
ERC20: Correctness via Linearizability and Interference Freedom of the
Underlying Smart Contract

Rudrapatna K. Shyamasundar∗

Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Keywords: Distributed Programs, ERC20 Tokens, Smart Contract, Linearization, Consensus, Interference Free.

Abstract: ERC20 is a standard for the creation of a specific type of tokens called ERC20 tokens, one of the most widely
adopted tokens on Ethereum. ERC20 tokens are transferred through dedicated transactions among Ethereum
addresses, and managed by smart contracts. Nondeterministic behaviour has been observed on the smart
contracts that manage ERC20 tokens resulting in owners losing significant amounts while using it. In this
paper, we first discuss issues of nondeterministic behaviour in the ERC20 smart contract, and the standard
general remedies that have been proposed in the literature to avoid nondeterministic behaviour in ERC20.
Then, through the notion of linearizability, it is shown that as ERC20 permits unbounded concurrency, the
linearizability of the ERC20 smart contract is undecidable - thus, demonstrating the subtle complexity of
ERC20 and the strong synchronization requirements of ERC20. Finally, treating ERC20 smart contract as a
set of asynchronous interacting processes executing on a blockchain, we describe an approach that is common
in classical programming language specification, and show how a set of constraints on the traces of ERC20
executions based on interference freedom property for concurrent execution on the blockchain overcomes the
nondeterministic behaviour; we shall further sketch how such an execution can be implemented in Solidity.
Furthermore, we discuss how the two approaches of linerarization and interference freedom mutually benefit
each other and assist in arriving at constraints that leads to wait-free implementation of smart contracts.

1 INTRODUCTION

Blockchain platforms, need their own currency, a sort
of tradable tokens, for interoperable services. Tokens
are blockchain-based assets which can be exchanged
across users of a blockchain platform. Tokens typ-
ically need to follow a standard so that it is possi-
ble to write tools, such as liquidity pools and wal-
lets, that work with tradable tokens. For instance,
in the Ethereum platform, tokens can represent vir-
tually anything such as (i) financial assets (shares in a
company), (ii) fiat currency (eg., INR), (iii) standard
unit of gold, (iv) reputation points in an online plat-
form, (v) lottery tickets etc. Naturally, such a power-
ful feature must be handled through a robust standard.
Ethereum Request for Comment (ERC)20 defines a
standard for the creation of a specific type, called
ERC20 tokens, one of the most widely adopted tokens
on Ethereum. ERC20 tokens are transferred through
dedicated transactions among Ethereum addresses,
and are managed by smart contracts. It is a standard

∗The work was carried out in the Centre for
Blockchain Research sponsored by Ripple Labs.

for fungible tokens. That is, they satisfy a property
that makes each token to be exactly the same (in type
and value) as another token - that is, tokens are mutu-
ally exchangeable. Thus, ERC20 is a standard way to
implement basic features of all tokens making them
compatible with common Ethereum software such as
Ethereum Wallets etc. In this paper, we shall first
discuss issues, and attack scenarios on ERC20 smart
contracts, and provide a brief overview of existing
mitigation techniques to forbid unwanted behaviours
of ERC20. Secondly, we shall demonstrate the sub-
tle difficulties of ERC20 smart contract by showing
that linearization of ERC20 methods as it stands is
undecidable; this result shows the subtle strong syn-
chronization requirements of ERC20. Finally, we en-
visage a novel way of realizing robustness of ERC20
smart contract using techniques of interference free-
dom used concurrent program verification. An inter-
pretation of linearization and interference freedom as-
sists in arriving at appropriate constraints so that the
smart contracts when executed on a blockchain is able

Shyamasundar, R.
ERC20: Correctness via Linearizability and Interference Freedom of the Underlying Smart Contract.
DOI: 10.5220/0012145800003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 557-566
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

557

to realize the intended sequential behaviour1.
Rest of the paper is organized as follows: Section

2 highlights the ERC20 standard with descriptions of
its interface, attack scenarios of ERC20 in Section
3. In Section 4, we discuss informal and formal ap-
proaches to mitigate attacks in the use of ERC20. Sec-
tion 5 shows that the linearization of ERC20 is unde-
cidable. Finally, we discuss how establishing inter-
ference freedom of concurrent procedures will lead to
arriving at the intended sequential behaviour without
resorting to locks in Section 6 followed by conclu-
sions in Section 7.

