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Abstract: Using one year's transaction level data from a large logistics service provider, this paper employs discrete 
event simulation to assess various inventory policies for managing supply chain risks and developing 
resilience. Datasets from a large Chinese Business-To-Consumer firm (RiRiShun Logistics) specialising in 
the order fulfilment of household appliances were provided. Using the datasets, a discrete event simulation 
model of RiRiShun's distribution supply chain in two customer regions was developed using anyLogistix™ 
simulation software. A series of experiments were carried out to analyse the impact of inventory management 
policies on the performance of its supply chain in the face of disruptions. Results showed that decentralised 
inventory performed better when dealing with disruptions, while centralised inventory performed better when 
dealing with demand uncertainty. 

LIST OF ABBREVIATIONS 

Table 1: List of abbreviations. 

ALX anyLogistix™ 
B2B Business To Business
B2C Business To Consumer
CDC Central Distribution Centre
CSV Comma-Separated Values
DC Distribution Centre 
DES Discrete Event Simulation
LMH Last Mile Hub 
LTC Local Transfer Centre
RDC Regional Distribution Centre
SKU Stock Keeping Unit 
TTR Time to Recover 
TTS Time To Survive 

1 INTRODUCTION 

Modern supply chains are highly complex, with those 
firms engaged in the supply and distribution of 
business to consumer (B2C) products tending to have 
multi-echelon networks, often with centrally located, 
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larger warehouses outside urban districts and then 
smaller order fulfilment facilities located closer to 
clusters of customers. Such multi-echelon 
distribution networks present supply chain design and 
management challenges, where inventory location, 
product availability and speed of order fulfilment to 
end customers are key issues. Firms must manage the 
trade-off between holding inventory at large upstream 
warehouses, the transportation cost and order cycle 
time to end customers. In the wake of the COVID-19 
pandemic, there is additional focus on designing 
resilient supply chains, with one approach being to 
hold increased safety stock, but which comes with 
increased inventory costs. 

This paper employs simulation modelling and 
uses transaction level data from a large B2C firm 
(RiRiShun Logistics) to analyse the resilience of its 
downstream distribution network, with particular 
focus on the role of inventory management policies. 
The analysis focuses on where best to store inventory 
to lower network costs while maintaining service 
levels to customers when the network is subject to 
disruptions and increasing levels of demand variation. 
Previous research (e.g. Berman et al., 2011) shows 
that storing inventory at higher echelons mitigates 
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against downstream disruptions such as stochastic 
demand, while storing inventory at lower echelons 
better protects against supply uncertainty. 

The remainder of this paper is structured as 
follows. Section 2 summarises the findings from the 
relevant literature. A description and  preliminary 
analysis of the datasets provided by RiRiShun 
Logistics is provided in Section 3. Section 4 describes 
the development of the simulation model and the 
experiments that are carried out. Results from the 
experiments and a discussion are in Section 5. 
Conclusions, limitations and future work are outlined 
in Section 6. 

2 LITERATURE REVIEW 

This section provides a summary of the relevant 
literature related to inventory management policies, 
with particular focus on supply chain risk, as well as 
the analytical approach employed in the paper 
(Discrete Event Simulation). 

2.1 Inventory Management & Supply 
Chain Risk 

Previous research focusing on the minimisation of 
inventory costs includes Üster et al. (2008), which 
identifies four dominant pillars of inventory costs: 
stock-out, holding, transportation and opportunity 
costs. While Üster et al. (2008) focus on minimizing 
system-wide transportation costs, the research 
described in our paper focuses on the role of 
inventory allocation policies within a pre-existing 
distribution network to enhance resilience. Initial 
allocation of inventory is crucial and several methods 
for initial allocation are discussed in Liu (2016) and 
Catalán et al. (2012). Liu (2016) utilises the same data 
set as our paper and explores the impact inventory 
allocation has on transhipment and replenishment 
policies. The distance between distribution centres 
was identified as a crucial factor in the success of 
inventory policies and in lowering overall logistics 
costs. Catalán et al. (2012) explore how best to 
categorise Stock Keeping Units (SKU) so those often 
sold together are located at similar locations. The 
allocation of SKUs in different echelons is also 
discussed in Nozick & Turnquist (2001), Mao et al. 
(2019) and Li et al. (2021). The first two of these 
explain that less popular SKUs should be stored at a 
higher echelon. There, they will accumulate lower 
holding costs. This negates the additional cost they 
incur when they are ordered. These papers also 
emphasise the need to study the lower echelons of 

