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Abstract: The increasing number of connected devices is fostering a rising frequency of cyber attacks, with Distributed
Denial of Service (DDoS) attacks among the most common. To counteract DDoS, companies and large orga-
nizations are increasingly deploying anomaly-based Intrusion Detection Systems (IDS), which detect attack
patterns by analyzing differences in malicious network traffic against a baseline of legitimate traffic. To differ-
entiate malicious and normal traffic, methods based on artificial intelligence and, in particular, Deep Learning
(DL) are being increasingly considered, due to their ability to automatically learn feature representations for
the different traffic types, without need of explicit programming or handcrafted feature extraction.
In this paper, we propose a novel methodology for simulating an anomaly-based IDS based on adaptive DL
by designing multiple DL models working with both binary and multi-label classification on multiple datasets
with different degrees of complexity. To make the DL models adaptable to different conditions, we consider
adaptive architectures obtained by automatically tuning the number of neurons for each situation. Results on
publicly-available datasets confirm the validity of our proposed methodology, with DL models adapting to the
different conditions by increasing the number of neurons on more complex datasets and achieving the highest
accuracy in the binary classification configuration.

1 INTRODUCTION

The rising number of connected devices and network
traffic is causing a growth in the number of cyber at-
tacks. Cyber security is then increasingly being pri-
oritized in a wide number of situations, from small
networks at a company level to large infrastructures
at a national level. Among cyber attacks, Distributed
Denial of Service (DDoS) represents one of the most
widespread. A DDoS attack consists in the satura-
tion of the resources of a service through the overload
of requests coming from multiple sources previously
compromised by a malware. As a result of a DDoS
attack, the service is no longer available to legitimate
users.

To protect againsts cyber attacks and DDoS at-
tacks, Intrusion Detection Systems (IDSs) are be-
ing increasingly studied and deployed. In particular,
anomaly-based IDSs work by establishing a baseline
of “normal” network traffic and detecting “malicious”
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traffic and hence possible attacks when significant dif-
ferences from the baseline are detected. Recent IDSs
often rely on Artificial Intelligence and in particular
Deep Learning (DL), which represents a promising
solution to differentiate normal from malicious traf-
fic, due to the ability of DL models of automatically
learning feature representations and perform classifi-
cation with high accuracy (Gümüşbaş et al., 2021).

DL-based approaches for IDSs can be categorized
by considering the learning paradigm and the type
of classification. Learning paradigms comprise su-
pervised instance learning, which includes methods
using labeled instances and based on Deep Neural
Networks (DNN) or Convolutional Neural Networks
(CNN) and supervised sequence learning, which in-
cludes methods using series of data and based on Re-
current Neural Networks (RNN) or Long Short-Term
Memory (LSTM). Moreover, the type of classification
can either be binary, by classifying traffic as either
“normal” or “DDoS”, or multi-label, by also classify-
ing different types of malicious traffic (Mittal et al.,
2022).

In this paper, we propose a simulation of an
anomaly-based IDS using adaptive DL models in dif-
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ferent configurations, obtained by considering DNN-
and CNN-based models (supervised instance learn-
ing) and RNN-based models (supervised sequence
learning approaches) with both a binary and a multi-
label classification variant. To determine which con-
figuration works best and in what conditions, in all the
models and classification variants we consider differ-
ent adaptive architectures, obtained by automatically
optimizing the number of neurons in the hidden lay-
ers, adding the capability of the considered architec-
tures to adapt to different conditions.

To the best of our knowledge, no method in the
literature has performed a simulation of different
DL-based models for IDSs by considering both su-
pervised instance learning and supervised sequence
learning approaches, in both a binary and multi-label
classification, and using adaptive architectures with
an optimized number of neurons.

The remainder of the paper is structured as fol-
lows. Section 2 presents the related works, distin-
guishing the different learning paradigms that can be
applied. Section 3 describes our methodology. Sec-
tion 4 introduces the datasets used in our experimen-
tal evaluation. Section 5 describes the experimental
results. Finally, Section 6 concludes the paper.