2 ERC20 TOKEN STANDARD

A large number of Ethereum development standards
focus on token interfaces that help in ensuring com-
posable nature of smart contracts. ERC20 is the ear-
liest token standard by Ethereum. We shall briefly
describe the interface2 below.

As pointed out already, the purpose of token stan-
dards like ERC20 is to allow a spectrum of token im-
plementations that are inter-operable across applica-
tions, like wallets, decentralized exchanges etc. For
this purpose, an interface (similar to that in Java), is
defined so that any code that needs to use the token
contract can use the same definitions as in the inter-
face and remain compatible with all the token con-
tracts that use it, whether it is a wallet, a Dapp, or a
different contract such as a liquidity pool. A brief on
the main interface functions are given below3:

1. function totalSupply() external view
returns (uint256): Returns the amount of
tokens in existence.

• This is an external function, i.e., it can be called
only from outside the contract. It returns the
total supply of tokens in the contract using the
unsigned 256 bits - the native word size of the
EVM. It is a view function, and hence, does not
change the state; thus, it can be executed on a
single node. As the function does not generate

1The importance of analysing ERC20 like smart
contracts can be seen by the very recent tweet: Scam Sniffer
(@realScamSniffer) tweeted at 3:41 am on Mon, May 01,
2023: someone lost $2.28m worth of USDC by ERC20 Per-
mit phishing 6 hours ago https:// t.co/x17Gw8w1Bw
https:// t.co/4jmyeVT1Ym (https:// twitter.com/
realScamSniffer/ status/1652797793587851264?t=
k7NtBkmdxiJjDYjIYq7OhQ&s=03)

2https://ethereum.org/en/developers/docs/standards/
tokens/erc-20/

3https://ethereum.org/en/developers/tutorials/
erc20-annotated-code/

a transaction, it does not consume gas. Note
that anyone can view anyone’s account balance
(there are no secrets on the blockchain).

• A question may arise as to what if the contract
creator returns a smaller total supply count than
the real value, making each token appear more
valuable than it actually is. This is not possi-
ble as a characteristic of the blockchain is that
anything that happens on the blockchain can be
verified by every node. To confirm this, ev-
ery contract’s source code and storage must be
available on every node. While it is not manda-
tory to publish the Solidity code for the con-
tract, nobody would take the contract seriously
unless the source code and the object code on
which it was compiled is published; assuming
the code has been published, we can rule out
the possible cheating as mentioned above.

2. function balanceOf(address account)
external view returns (uint256);
balanceOf returns the balance of an account.

• Note that Ethereum accounts are identified in
Solidity using the address type, which holds
160 bits. Similar to totalSupply(), this is
also an external function in view only mode and
thus, can be used by anyone.

3. function transfer(address recipient,
uint256 amount) external returns
(bool); transfer transfers the specified
number of tokens from the caller-user to a
different receiver-user (and reduces its balance of
tokens by that quantity) if available. transfer
function is called to transfer tokens from the
sender’s account to an account of another user;
it returns a boolean value, that is always true.
The call transfer fails, for instance, when there
are not enough tokens, and in such a case the
contract reverts the call. Note that the owner
(sender) is transferring tokens to another address
(user/customer). The execution involves a change
of state, creating a transaction and thus, costs
gas. It also emits an event, transfer, to inform
everybody on the blockchain that the event
transfer has happened.

• transfer has two types of outputs depending
on the type of callers:

(a) Users that call the function directly from a
user interface: Here, user submits a transac-
tion and does not wait for a response, which
could take an indefinite amount of time. The
user can ascertain execution of the transaction
by looking for the transaction receipt (which
is identified by the corresponding transaction

SECRYPT 2023 - 20th International Conference on Security and Cryptography

558

hash) or by looking for the transfer event.
(b) Other contracts which call the function as part

of the overall transaction: Such contracts get
the result immediately, as they are running in
the same transaction, and thus, can use the
function return value.