supply chain networks as their inventories are more 
critical to the network's profitability. Li et al. (2021) 
focus on the most popular SKU from the most popular 
client, an approach which significantly decreases the 
complexity of the real-world problem. 

Risk-pooling is a common inventory management 
tactic in the context of supply chain risk management. 
Risk pooling means concentrating stock in centralised 
locations, while risk diversification in this context 
means spreading inventory across multiple 
distribution centres (DCs) to lower the impact of 
disruptions. 

Supply chain resilience refers to "the ability of a 
system to bounce back from a setback" (Schmitt & 
Singh, 2012). The necessity for a closer examination 
of supply chain resilience has intensified since the 
COVID-19 pandemic (Ivanov & Dolgui, 2022). 
Firms no longer see disruptions as exceptional events 
but rather as part of ongoing business planning, 
leading to increased focus on designing resilient 
supply chains. 

Schmitt & Singh (2012) discuss the outcomes of 
holding inventory higher or lower in the supply chain. 
If a disruption occurs and the majority of inventory is 
held upstream, the downstream DC's inventory will 
deplete and will not be easily replenishable. 
Alternatively, if a disruption occurs when inventory 
is held further downstream, upstream production 
output will have to be reduced unless alternative 
storage facilities are available. Schmitt et al. (2015) 
investigate the applicability of risk pooling and risk 
diversification depending on the stochasticity of both 
demand and supply. It is generally accepted that 
under deterministic supply and stochastic demand, a 
centralised inventory is preferred as the demand 
variance of each demand can be pooled together, 
lowering operational costs. Conversely, if supply is 
stochastic and demand is deterministic, a less 
centralised approach is favourable as disruptions will 
impact the entire system less. Berman et al. (2011) 
found that holding inventory centrally was beneficial 
when stochasticity was introduced to a supply chain. 
This research found that low variations in demand 
favoured the centralised method by allowing it to 
maintain adequate service levels at higher levels of 
variation. At 50% variation, however, the benefits of 
risk pooling ceased as the system entered a " complete 
shutdown" regime. Tomlin (2006) and Park et al. 
(2010) also discuss the effects of risk pooling and risk 
diversification in the face of disruption, with Tomlin 
(2006) arguing that risk diversification lowers 
transport costs and also stating "Firms that passively 
accept the risk of disruptions leave themselves open 
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to the danger of severe financial and market-share 
loss". 

2.2 Discrete Event Simulation 

Discrete Event Simulation (DES) is a method of 
modelling the operations of a system in which each 
action or event that takes place changes the state of 
the system and occurs at a particular time. These 
times and changes are recorded within the simulation 
(Law et al., 2007). DES has several advantages as an 
analytical modelling approach. It enables the creation 
of a complex network of interrelated operations and 
the performance of various 'what-if' experiments 
(Jahangirian et al., 2010). In recent years, it has been 
used increasingly in supply chain management. For 
instance, Haque et al. (2022) utilise DES to lower 
logistics costs, Papakostas et al. (2019) to design 
dynamic manufacturing networks, Liu et al. (2016) to 
optimise inventory allocation and transhipment 
policies and Chu et al. (2015) to sustain adequate 
fulfilment rates. Furthermore, while mathematical 
programming and optimisation techniques (e.g. 
Linear Programming) produce a single point result, 
DES provides the decision maker with a range of 
results, often in the form of a distribution and 
confidence interval. DES also allows for 
stochasticity. The user can introduce agents 
(products) into the system at a specified time or a rate 
with a specified distribution. This control allows the 
user to see the impact of an increased demand 
variance and add a certain level of randomness, 
capturing the true nature of unpredictable real-world 
problems. 