2 RELATED WORKS

Anomaly-based IDSs using DL can be distinguished
in i) supervised instance learning; ii) supervised se-
quence learning, iii) semi-supervised learning, and
iv) hybrid learning (Mittal et al., 2022). We describe
each of them next.
Supervised Instance Learning: this category in-
cludes methods that train the models using labeled in-
stances, such as the ones based on DNN and CNN.
In particular, we can distinguish i) methods based on
DNN and ii) methods based on CNN.
Methods based on DNN include the works described
in (Asad et al., 2020; Cil et al., 2021; Sbai and
El boukhari, 2020), which detect DDoS attacks by
training and testing the model on the CIC-IDS-2017
and CIC-DDoS-2019 datasets. The work described in
(Sabeel et al., 2019) considers DNN as well as LSTM
models to predict both DoS and unknown attacks, by
training the models using the CIC-IDS-2017 dataset
and testing them on a self-produced dataset. A DNN
architecture is also considered in the work presented
in (Amaizu et al., 2021), with the difference of using
an ensemble of two DNNs to increase the classifica-
tion accuracy.
Methods based on CNN include the approach pre-
sented in (Kim et al., 2020), which trains a network

on the CIC-IDS 2018 and KDD datasets to detect DoS
attacks. To improve the recognition accuracy with re-
spect to using a single CNN, the method introduced in
(Haider et al., 2020) considers an ensemble of CNNs,
while the work described in (Wang and Liu, 2020)
presents a multi-level framework that first performs
a coarse detection of suspicious traffic, then uses the
CNN to make a fine-grained distinction between nor-
mal and malicious traffic.
Differently from the CNN-based approaches de-
scribed in (Kim et al., 2020; Haider et al., 2020; Wang
and Liu, 2020), which aim at increasing the detec-
tion accuracy, the methods proposed in (Doriguzzi-
Corin et al., 2020; de Assis et al., 2020) have the
purpose of reducing the computational complexity of
CNN-based DDoS detection and allow a deployment
of DL-based IDS in real-time scenarios or on de-
vices with limited resources. In particular, the ap-
proach proposed in (de Assis et al., 2020) considers
one-dimensional –rather than two-dimensional– con-
volutional layers. Similarly, the work presented in
(Doriguzzi-Corin et al., 2020) considers a CNN with
a reduced number of one-dimensional convolutional
layers in combination with an ad-hoc preprocessing
algorithm.
Supervised Sequence Learning: this category in-
cludes methods that train the models using series of
data, such as the ones based on RNN, LSTM, and
Gated Recurrent Units (GRU); In particular, we can
distinguish i) methods based on LSTM and ii) meth-
ods based on GRU.
Methods based on LSTM include the work described
in (Liang and Znati, 2019), which applies the model
on raw network flow with the purpose of differentiat-
ing normal traffic and DDoS attacks. The method pre-
sented in (Ferrag et al., 2021) also considers LSTM,
adding a comparison with with CNNs and DNN
within the applicative scenario of IoT-enabled net-
works.
Methods based on GRU include the paper proposed in
(Assis et al., 2021), which showed that GRUs resulted
in greater accuracy in detecting DDoS attackes with
respect to LSTMs, despite using fewer parameters.
Semi-Supervised Learning: this category includes
methods that train the models using unlabeled data
in the pre-training stage, then fine-tune them using a
combination of both labeled and unlabeled data, such
as the ones based on Auto-Encoders (AE) and Sup-
port Vector Machines (SVM). For example, the work
described in (Kasim, 2020) preprocesses data with a
principal component analysis, then applies an AE to
further reduce data dimensionality and extract the fea-
tures. Lastly, it considers an SVM to perform the clas-
sification and detect DDoS attacks. Similarly, the ap-
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Figure 1: Outline of our methodology. After the data
preprocessing step, we define six different configurations
of DL-based architectures, considering DNN-, CNN-, and
RNN-based models, each in a binary and a multi-label clas-
sification variant. Then, we perform the optimization by
tuning the hyperparameters of each adaptive architecture
and then training the DL-based models on the considered
datasets for DDoS detection.