4. function allowance(address owner,
address spender) external view returns
(uint256);

• Using allowance, anybody can query to see
what is the allowance that one address (owner)
lets another address (spender) spend.

5. function approve(address spender,
uint256 amount) external returns
(bool); approve creates an allowance for
another user. Note that there is no need that
the sender must have those very many tokens
approved by him at that time (or even later).

• approve is the function that makes the stan-
dard quite complex and enables users to mis-
use/abuse intentionally or unknowingly. Note
that in an asynchronous system, the owner of a
resource can control the order of his own trans-
actions but not control the order of transaction
of other users. Thus, the method call can be
interpreted as an account (or variable) that can
be modified by multiple accounts/users. The is-
sue with such complex operations will become
clear in the sequel.

6. event Transfer(address indexed from,
address indexed to, uint256 value);

• Emitted when ‘value‘ tokens are moved from
one account (‘from‘) to another (‘to‘); note that
the value could be zero. Further, the respective
event is emitted when the state of the ERC20
contract changes.

7. function transferFrom(address sender,
address recipient, uint256 amount)
external returns (bool); the call
transferFrom is used by the spender to spend
the allowance that has been earlier approved
(granted) by other user/owner for it.

• Functionally, the operation (i) transfers an
amount less than or equal to the allowance that
has been approved by some other owner/user,
(ii) reduces the allowance by that amount, and
(iii) the operation fails if the amount to be trans-
ferred is greater than the approved allowance (if
that happens, it reverts).
• One of the main differences between transfer

and transferFrom is that in the former the
owner decrements the number of tokens when

he sends the tokens to some other user, whereas
in the latter the grantee decrements the number
of tokens he uses to send it to some other user.
In a sense, it is like there are multiple owners
for the address.

8. event Approval(address indexed owner,
address indexed spender, uint256
value);

• Emitted when the allowance of a ‘spender‘ for
an ‘owner‘ is set by a call to approve. ‘value‘
is the new allowance. Again note that the emis-
sion of the event transfer takes place when
the state of the ERC20 contract changes.

9. There are other user interface functions that are
needed for the actual usage but are not relevant
for our discussion here.

3 ATTACKS AND THEIR
MITIGATION

In this section, we shall analyze issues of the possible
attack scenarios and their mitigation using the above
described interface specification, from a programmer
perspective as well as from the synchronization re-
quirement of the smart contract.

3.1 Basic Attack Scenario

Consider a scenario of users (say owners of accounts)
{U1,U2, · · · ,Un}. Let Ai j ∀i 6= j be the Allowance ap-
proved by Ui to user U j,∀i 6= j. It is to be noted that
users {U1,U2, · · · ,Un} are essentially asynchronous
processes. Possible attack scenarios on ERC20 have
been highlighted by several authors4 and are illus-
trated below:

1. U1 approves 80 tokens to U2 (i.e., A12 is 80)

2. U1 realises that he made a mistake and wants to
revise the approval to only 50 tokens.

3. To correct the mistake, U1 sends out an approval
using Approve for 50 tokens to U2.

4. Now there are two possibilities:

(a) It is possible U2 has already withdrawn x to-
kens, 0 ≤ x ≤ 80, using transferFrom . In
such a case, U2 will get an additional 50 tokens
over and above x.

4https://docs.google.com/document/d/
1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA\
jp-RLM/edit\#.)

ERC20: Correctness via Linearizability and Interference Freedom of the Underlying Smart Contract

559

(b) If U2 has not transferred the approved tokens
from U1 then the allowance A12 will get set to
50 tokens as wanted by U1.

