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Abstract: Today’s society is heavily driven by data intensive systems, whose application promises immense benefits. 
However, this only applies when they are utilized correctly. Yet these types of applications are highly 
susceptible to errors. Consequently, it is necessary to test them comprehensively and rigorously. One method 
that has an especially high focus on test coverage is the test driven development (TDD) approach. While it 
generally has a rather long history, its application in the context of data intensive systems is still somewhat 
novel. Though, rather recently, a microservice-based test driven development concept has been proposed for 
the big data domain. The publication at hand explores its feasibility regarding the application in an actual 
project. For this purpose, a prototypical, microservice based information retrieval system is implemented in a 
test driven way with particular consideration for scalability. 

1 INTRODUCTION 

Test driven development (TDD) is a popular 
approach for developing software. However, despite 
the associated potential advantages and some 
corresponding works (Daase et al. 2023; Staegemann 
et al. 2022b; Staegemann et al. 2022a), it is still rather 
underexplored in the context of big data (BD) and the 
related applications. Here, in our study we apply TDD 
to implement an information retrieval system. While 
the presented prototypical implementation is rather 
small in a BD context, it still showcases a typical BD 
use case (Volk et al. 2020) and the presented 
architectural approach allows for further scaling. For 
this purpose, we write unit tests starting from 
tokenization to similarity computation. 

However, it has to be noted that the primary focus 
of the publication at hand is to further explore the use 
of the TDD approach itself. Therefore, the 
information retrieval system is just a vehicle to 
achieve this. Thereby, it is in our interest to further 
increase the complexity, which we did my adding an 
explainability component to the posed task. 

Oftentimes, machine learning models are black 
box models which compute the results without 
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explaining how the results were computed. These 
black box models are difficult to interpret making it 
very hard to understand the reason behind the 
outcome. In order to make it more interpretable, the 
features of the model can be exploited to provide 
basic explanations to at least somewhat open the 
black box. This helps to verify the outcome if the 
model works correctly and helps in gaining more trust 
from the user. 

In our proposed system, we try to improve the 
trust and fairness of the retrieval system by providing 
valid explanations on how results are retrieved. We 
try to transfer the system into a white box system by 
providing necessary explanation and analyse how the 
system performance can be improved using such 
explanations. We follow test driven development 
during each phase of the development cycle, and we 
develop the system as microservice architecture so 
that the components are loosely coupled and largely 
scalable. 

The publication is structured as follows. 
Succeeding this introduction, the test driven 
development approach is described. Afterwards, the 
general design of the prototypical application is 
outlined. This is followed by a section dedicated to 
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the actual implementation. Then, the findings are 
discussed. Finally, a conclusion of the work is given. 

2 TEST DRIVEN DEVELOPMENT 

When consulting the scientific literature (Staegemann 
et al. 2021), the application of TDD is highlighted as 
a promising way to improve the quality of an 
implementation as long as the associated increase in 
development time and effort is considered an 
acceptable trade-off. 

In general, the approach aims at improving the 
quality of the product under consideration by mainly 
influencing two aspects. It aims to increase test 
coverage, which helps to find and subsequently fix 
problems that occurred during the implementation of 
the artifact under consideration. Further, TDD also 
influences the design process itself by leading to a 
more manageable and pre-planned structure that 
helps to avoid errors and incompatibilities (Crispin 
2006; Shull et al. 2010). The main application area is 
software development, but process modelling (Slaats 
et al. 2018), the special case of BD application 
implementation (Staegemann et al. 2020), and 
ontology development (Davies et al. 2019; Keet and 
Ławrynowicz 2016) can also be found in the literature.  

In "traditional" software development, a function 
or change to be realized is implemented and then 
tested. In contrast, the test-driven approach reverses 
the order of implementation and testing. That is, after 
the desired change is designed, it is broken down into 
its smallest meaningful parts (Fucci et al. 2017). For 

these, one or more tests are written to ensure that the 
required functionality is provided. Then the tests are 
run, and are expected to fail because the actual 
functionality is not yet implemented (Beck 2015). 
Only then is the production code written to provide 
the new functionality. Factors such as the elegance of 
the code are not yet considered; instead, the simplest 
solution is sought. Once the code is created, it must 
pass the previously written tests (Crispin 2006). If it 
is successful, the code is revised to improve aspects 
such as readability or compliance with standards and 
best practices (Beck 2015). In this process, its 
functionality is constantly validated against the tests. 