proach proposed in (Bhardwaj et al., 2020) describes
an AE for feature extraction, followed by a DNN for
feature classification.
Hybrid Learning: this category includes meth-
ods that combine two or more approaches, usually
to leverage the capability of sequence learning ap-
proaches (e.g., LSTM) to process series of data with
the capability of instance learning approaches (e.g.,
CNN) to detect specific patterns when trained using
labeled data. For example, the works presented in
(Roopak et al., 2019; Roopak et al., 2020) combine
a model based on a CNN with a model based on a
LSTM, then use a fully-connected layer to output the
results, achieving a superior accuracy with respect to
using the two models separately. Similarly, the ap-
proach described in (Elsayed et al., 2020) combines
an AE to perform a feature extraction, a RNN to pro-
cess the series of data, and a fully-connected layer to
perform the classification.

In the literature, methods based on supervised in-
stance learning (e.g., DNN, CNN) and supervised se-
quence learning (e.g., RNN) are the most studied and
represent the majority of the approaches for anomaly-
based IDSs. Therefore, in our work we consider
DL-based models based on DNN, CNN, and RNN.
However, no method in the literature has performed a
simulation of different DL-based models for IDSs by
considering adaptive architectures with an optimized

number of neurons, using both a binary and a multi-
label classification.

3 PROPOSED METHODOLOGY

This section describes the proposed methodology for
simulating an anomaly-based IDS for DDoS attack
detection. After a preprocessing step, necessary to
uniform the different datasets in a common format,
we define the different configurations obtained by
considering DNN- and CNN-based models (super-
vised instance learning) and RNN-based models (su-
pervised sequence learning approaches) in both a bi-
nary and a multi-label classification variant. Then,
in all the models and classification types we consider
adaptive architectures, obtained by automatically op-
timizing the number of neurons in the hidden layers.

The methodology comprises three steps: i) data
preprocessing, ii) DL-based architecture definition,
and iii) adaptive architecture optimization. Fig.1 out-
lines our methodology: after the data preprocessing
step, we define six different configurations of DL-
based architectures, considering DNN-, CNN-, and
RNN-based models, each in a binary and a multi-label
classification variant. Then, we perform the optimiza-
tion by tuning the hyperparameters of each adaptive
architecture and then training the DL-based models
on the considered datasets for DDoS detection.

3.1 Data Preprocessing

Data preprocessing has the purpose of uniforming the
different datasets into a common format, by removing
inconsistent or missing values, encoding the labels
in numerical values, and reducing the dimensional-
ity, following common practices when preparing data
for intrusion detection (Srikanth Yadav. and Kalpana.,
2019; Alasadi and Bhaya, 2017). This step consists of
three tasks: i) cleaning, ii) transformation, and iii) re-
duction.
Cleaning: this task involves the removal of incon-
sistent or missing values. First, we remove columns
that do not contain values useful for model training,
such as socket-related features and columns contain-
ing only zeros. Then, we remove duplicate rows and
rows containing NaNs. Lastly, we replace infinite and
null values with −1, as described in (Cil et al., 2021).
Transformation: this task involves the transforma-
tion of the dataset to ensure comparable numerical
values across different datasets. First, we normalize
the numerical values in the range [0,1] using the min-
max method. Second, we apply label encoding to cat-
egorical features, by transforming categorical values
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into numerical values, considering two methods pro-
posed in the literature:

• Label encoder: involves the conversion of each
label into a number;

• One Hot Encoder (OHE): involves the conver-
sion of the label of each row into a vector v of
n columns, where n is the number of labels, with
vi = 1 if the row is associated with the i-th label,
and vi = 0 otherwise.

Reduction: this task involves reducing the dimen-
sionality of the data to ensure a common number of
features in the different datasets, reduce noise in the
features, and speed up the training of DL-based mod-
els. To perform the reduction, first we apply the PCA
technique, then we select the number of principal
components using the MLE method (Minka, 2000).

3.2 DL-Based Architecture Definition

In this step we define the different DL architectures
that include supervised instance learning approaches
such as DNN and CNN, as well as supervised se-
quence learning approaches such as RNN. For all
models, we consider adaptive architectures, in which
the hidden layers have a variable size.

In our work we consider three different architec-
tures: i) DNN, ii) CNN, and iii) RNN. For each archi-
tecture, we consider two variants of the classification
types, one performing a binary classification and one
performing a multi-label classification.