(c) Thus, U2 could have used anywhere between x
+ 50 to 80+50 tokens

The basic reason for such an anomalous behaviour
is that users/processes {U1,U2, · · · ,Un} are asyn-
chronous and hence, leads to nondeterminism as the
program does not use either locking or a synchro-
nization construct. A naive programmer understands
that the execution on blockchains like Ethereum using
smart contracts is sequential (as intended in Solidity)
and thus, does not realize the underlying nondeter-
minism due to interleaving. The authors of (Sergey
and Hobor, 2017) capture this through the following
analogy of the underlying artifacts:

Accounts using smart contracts on a
blockchain are like threads using concurrent
objects in shared memory with correspon-
dences of artifacts as below: contract state to
object state, call/send to context switching,
Reentrancy to (Un)cooperative multitasking,
Invariants to Atomicity and Nondeterminism
to Data races.

Before we look at possible approaches of making
ERC20 deployment robust, let us understand the com-
plexity of the problem from the illustrated attack sce-
nario.

While one could have illustrated the attack using
only two users, we introduced n users to understand a
general scenario to expose the underlying complexity.
From the above discussions, the following facts can
be observed about the ERC20 interface specification:

1. transfer can be interpreted as follows: An user,
say Ui (the owner-the token creator), transfers
to other user accounts U j, j 6= i some number
of his tokens from his total supply recorded in
TotalSupply. Looking at the function in an iso-
lated manner, the semantic action corresponds to
Ui (owner) decreasing its TotalSupply5 by x ev-
ery time he sends out x tokens; note that except for
Ui nobody else can write into its TotalSupply.
That is, the only writer of TotalSupply is its owner.

2. transferFrom can be interpreted as follows:
Here, user Ui, takes x number of tokens that are
≤ A ji (allowed by Owner U j to Ui), and transfers
to some other user Uk, i,k 6= j. Thus, Ui writes
into the storage, TotalSupply owned by U j to set
its count after usage.

5For the sake of simplicity let us assume TotalSupply
also denotes the total number of tokens it has.

3. Looking at (1)-(2) above, we can see the storage
of Ui need to be written by all the other users. If
we treat each of the accounts Ui as assets, one can
see that each account in principle can be written
by other accounts/users who are not its’ owners.

4. Overlaying the use of Approve as highlighted
along with (1)-(3) provides a complete picture of
the execution of ERC 20 usage in a given de-
ployed context.

Thus, to establish the intended sequential speci-
fication of ERC20 deployment, we not only have to
show that the attack scenario relative to Approve is
not possible but also show that execution traces aris-
ing from (1)-(2) above also do not introduce any new
attack scenarios.

4 OVERCOMING ATTACKS
NAIVELY

Here, we briefly provide an overview of efforts in the
literature for a robust ERC20 deployment.

4.1 Naive Programming Tricks to
Achieve Robustness

Some of the tricks a programmer (a clairvoyant!) can
do to overcome data races/nondeterminism are:

1. Restrict token transfers to only smart contracts (or
trusted account holders!) whose source code and
object code are public from which one can assure
that the logic needed for the transfers shown in the
attack scenario are not possible.

2. Set the Allowance to zero after every
transferFrom. Note that such a constraint
imposes the following restrictions: (a) Forbids
the possibility of several transfers of the approved
tokens up to the limit of approve, and (b) Either
one uses the tokens approved at once or loses
those that have not been used. It is easy to see
that it changes the interface itself.

3. In6 additional interface functions
increaseAllowance(address spender,
uint256 addedValue) −> bool and
decreaseAllowance(address spender,
uint256 subtractedValue) −> bool
are introduced, where the latter is interpreted
as follows: Atomically decrease the allowance
granted to the spender by the caller. Even

6https://docs.openzeppelin.com/contracts/4.x/api/
token/erc20#ERC20-decreaseAllowance-address-uint256.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

560

with an enhancement, the same nondeter-
minism persists as one can see from the
command sequence: Approve(80, ...);
decreaseAllowance(40, ...); the number of
tokens utilized could vary from 40 (when the user
has not used any of the tokens given as allowance)
and 80 (when the user has already utilized 80
tokens) assuming decreaseAllowance() does
not do anything when the number is already zero.
Thus, ambiguity persists in spite of atomicity
being enforced on these two new functions. This
is due to strong synchronization requirements as
discussed in Section 5.