However, this approach not only affects test 
coverage, but also the design of the software, since 
small work packages are generated instead of large 
tasks. In addition, this focus on incremental changes 
(Williams et al. 2003), where testing and 
implementation are interwoven, provides more timely 
feedback to the developer by creating short test cycles 
(Janzen and Saiedian 2005). Although most tests are 
written specifically for these small units, other tests 
such as integration, system, or acceptance tests can 
also be used in TDD (Sangwan and Laplante 2006). 

In addition, to fully exploit the potential of TDD 
without tying up the developers' attention by forcing 
them to manually execute the tests, TDD is often used 
in conjunction with test automation in a continuous 
integration (CI) context (Karlesky et al. 2007; Shahin 
et al. 2017). Here, to ensure the latest code addition 
or change does not negatively impact existing parts of 
the implementation, a CI server automatically starts 
and re-executes all applicable tests when a new code 
commit is registered by the versioning system. 

 

 

Figure 1: The implemented microservices. 
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3 THE DESIGN 

As suggested in (Staegemann et al. 2020), we chose 
to design the application as a microservice 
architecture, which is more modular and scalable 
compared to a monolithic implementation (Ataei and 
Staegemann 2023). Figure 1 shows all the services 
that are part of our information retrieval system.  

We have developed multiple services which use 
their own database. For the login service, we had to 
choose between relational and non-relational 
databases. Since the login data of the user is 
structured, we decided to implement it in the postgres 
relational database. For convenience reasons, we 
decided to use an on-premise database to run the 
postgres database locally. We used the java 
programming language and the Spring Boot 
framework for development of the login microservice. 
Besides that, we used the python programming 
language and the flask framework for the 
development of other services such as the Data 
Exploration Service, the Feature Extraction Service, 
and the Information Retrieval Service. In this 
prototypical implementation, these services use the 
computer’s internal file system for processing and 
storage of documents. However, in a real-world 
scenario, this would of course also be handled 
through distinct databases. The information retrieval 
components are developed in python as there are 
plenty of libraries available as open source to use 
them for various functionalities. 

Benjelloun at al. (2020) did a comparative study 
of different techniques used for processing data in 
data heavy applications. These data processing 
methods adhere to the same cycle such as the data 

collection, data preparation, data input, data 
processing, data output/interpretation, and data 
storage. The different methods of processing data are 
batch processing, stream processing, and real time 
processing. The proposed system doesn’t require data 
to be processed frequently in real time. Therefore, we 
designed a pipeline that can process data in batches 
and schedule the data to be extracted as chunks. The 
data that we processed consisted of 13499 books in 
varying sizes and the size of the dataset was almost 
seven GB. 

Although this is already a somewhat big size, it is 
still a rather low scale in the context of BD. Yet, for a 
prototypical scenario it should be sufficient. However, 
the goal is, naturally, to showcase the suitability in a 
BD scenario. Therefore, to process it, we employed a 
pipeline, which we term as Combi-Pipeline, for 
feature extraction. The term Combi-Pipeline refers to 
the pipeline that we designed which has the 
combination of data from google drive and the local 
file system and merged them to feature vectors. As 
shown in Figure 2, we used this Combi-Pipeline to 
extract the features such as named entity recognition 
and term frequency-inverse document 
frequency (tf-idf) vectors. The features were 
extracted by dividing the data into 14 chunks having 
1000 books in each chunk except the last chunk which 
has 499 books. This shall show the general possibility 
to distribute the processing across multiple different 
(types of) workers. 

For the design and development of front-end web 
pages, there are multiple frameworks such as 
AngularJS, React, Marko js etc. available. The 
JavaScript framework AngularJS was developed to 
enhance HTML’s syntax. By using this framework, 
developers may create rich internet applications more  

 

Figure 2: The feature extraction pipeline. 
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quickly and easily. Further, AngularJS allows the 
development of application as single page 
applications and provides techniques for boosting 
HTML, whereas many JavaScript frameworks 
concentrate on enhancing the capabilities of 
JavaScript itself. AngularJS enables developers to 
avoid the complicated workarounds that are typically 
required when attempting to construct responsive 
web apps with HTML front ends by introducing 
features like data-binding. Therefore, we chose 
Angular JS for developing the front-end of our system. 