3.2.1 DNN-Based IDS

As a first DL architecture, we consider a supervised
instance learning approach based on a DNN, with a
variable number of neurons in the hidden layer(s).
We consider two variants, one for binary classifica-
tion and one for multi-label classification.
Binary Classification: we design the DNN-based
IDS for binary classification with an input layer, a
hidden layer, and an output layer. We consider a Rec-
tified Linear Unit (ReLU) as activation function in the
input and hidden layers, while we use a sigmoid in the
output layer.
Multi-Label Classification: we design the multi-
label version with an additional hidden layer with re-
spect to the binary version, and also three dropout lay-
ers placed after the input and each hidden layer to re-
duce the possibility of overfitting. We consider the
ReLU as activation function in the input and hidden
layers, and a softmax function in the output later.

3.2.2 CNN-Based IDS

As a second DL architecture, we consider a super-
vised instance learning approach based on a CNN,
with a variable number of neurons in the hidden
layer(s). We consider two variants, one for binary
classification and one for multi-label classification.
Binary Classification: we design the CNN-based
IDS for binary classification with an input layer, a
one-dimensional convolutional layer, a sub-sampling
layer, and a fully-connected layer. In the convolu-
tional layer we consider stride=1 and padding=0. We
used average-pooling instead of max-pooling as the
sub-sampling-layer to have a more uniform sampling
of the output coming from the convolutional layer. We
used the sigmoid as activation function in the output
layer.
Multi-Label Classification: we design the multi-
label version by considering an input layer, two one-
dimensional convolutional layers, a sub-sampling
layer, two fully-connected layers, and an output layer.
We used the ReLU as activation function in the con-
volutional layers and a softmax in the output layer.

3.2.3 RNN-Based IDS

As a third DL architecture, we consider a supervised
sequence learning approach based on a RNN, with
a variable number of neurons in the hidden layer(s).
We consider two variants, one for binary classifica-
tion and one for multi-label classification.
Binary Classification: we design the RNN-based
IDS for binary classification by considering a LSTM
model with an input layer, an LSTM layer, a dropout
layer, and a fully-connected layer. We use a sigmoid
activation function in the output layer.
Multi-Label Classification: we design the multi-
label version starting from the same architecture as
the one for binary classification and increasing the
number of neurons in the LSTM layer.

3.3 Adaptive Architecture Optimization

In this step we perform the optimization of the con-
sidered architectures to ensure the adaptability of the
DL-based models to the different conditions. For all
the architectures considered in this work, we consider
hidden layers with a variable size and use a hyperpa-
rameter tuning method to automatically optimize the
number of neurons in the hidden layers, adding the
capability of the considered architectures to adapt to
different conditions. In particular, we perform the op-
timization of the hyperparameters by tuning the num-
ber of units in hidden layers and the learning rate us-
ing the Hyperband method. We chose this method
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Table 1: CSE-CIC-IDS-2018 dataset: size and number of
rows for the 4 CSV files.

Filename Size [MB] N. rows

02-15-2018 358.53 1,048,575
02-16-2018 318.26 1,048,575
02-20-2018 3867.08 7,948,748
02-21-2018 313.66 1,048,575

Total 4,858 11,094,473

Table 2: CSE-CIC-IDS-2018 dataset: number of rows de-
scribing normal and malicious traffic.

Traffic type Rows
# %

Normal 9,176,239 82.7
Malicious 1,918,233 17.3

since it allows a good trade-off between times, re-
sources and results.

After optimizing the number of neurons and tun-
ing the learning rate, we train the models considering
a binary cross entropy loss function in the case of bi-
nary classification, while we considered a categorical
cross entropy in multi-label classification.