DES has also seen increased adoption and 
application recently to model supply chain risk and 
resilience. A range of studies demonstrating the 
usefulness of applying this technique to disruptions 
have been carried out (Ivanov, 2017; Ivanov & 
Rozhkov, 2020; Ivanov & Dolgui 2022). These 
studies all demonstrate how simulation allows the 
user to experiment with different transportation and 
stocking policies in the face of disruptions to examine 
their impacts on lead times, financial outcomes and 
network efficiency. 

3 PRELIMINARY ANALYSIS 

This section will provide an introduction to RiRiShun 
Logistics (RRS) and its operations. In addition, it will 
describe the transaction level data sets that were used 
in this research. 

3.1 Research Context: RiRiShun 
Logistics 

RiRiShun (RRS) Logistics is a Haier Group 
subsidiary and a leading logistics service provider 
focusing on home appliance delivery and installation 
in China. RRS has created a distribution network that 
can deal with bulkier household appliances (e.g. 
cookers, refrigerators, washing machines etc.) which 
require special handling and installation. In 2021, 
RRS supported the Institute for Operations Research 
and Management Science (INFORMS) 
Manufacturing & Service Operations Management 
(MSOM) Society's "Data-Driven Research 
Challenge" by providing MSOM members with a 
single year's actual logistics operational-level data. 
The data include over 14 million orders from 149 
consigners with deliveries to an estimated 4.2 million 
customers in China and handles 18,000 SKUs.  

The RRS distribution network is designed in a 
hierarchical manner. At the top are seven national 
central distribution centres (CDCs). Below are 26 
regional distribution centres (RDCs); at the lowest 
level there are 100 local transfer centres (LTCs). 
These are serviced by more than 6,000 last-mile hubs 
(LMHs), which deliver directly to the end customers. 
A high level outline of the network is illustrated in 
Figure 1. 

 

Figure 1: RiRiShun Distribution Network (Guo et al., 
2021). 

Typically, the logistics for each Chinese province 
in RRS' service area are provided by one CDC or 
RDC. However, due to the uneven population 
distribution, some provinces have more than one 
RDC, while others might not have any and be served 
by a neighbouring province. RRS provides both 
Business to Customer (B2C) and Business to 
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Business (B2B) operations, but for the focus of the 
research challenge, the focus is only on its B2C 
supply chain. 

3.2 Data Description 

RRS data consist of seven CSV files, each containing 
information on a particular logistics segment. The 
tables in each file describe details on individual 
orders, the products being delivered, appointments 
made by customers, granular delivery details, and the 
customers themselves. The data sets are linked by a 
standard primary key (order_no). The purpose of the 
key is to provide a way to join the data from different 
tables or data sets into a single table or data set. The 
key matches up rows in different data sets with the 
same value so that the corresponding data can be 
combined into a single row. Each table also has a 
foreign key to distinguish between each row of their 
respective tables. Table 2 depicts the Delivery_details 
data set with examples of each value.  