4 THE IMPLEMENTATION 

The entire retrieval system architecture is shown in 
Figure 3. There are two back-end blocks and a front-
end block in our retrieval system. As mentioned 
earlier, the front-end web application is developed in 
Angular JS, a framework based on typescript and the 
back end units are developed using python and java. 
We have used Springboot (a java-based framework) 
for the implementation of the login service. The user 
data is persisted in the postgres database as shown. 

We have used flask (a python-based framework) 
for the implementation of the data exploration service, 
the feature extraction service, and the information 
retrieval service. As described in the previous section, 
in this prototypical implementation, these services 
use the local file system as the database storage. The 
user communicates with the front-end web 
application, which, in turn, queries from the login 
service for authentication. Once the authentication is 
successful, the python service for retrieval is invoked. 

The services for feature exploration and 
extraction were already invoked and loaded into the 
file system so as to reduce the response time for each 

query. The architecture is designed based on diverse 
languages such as java script, java, and python for the 
purpose of highlighting the possibility of mixing 
different programming languages when using a 
microservice architecture (Shakir et al. 2021). Further, 
it also allowed to explore the test driven methodology 
with different frameworks that are used by the 
languages. 

4.1 Login Service 

We developed the service starting with writing the 
tests for the functionalities involved with the service.  

The login service has three major methods used 
for login purposes. The getUser() method is used for 
logging an existing user into the application. The user 
triggers a post request with username and password 
in the request payload. The addUser() method is used 
for registering a new user to the application. This is a 
post http request, which gets parameters such as 
username, email, password, and designation. The 
designation is an enum variable and it can be 
“student”, “researcher” or “others”. This is tracked so 
that we can perform analytic on who is searching for 
what books in the future. The updataUser() method is 
designed for updating the existing user information. 
The user shall update their username, email, 
designation and password by triggering a PUT http 
request. Further, there is also a getUsers() method  to 
fetch all the users from the database. This is not used 
currently but it can be used in the future to report 
certain metrics based on the users in the system. As 
we store information about the designation of users, 
we shall use this to derive certain analytics such as 
users tagged as "Researchers" search for a particular 
book genre and users tagged as "Students" search for 
particular books. 

 

Figure 3: The architecture of the retrieval system prototype. 
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The following unit test cases were derived from 
our use cases of adding user, updating user, getting 
user and deleting user: 

 Successful addition of user into database 
on correct values 

 Error message on passing incorrect 
username and password 

 Encryption of password while inserting 
into database 

 Decryption of password while 
authenticating users from database 

 Test to check if the user is updated 
correctly for the PUT http request 

4.2 Data Exploration Service 

The data is extracted from dataset “The book Corpus” 
(Zhu et al. 2015) since there are many researches 
being performed in the field of NLP using the book 
corpus dataset. Bandy et al. (2021) discuss certain 
limitations involved with the book corpus dataset but 
also highlight how it is used in popular systems such 
as Open-AIs GPT models, further emphasizing its 
significance. 

We have also extracted metadata of the dataset 
from a GitHub account that also had the actual dataset 
(soskek 2019). Note that the actual book dataset and 
metadata json listed in the GitHub are fetched from 
different scraped sources and so they have different 
book counts and orders. While the book dataset 
comprised 17869 titles, the metadata set had only 
15000 entries. 

Hence, we had to find the intersecting books in 
the two datasets to merge the two datsets to construct 
the master dataset. This is done in the 
create_meta_data() method. The pick 
_book_document_from_file_system method is 
created because we require to choose only the books 
that are available in the metadata dataset to perform 
all subsequent tasks such as pre-processing and 
feature extraction. To do so, we decided to go with a 
simple approach. We created a new column called 
“exists” in the meta data. This column determines if 
the book title in the metadata exists in the books in 
file system. The “exists” value is true if the book 
exists in our file system or false if it does not exist in 
the file system. All the book names in the file system 
are scanned and the column “exists” is populated if 
the book is present in the file system.  

Further, as the name suggests, the save_into_csv 
method saves the updated meta_data.csv into the file 
system. In the service’s other methods, we modify the 
existing meta data file and save the updated version 
into the file system. Thereby, this service acts as a 

helper method to accomplish the task of saving the 
metadata into the local disk. 