4 DATASETS

In this work we consider two recent datasets, CSE-
CIC-IDS-2018 and CIC-DDoS-2019, both developed
by the Canadian Institute for Cybersecurity (CIC) of
the University of New Brunswick (CIC, 2018; CIC,
2019). We chose these two datasets since the datasets
released by CIC are among the most used in the lit-
erature and are representative of real network traffic
(Gümüşbaş et al., 2021).
CSE-CIC-IDS-2018: from the CSE-CIC-IDS-2018
dataset, we select the parts describing DDoS traffic
and normal traffic. As a result, we obtain 4 files,
with each file having 84 columns, 7 of which de-
scribe socket-related features (Flow ID, Source IP,
Source Port, Destination IP, Destination Port, Pro-
tocol and Timestamp). The resulting dataset de-
scribes 7 types of DDoS attacks, namely GoldenEye,
Slowloris, Hulk, SlowHTTPTest, LOIC-HTTP, HOIC,
LOIC-UDP. Table 1 presents an overview of the files
in the dataset, along with the number of rows in each
file, while Table 2 outlines the percentage of rows be-
longing to normal and malicious traffic.
CIC-DDoS-2019: the CIC-DDoS-2019 dataset con-
sists of 18 files, divided into training and testing
folders. Each file contains 87 feature columns: the
first 80 columns contains features extracted with CI-

Table 3: CIC-DDoS-2019 dataset: size and number of rows
for the 18 CSV files.

Filename Size [MB] N. rows

train/DrDoS LDAP 874.81 2,181,542
train/DrDoS MSSQL 1801.66 4,524,498

train/DrDoS NetBIOS 1618.84 4,094,986
train/DrDoS SNMP 2071.93 5,161,377
train/DrDoS SSDP 1194.65 2,611,374
train/DrDoS UDP 1436.27 3,136,802

train/UDPLag 150.65 370,605
train/Syn 607.79 1,582,681

train/TFTP 8871.09 20,107,827
train/DrDoS DNS 2034.48 5,074,413
train/DrDoS NTP 615.13 1,217,007

test/Portmap87f 74.97 191,694
test/NetBIOS 1352.76 3,455,899
test/LDAP87f 831.03 2,113,234

test/MSSQL 2275.68 5,775,786
test/UDP 1709.74 3,782,206

test/UDPLag87f 304.98 725,165
test/Syn 1790.40 4,320,541

Total 29616.86 70,427,637

Table 4: CIC-DDoS-2019 dataset: number of rows describ-
ing normal and malicious traffic.

Traffic type Rows
# %

Normal 113,828 0.16
Malicious 70,313,809 99.84

CFlowMeter (Lashkari et al., 2017), while the re-
maining 7 columns contain socket-related features
(Flow ID, Source IP, Source Port, Destination IP,
Destination Port, Protocol and Timestamp). The
dataset describes 18 types of attacks, including
reflection- and exploitation-based attacks: DrDoS-
LDAP, DrDoS-MSSQL, DrDoS-NetBIOS, DrDoS-
NMP, DrDoS-SSDP, DrDoS-UDP, UDP-lag, WebD-
DoS, Syn, TFTP, DrDoS-DNS, DrDoS-NTP, Portmap,
NetBIOS, LDAP, MSSQL, UDP, and UDPLag. Ta-
ble 3 presents an overview of the files in the dataset,
along with the number of rows in each file. The ma-
jority of the rows in the dataset belong to malicious
traffic, with > 99% of data describing attacks, as out-
lined in Table 4.

5 EXPERIMENTS

In this section we present the experimental evaluation
of our methodology by describing the output of the
data preprocessing step and the accuracy results. In
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Table 5: Result of preprocessing on the CSE-CIC-IDS-2018 dataset.

Filename N. rows Duplicates N. inf N. NaN N. rows
(initial) # % (final)

02-15-2018.csv 1,048,575 253,000 24.13 979 547 795,028
02-16-2018.csv 1,048,575 456,701 43.55 0 0 591,874
02-20-2018.csv 7,948,748 2,511,282 31.59 2,146 1,200 5.436,266
02-21-2018.csv 1,048,575 487,179 46.46 0 0 561,396

Total 11,094,473 3,708,162 33.42 3,125 1.747 7,384,564

Table 6: Result of preprocessing on the CIC-DDoS-2019 dataset.