Sometimes when a SKU is ordered, it must be 
transhipped through each echelon of the distribution 
network and even go through a LMH before being 
delivered to a customer. Each sub-process is detailed 
in the Delivery_details table. Of course, the order to 
which each sub-process is a part of is detailed in the 
order_no column, and the unique identifier for each 
row in the table is given in the rrs_pool_node_info_id 
column. When an order is placed, a DC is assigned to 
track and ensure that the order is delivered. That DC 
is specified through operation_center_code. As the 
SKU moves closer to the customer, the warehouse 
that it departs is shown in orig_code and that it enters 
is dest_code. To clarify, the locations possible in the 
orig_code column are origin centres, transfer centres, 
destination centres and LMHs. The values possible in 
the dest_code column are transfer centres, destination 
centres, LMHs and the GB codes for specific Chinese 
districts (Postcodes). The type of operation between 
the two locations is detailed in the node_code column. 
The example given in Guo et al. (2021) is "QS", 
meaning "signed". This means that the orig_code and 
dest_code is the name of an LMH and the customer's 
location, respectively. 

The Appointment_details and SKU_details tables 
describe how long each order took to be delivered and 
product-specific information, respectively. These 
tables were merged through the order_no column to 
create a table that described all transactions between 
warehouses pertaining to the most frequently sold 
SKU with the mean lead time of those orders. In this 
way, our paper follows the methodology proposed by 
Li et al. (2021) that focuses solely on the most popular 
RRS SKU to reduce processing times. 

3.3 Data Cleaning 

To create an accurate simulation model of the RRS 
network, the locations of all DCs were required. 
However, RRS did not provide this information. 
Instead, they provided a supplementary 
Distance_information table, which contains a matrix 
detailing the distances between all 103 warehouses. 
Guo et al. (2021) also provided a blank map of China 
depicting the locations of the CDCs and RDCs. The 
locations of the LTCs were found through 
triangulation. To find one LTC, circles were drawn 
digitally around three known locations. The radii of 
each circle were given as the distance between the 
three known locations and the LTC's location. Where 
these three circles intersected was determined to be 
the approximate location of the LTC. Figure 2 
illustrates the locations of all RRS DCs and LTCs. 
The CDC icons are navy, the RDC icons are blue and 
the LTC icons are green. 

 

Figure 2: Location of RRS distribution centres. 

 

Table 2: Description of the Delivery_details table. 

Field Data Type Sample Value 
rrs_pool_node_info_id bigint 01a967a7bda6a071e7b4f71275e102aa 

order_no varchar 0d0a09d33b1190313a392d619e9d223a 
operation_center_code varchar RRSZX076 

orig_code varchar rrs\_wd\_3927 
dest_code varchar GB00264
node_code varchar QS

node_operation_date datetime 2019-06-04 23:59:59 
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3.4 Data Construction 

To create a model that accurately represents the RRS 
network, the number of times each DC sent a product 
to and received a product from another DC had to be 
known. Since RRS only provided the locations of 
DCs and not LMHs, this paper will only focus on 
interactions between the top three echelons of the 
network. Consequently, the model will treat all LTCs 
as customers, whereas CDCs and RDCs will be 
treated as DCs. To generate the number of times each 
DC sent and received a product from another DC, the 
Delivery_details data set required cleaning. All rows 
where the sender and the receiver of the product were 
not named had DCs deleted. Moreover, the 
Delivery_details documented processes that did not 
involve two DCs, but rather a process that started and 
finished within the same DC. Rows, where the sender 
and the receiver were the same, were also deleted. 

Table 3 depicts the top five rows of the data frame 
created (using Python) during the data construction 
phase. The data represents only the most frequently 
sold SKU (1936c558) in the busiest quarter of the 
year (June to August). Each combination of sender 
and receiver was created and counted. This data frame 
also showed that, within the top three echelons of the 
network, LTCs rarely sent SKUs, while CDCs and 
RDCs seldom received SKUs. This demonstrates that 
modelling the first two echelons of the network as 
DCs and the LTC echelon as customers is 
appropriate. 

Table 3: Top five rows of the “combinations count” data 
frame. 