Assuming that the blockchain platform is a public
ledger and supports viewing of the source codes, if the
strategies (i.e., assumptions/commitments) indicated
are indeed possible, it shall not have the attack vector
indicated above.

4.2 Approaches Using Formal Analysis

In this section, we shall briefly describe two of the
formal approaches that have been used to tackle such
scenarios.

One of the very interesting attempts has been a
proposal for adaptation of the classic proof-carrying
code (pcc) (Dickerson et al., 2018) to overcome the
property of immutability of the smart contract on the
blockchain through the specification invariant spec-
ification of the methods used in the smart contract.
Referring the adaptation as proof-carrying smart con-
tract (pcsc), the authors illustrate a part of ERC20
specification in terms of the invariants of the meth-
ods of ERC20. The basic ideas of their proposal is
briefed below:

• The first idea is that of setting the Allowance
to zero after every transferFrom as already dis-
cussed in the previous subsection.

• The second modification can be understood in two
phases: the first is to show how the data races
could be overcome and the second phase is to
mimic the functionality of load-linked (LL) and
store-conditional (SC) instructions. LL loads a
value from memory, and SC writes new value to
the same location, if and only if it has not been
written since the matching LL.

One of the aims of the proposal is to find ways
to overcome the issue of immutability of smart con-
tracts once it is on the blockchain. One of their pro-
posals is to specify through invariants so that imple-
mentational changes can be catered to keeping the
specification invariant. In summary, the proposal con-
sists of modifying the program after exploring an ab-

stract specification of ERC20, and proposes a speci-
fication/implementation using notione like lineariza-
tion, etc., (Herlihy and Shavit, 2012). Note that the
suggested ideas change in some sense the intended
behaviour of ERC20 itself. While such an analysis is
extremely useful for smart contract programmers, it is
difficult to say how such approaches can be adopted in
practice as it involves an understanding of rich mathe-
matical formalism of derivation of invariant formally.
We shall revert to the use of notions like lineralizabil-
ity (Herlihy and Shavit, 2012)) that can be applied to
analyse smart contracts to assure the preservation of
sequential specification of smart contracts in the se-
quel.

5 LINEARIZATION AND ERC20

Subtle correctness criteria for concurrent systems
is adherence to established sequential specifications.
This demands that each concurrent execution of op-
erations corresponds to some serial sequence of the
same operations permitted by the specification at the
level of abstraction described by the specification of
the operations. In the context of distributed programs,
the concept of linearization proposed in (Herlihy and
Shavit, 2012) has been the foundation for such a cri-
teria. This is briefed below.

The standard correctness requirement for con-
current implementations of abstract data structures
packaged into a concurrent library is the concept of
linearizability (Herlihy and Shavit, 2012; Bouajjani
et al., 2013), that requires every method or operation
to be atomic (behave as if it were executed in one in-
divisible step) for establishing the sequential specifi-
cation of each of the methods under concurrent exe-
cution. The notion of linearizability identifies the so-
called linearization points of each operation. These
are program points where the entire effect of a method
call logically takes place. However, these lineariza-
tion points are quite complicated as they often depend
on a non-local boolean conditions and plausibly even
reside in other concurrently executing threads. This
makes a brute force search for the linearization points
infeasible. A little more formal definition is given be-
low.
Definition 1: Linearizability (Herlihy and Shavit,
2012; Bouajjani et al., 2013) is a formalisation of the
concept of atomicity. It demands that every execution
history consisting of calls to the methods is equiva-
lent (up to reordering of events) to a legal, sequential
history that preserves the order of non-overlapping
methods in the original history. We say that a his-
tory is sequential if none of its methods overlap in

ERC20: Correctness via Linearizability and Interference Freedom of the Underlying Smart Contract

561

time; moreover, it is legal if each method satisfies its
specification7.

Before we see whether the general ERC20 is lin-
earizable, let us see the general possible execution
traces from the ERC20 functional specification.