Filename N. rows Duplicates N. inf N. NaN N. rows
(initial) # % (final)

train/DrDoS LDAP 2,181,542 2,150,051 98.56 2,480 10 31,491
train/DrDoS MSSQL 4,524,498 4,315,627 95.38 26,715 9 208,871

train/DrDoS NetBIOS 4,094,986 4,073,870 99.48 2,968 8 21,116
train/DrDoS SNMP 5,161,377 5,045,899 97.76 4,135 11 115,478
train/DrDoS SSDP 2,611,374 1,719,417 65.84 1,538 2 891,957
train/DrDoS UDP 3,136,802 2,059,422 65.65 1,401 7 1,077,380

train/UDPLag 370,605 277,586 74.90 68 2 93,019
train/Syn 1,582,681 1,426,794 90.15 30 6 155,887

train/TFTPsv 20,107,827 15,688,113 78.02 210 22 4,419,714
train/DrDoS DNS 5,074,413 4,958,122 97.71 10,146 22 116,291
train/DrDoS NTP 1,217,007 90,774 7.46 225 25 1,126,233

test/Portmap87f 191,694 185,605 96.82 143 1 6,089
test/NetBIOS 3,455,899 3,444,578 99.67 397 3 11,321
test/LDAP87f 2,113,234 2,089,308 98.87 2,911 7 23,926

test/MSSQL 5,775,786 5,501,052 95.24 36,281 5 274,734
test/UDP 3,782,206 2,484,620 65.69 2,286 2 1,297,586

test/UDPLag87f 725,165 585,350 80.72 163 3 139,815
test/Syn 4,320,541 3,840,392 88.89 346 16 480,149

Total 70,427,637 59,936,580 85.10 92,443 161 10,491,057

particular, for each DL model and variant we report
the error measures on the considered datasets and the
corresponding number of parameters obtained as a re-
sult of automatically adapting the number of neurons
in the hidden layers.

We performed the experiments using Google Co-
lab+, with GPU enabled and RAM set as “high”, us-
ing python with libraries Dask, Pandas, Keras, and
Sci-Kit Learn.

5.1 Data Preprocessing

We apply the data preprocessing procedure described
in Section 3.1 to the CSE-CIC-IDS-2018 and CIC-
DDoS-2019 datasets. In particular, in the data clean-
ing step we removed 17 columns from CSE-CIC-IDS-
2018:

• 7 socket-related features: Flow ID, Src IP, Src
Port, Dst IP, Dst Port, Protocol, Timestamp;

• 10 features containing only zeros: Bwd PSH
Flags, Fwd URG Flags, Bwd URG Flags, CWE
Flag Count, Fwd Byts/b Avg, Fwd Pkts/b Avg,
Fwd Blk Rate Avg, Bwd Byts/b Avg, Bwd Pkts/b
Avg, Bwd Blk Rate Avg.

and removed 20 columns from CIC-DDoS-2019:
• 8 socket-related features: Flow ID, SourceIP,

SourcePort, DestinationIP, DestinationPort, Pro-
tocol, Timestamp, SimillarHTTP;

• 12 features containing only zeros: Bwd PSH
Flags, Fwd URG Flags, Bwd URG Flags, FIN
Flag Count, PSH Flag Count, ECE Flag Count,
Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk,
Fwd Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd
Avg Packets/Bulk and Bwd Avg Bulk Rate.

At the end of the preprocessing phase, we reduced
the CIC-IDS-2018 dataset from 11 to 7 million rows
and from 84 to 56 columns, while we reduced the
CIC-DDoS-2019 dataset from 70 to 10 million rows
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Table 7: Accuracy results of the proposed anomaly-based IDS using DL.

Dataset Class. Model N. Accuracy Recall Precision F1-score
variant param. (%) (%) (%) (%)

CSE-CIC-IDS-2018

Binary
DNN 2,977 99.80 99.80 99.80 99.80
CNN 8,065 99.33 99.33 99.34 99.33
RNN 12,705 99.78 99.78 99.78 99.78

Multi-label
DNN 11,608 99.79 99.79 99.79 99.78
CNN 12,616 99.78 99.78 99.78 99.77
RNN 25,832 98.59 98.59 98.57 98.53

CIC-DDoS-2019

Binary
DNN 5,185 99.95 99.95 99.95 99.95
CNN 9,537 99.88 99.88 99.89 99.88
RNN 12,705 99.80 99.80 99.81 99.80

Multi-label
DNN 17,183 77.41 77.41 77.52 71.78
CNN 19,135 77.29 77.29 77.56 71.65
RNN 71,687 73.52 73.52 64.52 66.55

(a) DNN (b) CNN (c) RNN

Figure 2: Confusion matrices for the proposed DNN, CNN, and RNN models, using binary classification on the CSE-CIC-
IDS-2018 dataset.

and from 87 to 57 columns. Table 5 and Table 6
outline the results of the preprocessing phase on the
CIC-IDS-2018 and CIC-DDoS-2019 datasets, respec-
tively.