Index Sender - Receiver Count
0 RRSZX081 - RRSZX083 5,867
1 RRSZX033 - RRSZX021 4,949
2 RRSZX083 - RRSZX086 4,059
3 RRSZX043 - RRSZX048 3,802
4 RRSZX074 - RRSZX079 3,429

4 SIMULATION MODELLING 

In this section, an outline of the simulation modelling 
approach will be provided. Based on this, an 
experimental test design will be generated, so that 
different questions in relation to the impact of 
inventory management policies on supply chain 
resilience can be answered. Section 2 previously 
discussed the appropriateness of DES to analyse 
supply chains (e.g. Chu et al., 2015; Liu et al., 2016; 
Papakostas et al., 2019; Haque et al., 2022 all used 
this modelling approach to generate results for their 

respective research). As previously mentioned, DES 
has advantages over other approaches: its ability to 
consider stochasticity, disruptions and real-time 
monitoring of a supply network. Li et al. (2021) 
asserts that DES allows an entire network to be 
considered and optimised rather than one specific 
aspect. The modelling software used by Li et al. 
(2021) was AnyLogic. In 2014, AnyLogic created a 
spin-off product to deal specifically with simulation 
modelling of supply chains called anyLogistix™ 
(ALX). ALX allows users to create a digital twin of 
supply chains of any size to design and optimise 
network features and strategies. ALX has been 
previously used to model disruptions and to analyse 
what-if scenarios (Ivanov, 2017; Ivanov & Rozhkov, 
2020; Ivanov & Dolgui 2022). 

4.1 Simulation Model Development 

ALX enables the creation of a simulation model to 
simulate and test supply chain scenarios for RRS to 
evaluate its supply chain performance, with particular 
focus on inventory management policies and their 
impact on supply chain resilience. The model is 
designed to focus on metrics such as service levels, 
lead times, inventory costs and transport distances. 

The model's features include the DCs/factories, 
customers, locations, demand data, suppliers and 
vehicles. The locations of each DC and customer are 
based on real DCs in the RRS network and are 
connected automatically in the ALX model using 
accurate road network data. The demand for each 
customer was found by analysing the RRS data for 
the busiest quarter of the year and a demand 
coefficient was applied to each month based on the 
number of transactions done per month. The lead time 
for product 1936c558 was found to be 42 hours, 
which was chosen as the expected delivery time, and 
orders were dropped if delivery was not possible 
within this period. 

4.2 Experimental Design 

ALX functionality provides a range of experiments to 
run. The most basic, “Simulation Experiment”, 
simply simulates the model that the user creates. 
However, other experiments exist that focus on safety 
stock and risk analysis. Ivanov (2017) used the basic 
“Simulation Experiment” to assess the performance 
of different inventory policies. When running one of 
these experiments, the user can specify a start and end 
date, create dashboards to show the simulation results 
and when imposing demand stochasticity, specify 
how many iterations of the experiment to run. The 
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user can then adjust the model, rerun the simulation 
and compare the results. The experiments described 
in our paper were focused on two of RRS's customer 
regions in China: Foshan and Chengdu. 

This research aims to answer two primary 
questions regarding the impact of inventory 
management policies on supply chain resilience. The 
first question is whether RRS supply chain network 
performs better if most of its stock is centrally held at 
a higher echelon of the supply chain or if the stock is 
held in decentralised locations at a lower level of the 
supply chain network. While prior literature 
discussed appropriate safety stock levels and 
inventory policies to deal with disruptions (e.g. 
Schmitt et al., 2015), it appears none to date have 
investigated whether keeping stock upstream or 
downstream makes supply chains more resilient. Two 
important metrics of supply chain resilience are Time 
To Survive (TTS) and Time To Recover (TTR) 
(Simchi-Levi et al., 2014; Nguyen, 2021). TTS is the 
length of time a supply chain can maintain adequate 
service levels after a disruption, while TTR is the time 
it takes a supply chain to achieve normal service 
levels after the drop caused by the disruption. 