5.1 General Trace Behaviour of ERC20

From the discussion of the ERC20 functional specifi-
cation given in section 2, it can be seen that functions
like transfer or transferFrom revert when there
are not enough tokens for the transaction. In view of
this, we can see that the execution traces are nothing
but a regular expression over all the calls specified
in ERC20. Based upon the parameters, we can dis-
tinguish calls like transfer(i,j), transferFrom
(i,j,k) and so on. Thus, we can say

1. The execution is just a regular expression over
the method signatures with parameters as given
above.

2. While the contract is on the blockchain, there is
no restriction on the number of instances of the
different methods including parallel invocation.

3. Also all the methods described in ERC20 keeping
in view the sequential execution are realizable as
loop-free programs.

From the above possible execution traces, let
us ask the following questions about the usage of
methods that lead to transactions like Approve,
Allowance, transfer, and transferFrom in a
concurrent way:

1. If a method Approve () is called (in a sense over-
lapping call) while one call is pending or execut-
ing still, what should be the execution semantics?

2. It is possible to have a scenario of having user U j
trying to utilize Ai j through an appropriate method
call to transferFrom(), corresponding to writ-
ing by U j to record the balance of allowance in
Ui (i.e., the balance in Ai j). Further, user Uk, say
k, i 6= j could also be sending some coins to Ui
using a method call transferFrom. This corre-
sponds to overlapping writes by distinct users to
the same locations.

3. Apart from other symmetrical combinations of
scenario depicted in (2), scenarios corresponding
to combinations of transfer and transferFrom
from the users are possible, reflecting multiple
users attempting to write into the same location.

7Informally, in the context of linearization, a begin-call
and end-call of a method can be treated to be happening at
some time point between the beginning and the end of the
method call.

From the definition of transferFrom, it should
be clear that nondeterminism arises as multiple
writers concurrently write onto the same locations.
The illustrations shown above depict overlapping
executions–that is the crux of its nondeterministic be-
haviour. As already mentioned, linearization is one
of the main techniques that is used to realize deter-
ministic implementation of distributed programs. We
shall discuss such an application on ERC20 below and
analyse its subtle features.

5.2 Is ERC20 Linearizable?

If it is possible to show that ERC20 is linearizable,
then we would have arrived at an implementation that
would not have nondeterministic behaviour or races
as we can realize an implementation using wait-free
programs and CAS (compare and swap) registers.
That is, we could have a spectrum implementations
for programs that satisfy linearization, that are race-
free and free of nondeterministic behaviour.

From (Bouajjani et al., 2013), we have the follow-
ing theorem:
Theorem 1: The linearizability problem for un-
bounded concurrent computations with regular speci-
fications is undecidable (cf. (Bouajjani et al., 2013)).

From this theorem we can conclude,
Theorem 2: The linearizability of ERC20 is undecid-
able.
Proof: The proof follows from trace characteristics
given in section 5.1 noting that there no a priori bound
on the number of threads. Note that the full simula-
tion used in (Bouajjani et al., 2013) follows easily.

Now the question is: Is it possible to enforce a set
of constraints (perhaps minimal in a qualitative sense)
without deviating too much from the intended speci-
fication of ERC20 that makes it linearizable.

The above question has been answered affirma-
tively in (Guerraoui et al., 2019) while assessing
the consensus number (Herlihy and Shavit, 2012) of
crypto-currency. As it is quite interesting, we shall
provide a brief discussion the notion of consensus and
consensus number below.
Definition 2: Consider an object, each provided with
a thread with one method, say DECIDE(T value).
Now N threads operating on the object concurrently
have to return a value such that:

Consistent: all threads decide the same value, and

Valid: the common decision is some thread’s input.

We say that a class of objects C solves N-thread con-
sensus if there exists a consensus protocol using any
number of objects of class C and any number of
atomic registers.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

562

Definition 3: Consensus number of a class C is the
largest N for which N-thread consensus is solvable.
If no such n exists, consensus number is said to be
infinite.
Note: In a system with N or more concurrent threads
it is impossible to construct a wait-free or lock-free
implementation of an object with consensus number
N from an object with a lower consensus number (Fis-
cher et al., 1985). A register with CompareAndSet()
and get() methods has an infinite consensus number.