The data exploration service is developed in the 
python programming language using the flask 
framework to facilitate the microservice architecture. 
We have written the tests using the unittest library in 
python and we used the mock class from the same 
library for mocking method calls. Before starting with 
the functionalities on the data extraction and 
exploration, we began with the test cases that are 
listed below: 

 Test if the specific directory in the local disk 
is being scanned for the books and meta data 
is created 

 Tests asserting the size of metadata records, 
number of columns, books retrieved are 
verified 

 Since we are excluding books which have a 
number of words greater than 200000 from 
the dataset (to have a more homogeneous 
set), there is a test that explicitly checks if 
the dataset includes any book over 200000 
words 

 As we have two different datasets extracted 
from different sources one containing meta 
data in json format and the other containing 
the books as compressed files, we had to 
write a test to match the metadata with the 
book dataset within the directory. So, only 
the books that are present in the local 
directory are used for processing while the 
books that only have meta data and don’t 
have an actual book associated in the local 
directory are ignored 

All these tests were written keeping in mind that 
the core functionality of the data extraction should not 
be hindered, and any possibility of functional errors 
must be eliminated. 

4.3 Feature Extraction Service 

The data that is extracted from the previous step is 
passed to the feature extraction step where we derive 
the features from the books and the meta data 
available. The feature extraction service is developed 
with the python programming language using the 
flask framework. In this step, we extract the features 
by converting books to tf-idf vectors and combined it 
with a set of handcrafted features to yield better 
results for the retrieval system. The feature extraction 
pipeline can be divided into three parts with their own 
functionalities. These are further described in the 
following. 
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4.3.1 Extraction of Hand-Crafted Features 
Such as Named Entities and NRC 
Emotions 

We decided on a few handcrafted features such as 
Named Entities and NRC emotions for our retrieval 
system. 

Named Entity Recognition (NER) is an important 
feature (Mansouri et al. 2008) in the text retrieval 
domain as it can detect the person, place, quantity, 
time etc., which is useful for retrieval systems. We 
used a popular library called spaCy (spaCy 2023) for 
detecting the named entities in the books. SpaCy 
provides pre-trained model with set of named entities 
and it recognises the tokens and predicts the named 
entity for the token. 

Moreover, sentiment analysis is an important 
aspect of information retrieval. In our work, we have 
used the NRCLex library (Bailey 2019) to detect the 
emotions from the book. This library uses the 
lexicons from the NRC Word-Emotion Association 
Lexicon (Mohammad and Turney 2011). This library 
scans the dataset for specific words and classifies the 
words based on the emotions. The output of this is the 
word count of emotions such as anticipation, joy, fear, 
or sadness. 

4.3.2 Extraction of the tf-idf Vectors from 
the Books 

In all the NLP tasks, the natural language should be 
converted to tokens for identifying the features. In our 
tokenization process, we scan through the dataset and 
convert all the books as corresponding tokens. The 
nltk library (NLTK Project 2023) in python is used 
for creating tokens out of the books. Thus, we 
tokenize the entire document corpus using the library. 

In our approach we used tf-idf to convert the 
books to vectors using the python based library 
sklearn (scikit-learn 2023). In order to perform tf-idf 
vectorization using sklearn, we passed the optional 
parameter max_features to the method 
TfidfVectorizer in the library.  

Further, we have filtered the stop words occurring 
in the documents. We have set a maximum features 
limit of 300000 so as to include only the first 300000 
features with the highest weightage. Therefore, after 
the tokenization step, the tokens are moved to the stop 
word removal where we remove stop words from the 
tokens. Then we perform stemming where words with 
the same stem are grouped into one word and finally, 
we perform the tf-idf vectorization on the remaining 
words. After the vectorization we collect the features 
in a pandas dataframe data structure and store it into 
a csv file in the file system. 

4.3.3 Principal Component Analysis and 
Feature Combination 

After the steps described above, it is necessary to 
group all features that we constructed into a single file 
so that it becomes easy for processing. It is important 
to perform principal component analysis (PCA) on 
the tf-idf features so to reduce the error caused by a 
high dimensionality. We also merged all the meta 
data with the PCA features and performed label 
encoding to our feature set. 

In (Korenius et al. 2007), the authors explain how 
the search space can be reduced for text retrieval 
systems using PCA. They also establish the relation 
between cosine measure and the euclidean distance in 
association with PCA. Performing PCA on the entire 
dataset was challenging as we could not fit the entire 
feature space in the main memory for processing. 