5.2 Results

First, we train and evaluate the models on the CSE-
CIC-IDS-2018 dataset with a fewer number (7) of la-
bels, then on the CIC-DDoS-2019 dataset with more
(18) labels. We evaluate the performance of the pro-
posed models in terms of accuracy, precision, recall,
and F1-score, considering 70% of data for training
and 30% for testing.

Table 7 shows the accuracy results of the proposed
methodology, for the two datasets considered, the two
classification variants (binary and multi-label), and
the three models (DNN, CNN, RNN). From the table,
it is possible to observe that, in the case of binary clas-
sification, all the models exhibit a high performance
on the considered datasets (> 99% in all considered

metrics). In particular, the DNN model achieves the
best performance, with 99.80% and 99.95% accu-
racy on the CSE-CIC-IDS-2018 and CIC-DDoS-2019
datasets, respectively. However, when using the CIC-
DDoS-2019 dataset the models exhibit an increased
number of parameters. This is caused by the algo-
rithm for hyperparameter tuning that increases the
number of neurons in hidden layers to cope with the
increased complexity of the CIC-DDoS-2019 dataset,
which has more classes with respect to CSE-CIC-
IDS-2018. Figure 2 and Figure 3 present the confu-
sion matrices for the proposed models using binary
classification on the CSE-CIC-IDS-2018 and CIC-
DDoS-2019 datasets, respectively. The figures show
the high accuracy obtained when considering binary
classification.

In the case of multi-label classification, the mod-
els evaluated on the CSE-CIC-IDS-2018 dataset per-
form similarly to the binary classification case, at the
cost of significantly increasing the number of param-
eters. However, when evaluating the multi-label clas-
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Figure 3: Confusion matrices for the proposed DNN, CNN, and RNN models, using binary classification on the CIC-DDoS-
2019 dataset.

sification models on the CIC-DDoS-2019 dataset, we
can observe a decrease in performance, with < 80%
in all considered metrics. The result is caused by the
combined complexity of a multi-label classification
with a more complex dataset with respect to CSE-
CIC-IDS-2018.

However, it is worth noting that the CIC-DDoS-
2019 dataset exhibits characteristics that limit the
classification accuracy obtainable on the dataset. For
example, the dataset contains classes with few rep-
resentative samples and attacks which have a strong
semantic similarity but are classified with separate
labels (Ferrag et al., 2021; Chartuni and Márquez,
2021).

6 CONCLUSIONS

In this paper we proposed a simulation of anomaly-
based IDS using Deep Learning (DL) techniques,
by considering three different models (DNN, CNN,
RNN) trained and tested on two datasets with an
increasing level of complexity (CSE-CIC-IDS-2018
and CIC-DDoS-2019) and considering two classifica-
tion variants (binary and multi-label). To evaluate the
capability of the considered architectures to adapt to
different conditions, we considered adaptive architec-
tures with a variable number of neurons in the hidden
layers. Then, we automatically tuned the number of
neurons in each hidden layer based on the considered
dataset and the type of classification.

The results shows how, in the case of binary clas-
sification, it was possible to obtain consistently high
performance (> 99%) in both datasets, at the cost of
an increased number of parameters when consider-
ing the more complex dataset. Overall, in our ex-
periments the DNN model achieved the best perfor-
mance. However, in the case of multi-label classifica-

tion, we obtained satisfactory results only on the sim-
plest dataset, highlighting the need for more complex
architectures when considering complex datasets.

Future works will consider hyperparameter tun-
ing algorithms with an increased search space and
methods based on neural architecture search to design
more complex adaptive architectures.
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