The authors of (Guerraoui et al., 2019) have
carved out a k-shared asset transfer problem (very
informally, it allows multiple reading and writing
from shared accounts each of which have a bounded
set of owners – see the informal interpretation of
transferFrom given earlier) from ERC20 and pro-
vide a wait-free implementation for the same; the
main restriction placed by the authors is that of stat-
ically fixing the set of owners for each account and
hence, bounding the number of threads that can be
there at run time a priori. The wait free implementa-
tion provided in (Guerraoui et al., 2019) result corre-
lates with the results in (Bouajjani et al., 2013) that
shows that linearization with a fixed set of threads is
solvable. Another interesting aspect of this study has
been the carrying out, a subtle analysis of strong syn-
chronization requirement of ERC20 in (Alpos et al.,
2021). It is useful to recall the classic result from Fis-
cher, Lynch, and Paterson (Fischer et al., 1985) that
establishes the impossibility of wait-free implementa-
tion of consensus from atomic registers. That is, con-
sensus requires a higher level of synchronization than
atomic registers and the consensus object is univer-
sal, in the sense that any shared object described by a
sequential specification can be wait-free implemented
from consensus objects and atomic registers (Herlihy
and Shavit, 2012). Thus, it follows that consensus
plays a crucial role to reason about the synchroniza-
tion power of all shared objects (which admit a se-
quential specification) among a number of processes.
Such a role is captured through the concept of con-
sensus number to express the synchronization power
of shared objects. Returning to (Alpos et al., 2021),
the authors show that ERC20 supports a richer set of
methods compared to standard cryptocurrencies, and
thus, results in strictly stronger synchronization re-
quirements. Informally speaking, the authors estab-
lish dependency of the lower bound and the upper
bound on the consensus number of the stakeholders
U1, · · ·Un, on the object’s state that can be modified by
method invocations; this is interpreted as that number
of threads cannot be bounded a priori.

In fact, the result captured in our Theorem 2
above, demonstrates the same in a succinct straight

forward manner.
In distributed/concurrent program analysis, an-

other general approach to establish correctness is the
notion of interference freedom. We shall show the ap-
plication of this concept for ERC20.

6 ERC20 AND INTERFERENCE
FREEDOM

The notion of interference freedom in the concur-
rent execution of programs (Owicki and Gries, 1976)
plays a vital role in the establishment of correctness in
concurrent/distributed programs. We shall define the
notions in a semi-formal way below.
Definition 4: Let P be the pre-condition, Q be the
post-condition and and S be the program. Then the
triple {P} S {Q} denotes the well-known Hoare’s
triple with the interpretaion: If P is true before exe-
cution of program S, then Q holds if and when execu-
tion of S terminates. The triple represents the partial-
correctness of S relative to P and Q.
Definition 5: Given {P} S {Q} and another statement
T with pre-condition pre(T), the statement T is said to
be non-interfering with {P} S {Q} if the following
two conditions holds:

• {Q ∧ pre(T)} T {Q}, and

• {pre(S’) ∧ pre(T)} T {pre(S’)}, where S’ is an
await or assignment statement within S but not
within an await block.

Continuing with our earlier discussion, it is quite
clear that to realize a robust deterministic specifi-
cation for ERC20, we need to ensure interference-
freedom as defined in Definition 5 for the vari-
ous methods that are defined in ERC20. For in-
stance, execution scenarios like (a) overlapping of
calls Approve(50) and Approve (40), or (b) an
Approve call in lieu of the earlier Approve. That is,
interpretation of combining concurrent/overlapping
Approve operations8 must be unambiguous; scenario
(b) corresponds to withdrawal (preemption) of the
first Approve when the second is issued. Such a
preemptive operation is not realizable in an asyn-
chronous setting as shown in (Berry et al., 1993) as
preemption is essentially a non-monotonic operation.
Thus, for correctness purposes, it is necessary to en-
force constraints on the underlying read/write oper-
ations (which is indeed the approach highlighted in
(Dickerson et al., 2018)). From the results in (Alpos
et al., 2021), we can see that simple atomicity at the
register level is not sufficient.