Additionally, when considering that this is only a 
prototypical implementation geared towards BD 
applications, this issue would be even bigger on larger 
scale. In response, we tried out multiple approaches 
to perform PCA. The first approach is to split the data 
into chunks and perform PCA. The chunk size was set 
to 1000 books and after computing PCA for all the 
books, we combined the PCA vectors. As we are 
performing TDD, we started by writing the test for 
this approach. However, when running it, we 
identified that the results are not identical and so we 
cannot proceed chunking books for PCA as it yields 
incorrect results.  

Another approach is discussed in (Bai et al. 2014). 
Here, the authors propose an incremental learning for 
a robust visual tracking systems which performs the 
PCA in an incremental way without the results being 
impacted. We used the method IncrementalPCA in 
the sklearn library (scikit-learn 2023) to perform PCA 
for the books dataset so that we arrive at the correct 
values for PCA. 

The reason why we highlight the first (failed) 
attempt is to emphasize that the test driven approach 
helped in arriving at the correct method and yielding 
correct results when performing PCA. This was one 
such instance where TDD helped to detect the flaws 
in the methods chosen for the development of our 
retrieval system. After performing PCA, we have 
reduced the multi-dimensional feature space into a 
three-dimensional space and thus reduced 300000 
terms (features) to three features. 

After effectively performing the PCA on the tf-idf 
features and reducing the dimensions, our PCA 
features were ready to be integrated with the other 
features. To do so, we merged the PCA features with 
NER features, NRC emotions, and the meta data to 
construct the final feature set. This feature set consists  
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Figure 4: Operational sequence of the information retrieval service. 

of 37 features. These features had to be further taken 
for encoding as the text features should be converted 
to numbers. 

The retrieval system that we developed works on 
similarity metric (cosine similarity) to find the 
similarity between the data points (books). In order to 
compute similarity, it was necessary to convert all the 
text to numbers. We have features such as authors, 
category1 (genre 1), category2 (genre 2) and 
category3 (genre 3), which are text-based features. 
The number of unique authors in the dataset found is 
8283. The category1 feature consist of two unique 
categories which are fiction or non-fiction. The 
category2 feature consist of 63 unique categories 
whereas the category3 feature consist of 889 unique 
categories. Thus, these features are converted to 
numbers using label encoders in the sklearn library 
(scikit-learn 2023). 

4.4 Information Retrieval Service 

The Information retrieval service is the user facing 
service where the user interacts with the system and 
searches for the required books. As the name suggests, 
this service retrieves the books matching to the query 
book provided by the user. Its operational sequence is 
depicted in Figure 4. 

In (Ristanti et al. 2019), the authors describe how 
the cosine similarity measure was used to detect 
similarity in documents and evaluate the performance 
after applying K-fold validations. As explained in the 
paper, we have also used the cosine similarity 
measure, mainly because it is not affected by length 
of the document and thus yields a better result for 
identifying the document similarity. 

This functionality was written in python and we 
used the sklearn library (scikit-learn 2023) to detect 
the cosine similarity. When the user queries for a 
book, the information retrieval service computes the 
cosine similarity between the query vector and all the 
feature vectors in the database and computes the 
result, which is the cosine similarity of the query with 
all the other books in the document corpus. 

After finding the similarity score for all the 
documents with the query vector, it is important to 

retrieve the top similar books and return them to the 
user. To retrieve only the top n books, where n is set 
to 10 from the list of all the books in the corpus, we 
created the get_top_n_neighbour method. It identifies 
only the top 10 retrieved books, which are similar to 
the query books and acts as a utility method, which 
can be used by other services. 

Before writing the code, we started with the test 
scenarios, which ensured that the functionality of the 
service was complete. In the test, we are passing a test 
dataframe whose similarity values are already known, 
and assertions are performed to test if the retrieved 
similarity rankings are correct. This test was useful 
because we figured out from the test that the 
cosine_similarity() method from the sklearn library 
(scikit-learn 2023) returns similarity scores in 
ascending order. Consequently, we modified our code 
so that it returns the similarity in descending order, 
which means that the books with highest similarity 
score should be fetched first. 

4.5 Explanation Service 

The explanation service is a user facing service, 
meaning it consists of a front-end user interface, 
which would be exposed to the user on click of a 
button that explains why the query book matches with 
the selected book. Explainability in NLP systems has 
been explored in various researches to open the black 
box layer and provide the interpretability to the users. 

