial Intelligence Tools (28:7) (doi:
10.1142/S0218213019500234).

Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., and Juristo,
N. (2017). “A Dissection of the Test-Driven
Development Process: Does It Really Matter to Test-
First or to Test-Last?” IEEE Transactions on Software
Engineering (43:7), pp. 597-614 (doi:
10.1109/tse.2016.2616877).

Janzen, D., and Saiedian, H. (2005). “Test-driven
development concepts, taxonomy, and future
direction,” Computer (38:9), pp. 43-50 (doi:
10.1109/MC.2005.314).

Karlesky, M., Williams, G., Bereza, W., and Fletcher, M.
(2007). “Mocking the Embedded World: Test-Driven
Development, Continuous Integration, and Design
Patterns,” in Embedded Systems Conference, San Jose,
California, USA. 01.04.2007 - 05.04.2007, UBM
Electronics.

Keet, C. M., and Ławrynowicz, A. (2016). “Test-Driven
Development of Ontologies,” in The Semantic Web.
Latest Advances and New Domains, H. Sack, E.
Blomqvist, M. d'Aquin, C. Ghidini, S. P. Ponzetto and
C. Lange (eds.), Cham: Springer International
Publishing, pp. 642-657 (doi: 10.1007/978-3-319-
34129-3_39).

Korenius, T., Laurikkala, J., and Juhola, M. (2007). “On
principal component analysis, cosine and Euclidean
measures in information retrieval,” Information
Sciences (177:22), pp. 4893-4905 (doi: 10.1016/
j.ins.2007.05.027).

Mansouri, A., Affendey, L. S., and Mamat, A. (2008).
“Named entity recognition approaches,” International
Journal of Computer Science and Network Security
(8:2), pp. 339-344.

Mohammad, S. M., and Turney, P. (2011). “NRC Word-
Emotion Association Lexicon,” available at
http://saifmohammad.com/WebPages/NRC-Emotion-
Lexicon.htm, accessed on May 3 2023.

NLTK Project. (2023). “Natural Language Toolkit,”
available at https://www.nltk.org/, accessed on May 3
2023.

Ristanti, P. Y., Wibawa, A. P., and Pujianto, U. (2019).
“Cosine Similarity for Title and Abstract of Economic
Journal Classification,” in 2019 5th International
Conference on Science in Information Technology
(ICSITech), Yogyakarta, Indonesia. 23.10.2019 -
24.10.2019, IEEE, pp. 123-127 (doi: 10.1109/
ICSITech46713.2019.8987547).

Sangwan, R. S., and Laplante, P. A. (2006). “Test-Driven
Development in Large Projects,” IT Professional (8:5),
pp. 25-29 (doi: 10.1109/MITP.2006.122).

ICSBT 2023 - 20th International Conference on Smart Business Technologies

112

scikit-learn. (2023). “scikit-learn Machine Learning in
Python,” available at https://scikit-learn.org/stable/,
accessed on May 3 2023.

Shahin, M., Ali Babar, M., and Zhu, L. (2017). “Continuous
Integration, Delivery and Deployment: A Systematic
Review on Approaches, Tools, Challenges and
Practices,” IEEE Access (5), pp. 3909-3943 (doi:
10.1109/ACCESS.2017.2685629).

Shakir, A., Staegemann, D., Volk, M., Jamous, N., and
Turowski, K. (2021). “Towards a Concept for Building
a Big Data Architecture with Microservices,” in
Proceedings of the 24th International Conference on
Business Information Systems, Hannover,
Germany/virtual. 14.06.2021 - 17.06.2021, pp. 83-94
(doi: 10.52825/bis.v1i.67).

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M.,
and Erdogmus, H. (2010). “What Do We Know about
Test-Driven Development?” IEEE Software (27:6), pp.
16-19 (doi: 10.1109/MS.2010.152).

Slaats, T., Debois, S., and Hildebrandt, T. (2018). “Open to
Change: A Theory for Iterative Test-Driven
Modelling,” in Business Process Management, M.
Weske, M. Montali, I. Weber and J. Vom Brocke (eds.),
Cham: Springer International Publishing, pp. 31-47
(doi: 10.1007/978-3-319-98648-7_3).

soskek. (2019). “bookcorpus,” available at
https://github.com/soskek/bookcorpus, accessed on
May 3 2023.

spaCy. (2023). “Industrial-Strength Natural Language
Processing,” available at https://spacy.io/, accessed on
May 3 2023.

Staegemann, D., Volk, M., Byahatti, P., Italiya, N.,
Shantharam, S., Chandrashekar, A., and Turowski, K.
(2022a). “Implementing Test Driven Development in
the Big Data Domain: A Movie Recommendation
System as an Exemplary Case,” in Proceedings of the
7th International Conference on Internet of Things, Big
Data and Security, Online Streaming, --- Select a
Country ---. 22.04.2022 - 24.04.2022, SCITEPRESS -
Science and Technology Publications, pp. 239-248
(doi: 10.5220/0011085600003194).

Staegemann, D., Volk, M., Jamous, N., and Turowski, K.
(2020). “Exploring the Applicability of Test Driven
Development in the Big Data Domain,” in Proceedings
of the 31st Australasian Conference on Information
Systems (ACIS), Wellington, New Zealand.
01.12.2020 - 04.12.2020.

Staegemann, D., Volk, M., Lautenschläger, E., Pohl, M.,
Abdallah, M., and Turowski, K. (2021). “Applying Test
Driven Development in the Big Data Domain – Lessons
From the Literature,” in Proceedings of the 2021
International Conference on Information Technology
(ICIT), Amman, Jordan. 14.07.2021 - 15.07.2021,
IEEE, pp. 511-516 (doi: 10.1109/ICIT52682.
2021.9491728).

Staegemann, D., Volk, M., Perera, M., and Turowski, K.
(2022b). “Exploring the Test Driven Development of a
Fraud Detection Application using the Google Cloud
Platform,” in Proceedings of the 14th International
Joint Conference on Knowledge Discovery,

Knowledge Engineering and Knowledge Management,
Valletta, Malta. 24.10.2022 - 26.10.2022,
SCITEPRESS - Science and Technology Publications,
pp. 83-94 (doi: 10.5220/0011559000003335).

Volk, M., Staegemann, D., Trifonova, I., Bosse, S., and
Turowski, K. (2020). “Identifying Similarities of Big
Data Projects–A Use Case Driven Approach,” IEEE
Access (8), pp. 186599-186619 (doi: 10.1109/
ACCESS.2020.3028127).

Williams, L., Maximilien, E. M., and Vouk, M. (2003).
“Test-driven development as a defect-reduction
practice,” in Proceedings of the 14th ISSRE, Denver,
Colorado, USA. 17.11.2003 - 20.11.2003, IEEE, pp.
34-45 (doi: 10.1109/ISSRE.2003.1251029).

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun,
R., Torralba, A., and Fidler, S. (2015). “Aligning Books
and Movies: Towards Story-Like Visual Explanations
by Watching Movies and Reading Books,” in 2015
IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile. 07.12.2015 - 13.12.2015,
IEEE, pp. 19-27 (doi: 10.1109/ICCV.2015.11).

Zini, J. E., and Awad, M. (2023). “On the Explainability of
Natural Language Processing Deep Models,” ACM
Computing Surveys (55:5), pp. 1-31 (doi:
10.1145/3529755).

Exploring the Test Driven Development of an Information Retrieval System

113