The second research question is how stochastic 
demand affects the performance of RRS supply chain 
network. Prior research has shown that holding 
inventory centrally can better cope with the 
stochasticity of demand when supply is deterministic, 
due to the risk-pooling effect where the variance of 
all customers is pooled together to create one demand 
variance rather than several (Schmitt et al., 2015). 
However, when demand is deterministic and supply 
is stochastic, a decentralised network where the 
inventory is more dispersed is better suited. While 
some authors have explored these findings, there has 
been little examination of how networks with 
centralised and decentralised stock cope with demand 
variance. Although ALX software makes varying 
demand easy, it is more difficult to add stochasticity 
to supply. Another previous study found that a central 
system could perform well at higher levels of demand 
variation, but at a certain threshold, the benefits of 
holding inventory centrally become negligible as the 
system naturally holds no safety stock (Berman et al., 
2011). 

Assumptions for each model variation are 
discussed in the following sub-sections. By 
configuring the model in this way, it is possible to test 
different scenarios and accurately record the key 
performance indicators (KPI) of the supply chain. 

 
 
 

4.2.1 Upstream Versus Downstream 

It was decided that the model would have a capacity 
of 6,000 units. To differentiate between a centralised 
and decentralised network, these 6,000 units would be 
separated in different ways. For the centralised 
network, 60% of the capacity was allocated to the 
CDC. The remaining 40% were dispersed based on 
demand. The capacities for each DC in the Upstream 
model can be seen in Figure 3. 

 

Figure 3: Product flow – upstream model. 

The decentralised model more evenly dispersed 
the 6,000 units. Two DCs were allocated 30% of the 
6,000 units while the other two DCs were allocated 
20% each (Figure 4).    

 

Figure 4: Product flow – downstream model.  

Both models only allow the products to move 
downwards through the distribution network and the 
LTCs act as customers. The red lines in Figures 3 and 
4 indicate the impact of the disruption. The first 
experiment is examining each model's reaction to a 
full DC closure where no products can flow into or 
out of the closed DC. The disruption will last 30 days 
and, in both cases, will impact 60% of the capacity of 
the network. Therefore, the CDC in the Upstream 
model carrying 60% network capacity will close, 
while two RDCs carrying 30% of the network 
capacity will close in the Downstream model. An (r, 
Q) was used for the DCs in both scenarios where r 
was one-third of the DC capacity and Q was two-
thirds of the DC capacity. 
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4.2.2 Demand Variance 

This experiment introduces downstream disruptions 
in the form of varying the demand of each customer. 
A sensitivity analysis was performed to do this. In the 
Upstream and Downstream models with disruptions, 
the customers were given a demand with a triangular 
distribution. The former weekly demand was the 
mode value. In contrast, the minimum and maximum 
values were changed for each experiment since 
Berman et al. (2011) found that the benefits of risk 
pooling became negligible at 50%, the minimum 
values were chosen to be 80%, 60%, and 40% of the 
mode value. In contrast, the maximum values were 
chosen to be 120%, 140%, and 160% of the mode 
value. This range should indicate how demand 
variation affects both models while triggering the 
threshold at which the models enter the “Complete 
Shutdown” regime. 

5 RESULTS & DISCUSSION 

This section outlines the results obtained through the 
experimentation process and discusses their findings. 

5.1 Upstream Versus Downstream 

Before comparing how the Upstream and 
Downstream models coped with 60% capacity 
disruptions, the two scenarios must be compared 
performing without any issues. Table 4 contains 
results from the four simulations that were run for this 
experiment. The first thing to note is that both models 
had an almost perfect service level. The Upstream and 
Downstream models dropped two and one order, 
respectively, out of a total of the 210 that was 
expected. In both cases, the service level remained 
above 90% the entire time. 