In (Zini and Awad 2023), a survey on the 
explainability of deep models is presented and the 
authors decompose the explainability methods into 
three categories such as word embeddings, inner 
working of NLP models, and model’s decision. Out 
of these aspects, we provide explanation that focusses 
only on the inner working of the model. Further, in 
(Danilevsky et al. 2020), the authors present a survey 
on explanations in NLP systems, discussing the types 
of explanations. The paper also talks about the self-
explanations generated by the models and post-hoc 
explanations provided by generating explanations as 
post processing techniques after prediction. In our 
prototype, we focussed on two major kinds  
of   explanation   which   are   generated   as  post-hoc 
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Figure 5: Local explanation template. 

explanations. While they might not exhaustively 
explain the exact position of a retrieved item in the 
ranking, they at least help the user to get somewhat of 
an idea on the reasoning behind the assessment, 
allowing them to evaluate the reasonability and 
suitability for their purpose. 

4.5.1 Global Explanation 

The global explanation explains the retrieval system 
on the whole by giving an explanation to the user to 
understand the factors behind retrieving the results by 
the system. 

It helps the user in understanding the assessment 
on a high level. This explanation is written in the 
frontend side of the application where the features on 
which the retrieval system works are displayed to the 
user. We used the AngularJS framework, which is 
based on typescript to design and develop the front-
end of the application. We explain that the major 
features considered while retrieving are content of 
books, meta data information such as author, genre, 
named entities, and emotions of the contents. 

4.5.2 Local Explanation 

The local explanation is a backend service written in 
the python flask framework. When the user clicks on 
the corresponding button in the web page, it invokes 
the local explanation functionality. It checks the 
similarity and constructs the explanation in a specific 
syntax and returns the explanation as a json response. 

As shown in Figure 5, we constructed the 
explanation telling the user about the primary and 
secondary genre of the book. We also provide 
explanation about the author of the book and the most 
occurring named entities in the book. 

5 DISCUSSION 

Even though the created prototype in its current scale 
is not necessarily a BD application, it still serves as a 
demonstration of the utility of TDD for the 

implementation of data intensive systems. This is 
because it is implemented test driven and shows the 
processing of heterogeneous data from different 
sources in a distributed manner, which are then fused 
for further utilization. Hence, for a real-world 
application, it could be scaled up, still using the same 
principles that were applied here. 

While the prototype delivers satisfying results as 
determined during manual system testing, showing 
that the followed approach was generally suitable, the 
use of TDD also explicitly benefitted the 
development in several ways. For once, it helped to 
detect and avoid errors during the code writing and 
helped to install confidence in the created code. 
Further, it helped to shape the design not only by 
breaking the functionality down, but also by showing 
that a considered problem solving approach did not 
deliver the desired results and an alternative had to be 
found (cf. section 4.3.3). On top of that, it also 
allowed to save some time in one instance by helping 
to figure out the specificities of a utilized function 
without the need to consult the documentation (cf. 
section 4.4). 

Thereby, the application of TDD based on 
microservices showed its worth for the 
implementation of data intensive systems by 
benefiting the development process. Hence, it 
generally seems reasonable to apply it also on large 
scale projects, at least if they are heavily relying on a 
high quality, and also to further explore the approach 
in the future. 

6 CONCLUSION 

While TDD is generally not a new approach, it is still 
somewhat underexplored in the context of data 
intensive systems. Yet, with their growing influence 
on today’s society, assuring their quality becomes 
increasingly important. To bridge this gap, in the 
publication at hand, the test driven implementation of 
an information retrieval system was demonstrated 
and discussed. This is done on the basis of 
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microservices, making use of the architecture’s 
property that varying programming languages and 
frameworks can be mixed to use the most favourable 
combination. Further, while the implemented 
application is only a prototype, it already comprises 
elements of distributed processing, which would 
allow for further upscaling. However, already on this 
size, indications for its feasibility and usefulness 
could be determined. 

To gain further insights on the applicability of the 
approach as well as its strengths, weaknesses, 
challenges, and opportunities, in the future, additional 
data intensive applications of varying scales should 
be implemented in a test driven manner. Moreover, 
the knowledge and opinions of experienced 
practitioners should be gathered through expert 
interviews, to be able to also incorporate the industry 
perspective on the proposed approach and its 
application in a real-world scenario. 
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