Schmitt et al. (2015) state that a network structure 
that holds its inventory downstream in more 
decentralised locations will be better adapted to 
handle disruptions. It would appear from the 

simulation results that is accurate. Upon a 60% 
capacity disruption, the TTR value for the Upstream 
model was 175 days compared to 91 days in the 
Downstream equivalent. This suggests significantly 
higher resilience. The Total Service Level of each 
model reinforces this point. The mean service level of 
the Upstream model fell from 99% to 91%, almost 
twice as great a decrease as the Downstream model. 
It can be seen in Figures 5 and 6 that the service level 
of both models reaches approximately 65% by day 
30. However, where the Downstream model recovers 
after that, the Upstream model continues to fall 
another 10% by day 45. This indicates that the 
disruption impacts the Upstream model more 
aggressively and enforces a longer recovery time. 

Schmitt et al. (2015) argued that by "Not putting 
all the firms' eggs in one basket" a supply chain would 
be less affected by disruptions, "although the same 
number of eggs may be destroyed, they are not all 
destroyed at once". When the majority of stock is held 
at one location, the other locations are worse prepared 
to deal with a sudden increase in demand. 

Based on the results from this experiment, it is 
suggested that inventory should be held downstream 
in decentralised locations if there is a risk of 
disruptions. The lesser impact sustained and quicker 
recovery times suggest that holding stock at 
RiRiShun's RDC levels increases its supply chain's 
resilience and maintains higher levels of customer 
satisfaction. 

 

Figure 5: Service level of upstream model with disruptions. 

 

Table 4: Results from upstream and downstream simulations (with & without disruptions). 

Scenario Upstream Downstream 
Version No Disruption Disruption No Disruption Distruption

Distance Travelled (km) 158,583 151,499 208,805 202,229
Dropped Orders 2 19 1 10 

Total Service Level 0.90 0.91 0.995 0.952
Days Below 90% Service Level 0 175 0 91  
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Figure 6: Service level of downstream model with 
disruptions. 

5.2 Demand Variance 

Berman et al. (2011) and Schmitt et al. (2015) found 
that holding inventory in a central location rather than 
several decentralised locations was beneficial when 
the demand from multiple customers had variation. 
The reason for this was based on the work done by 
Chen & Lin (1989) emphasising the benefits of risk 
pooling. If one DC serves multiple customers with 
demand stochasticity, all variations can be combined 
to mitigate risk. 

According to the results in Table 5, the effects of 
demand variation are handled better in the Upstream 
model. The number of dropped orders decreases as 
the demand stochasticity increases. This contrasts 
with the Downstream model where the number of 
dropped orders increases slightly. Total Service Level 
is inversely proportional to the number of dropped 
orders in a network which explains the increasing 
service level in the Upstream model and the 
decreasing service level in the Downstream model. 

While the Upstream model performs better, 
neither system appears to be affected significantly by 
the demand variation as much as expected. The 
Upstream model appears to perform better as the level 
of variation increases. Berman et al. (2011) stated that 
a centralised system could operate at normal levels 
for more extreme variation. However, that research 

also suggested a threshold at which the benefits of 
risk pooling would diminish. That threshold was 
found to be 50%. However, the results from this 
experiment show that at 60% variation, the benefits 
of risk pooling are even more evident. 

One explanation for this could be how Berman et 
al. (2011) define the "Complete Shutdown" regime 
where holding inventory centrally no longer realises 
a benefit. In that paper, the model stops holding safety 
stock due to the variation in demand. As the inventory 
in each DC is 0, all met demand is that which is back-
ordered. Since no back-ordering is allowed in the 
ALX model, the only demand that can be met is 
orders with the required stock. The CDC in the 
Upstream model has a larger reserve of stock 
throughout the simulation and, therefore, can handle 
larger orders. As the demand fluctuates, larger orders 
that high-capacity DCs can meet become more 
common. Since the Downstream model spreads its 
inventory more evenly across the four DCs, those 
larger orders that occur at 60% variation are less 
likely to be met. This can explain the higher number 
of days with an inadequate mean service level in the 
Downstream model. 

Building on previous literature, the results of the 
simulation experiments suggest that supply chains 
that see large demand fluctuations would be better to 
hold stock centrally. Holding stock in fewer locations 
makes infrequent large orders more likely to be met. 
The benefit of risk pooling was also identified in this 
experiment. Supply chains that are prone to risks and 
demand stochasticity require a more detailed 
examination, as the results from the first two 
experiments in this thesis promote two different 
inventory strategies. 

6 CONCLUSIONS 

This section summarises the findings of the 
simulation experiments based  on  RiRiShun  data  for

Table 5: Results from the demand variance experiment. 

Scenario Upstream Downstream 
Version Disruption +/- 20% +/- 40% +/- 60% Disruption +/- 20% +/- 40% +/- 60%
Distance 
Travelled 

(km) 

17,080 19,186 16,575 20,838 17,993 18,152 18,244 17,994 

Dropped 
Orders 

19 17 17 5 10 10 11 12 

Total 
Service 
Level 

0.91 0.919 0.919 0.976 0.952 0.952 0.948 0.943 
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two of its regions in China. In the scenario where 
disruptions are probable or where risk analysis of its 
supply chain is in the early phases, decentralised 
inventory storage is preferred. This option leaves 
customers with more options from which to receive 
demand. Disruptions, particularly ones where DCs 
close entirely, impact supply chains with inventory 
held Upstream more severely and impose a longer 
TTR. While decentralised networks are advantageous 
for disruptions higher in the network hierarchy, 
centrally held stock takes advantage of risk pooling to 
mitigate the risks associated with demand variations. 
This results showed that an increase in the volatility 
of demand had little effect on the Upstream model 
while having greater and negative impacts on the 
Downstream model. 

The results from the simulation experiments align 
with those of Schmitt et al. (2015) in suggesting that 
supply chains with decentralised inventory are better 
equipped to deal with disruptions. With more non-
disrupted DCs to complete orders, there is a higher 
order completion rate. However, Upstream models 
are more adept at coping with demand fluctuations. 
The results also agree with the work done by Berman 
et al. (2011), citing risk pooling as the reason for this.  

There were differences in the results of the 
simulation experiments to those described by Berman 
et al. (2011), who outlined the demand variance 
threshold at which Upstream supply chains no longer 
had an advantage over Downstream models. The 
results from our experiments suggested that Upstream 
models would become increasingly effective at 
dealing with demand fluctuations. As the spread of 
order sizes increases, there will be more orders that 
large stores of inventory can only fulfil. 

There were a number of limitations to the research 
described in this paper. RRS provided the datasets to 
the MSOM Data-Driven Research Challenge to 
facilitate academic researchers to carry out a range of 
analytical studies. However, no direct contact was 
provided by either RRS or MSOM to aid researchers 
in improving these policies or to provide valuable 
context to some of the data. One aspect of the supply 
chain that could have used clarification is whether 
orders could be split between two DCs to meet 
demand. This was highlighted as beneficial to supply 
chain performance but was not implemented in the 
ALX model. 

Both the Upstream versus Downstream and 
Demand Variance experiments focused on how 
supply chains with centralised and decentralised 
inventory react to disruption in the form of DC 
closures and demand fluctuation. However, there was 
an experiment to investigate the optimal location of 

stock when both types of disruptions are introduced. 
A suggestion for further research would be to 
introduce a variety of disruptions and apply them in 
specific combinations to see where the inventory 
should be held in each of those scenarios. 
Additionally, RRS provides a good framework to 
experiment with different supply chain structures. 
While the research described in this paper focused 
initially on two of RRS regions in China, there are a 
further five regions with different geographies and 
structures. It would be interesting to apply disruptions 
to all seven regions and examine the effects of 
network geography on supply chain resilience. 
Further progress in this area might lead to the 
development of a framework whereby supply chain 
decision makers can decide what the best national 
inventory strategies are solely by examining the 
structure of the supply chain network. 
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