8In the ERC20 standard, this is left unspecified.

ERC20: Correctness via Linearizability and Interference Freedom of the Underlying Smart Contract

563

In the following, we shall articulate conditions un-
der which the depicted nondeterminism scenario can
be overcome via techniques used in classical concur-
rent programming language specification and discuss
how they can be enforced in languages like Solidity.

6.1 Deriving Required Constraints for
Non-Interference

Concurrent programming languages have been de-
signed emphasizing on correctness in particular non-
interference. For instance, one of the early well de-
signed languages, Ada, was quite disciplined from
a concurrent perspective; here integrity was real-
ized through mutuallly exclusive access of shared re-
sources. For this reason, Ada rendezvous was consid-
ered inefficient as it did not permit concurrency even
when the operations were non-interfering. There have
been lot of research to realize efficiency/performance
without foregoing correctness. For instance (Shya-
masundar and Thatcher, 1989) explored a language
structure to realize data integrity without unnecessary
mutual exclusion. Thus, in the context ERC20 spec-
ification that assume a sequential specification, we
shall approach the technique explored in (Shyamasun-
dar and Thatcher, 1989): permit methods to operate in
parallel, multiple incarnations or overlapping only if
they do not interfere. In the following, we apply the
following restrictions using that approach and arrive
at the following set of restrictions:

1. Consider the restriction: user Ui cannot make a
call to method Approve for U j unless Ai j is zero.
That is, the user to whom Ui has given an al-
lowance awaits full utilization by it before issuing
another approval for allowance. Note that utiliza-
tion may happen through several calls and thus,
does not restrict the allowance usage through one
call only and thus, there is no issue of under-
utilizing the approved number of tokens. It is
to further note that the full utilization of the al-
lowance is observable on the blockchain. Note
that the described semantics is valid for Solidity.

2. Method calls of form either transfer or
transferFrom for each user is expected to
happen in a non-interfering manner. As
transferFrom semantically corresponds to mul-
tiple processes reading and writing into other lo-
cations of other processes. Thus for avoiding data
races/nondeterminism, it is necessary to permit
only multiple reads or writes that do not interfere
with each other. Some of the interference cases
due to multiple writings and reading/writing are
given below:

(a) Approvei(k,x) and Approvei(n,y) interfere
when i = n (this is the illustrated case above).

(b) Trans f eri(j,x),Trans f erk(j,y) interfere as-
suming i and k are distinct as i and k are writing
into the common location of j.

(c) trans f erFromi(j,k,x), trans f erFromk(m,n,y)
interfere when k = n or j = m

(d) Trans f eri(j,x) and trans f erFrom j(k,m,y) in-
terfere when k = j.

(e) other combinations of constraints not given for
lack of space.

3. It must be pointed out that several non-
conflicting concurrent operations like transfer
or transferFrom are still permitted and thus,
constraints are general than mutual exclusion.

Realizing Constraints in Solidity: The above con-
straints can be realized in the programming language
Solidity by transforming the original method calls to
guarded execution of method calls where the guard is
nothing but the constraints to be enforced. Guards sat-
isfying the constraints can be realized using require,
assert and revert constructs of Solidity; in fact,
this is the underlying principle used in the imple-
mentation of exceptions as well as safeMath library
in a robust manner in Solidity. Such a technique
has been the basis in the work explored in (Shya-
masundar, 2022) to derive run-time monitors for a
spectrum of vulnerabilities of Solidity through classi-
cal declarations (that enforces certain constraints for
the compiler) in Solidity, where language Solidity
with declarations is referred to as Solidity+. Using
the constraints of the methods, highlighted above, as
guards, we can implement ERC20 in an interference-
free manner – thus overcoming its nondeterministic
behaviour. We shall not go into further details for lack
of space.

6.2 Discussion

The approach of interference-freedom highlighted
above allows us to see how the constraints overcome
concurrent execution of interfering programs. In fact,
some of the approaches of mitigation as highlighted
in section 4, and 4.2 follow from the analysis given
in section 6.1. In other words, by placing restric-
tions, we shall find a way of bounding concurrency
and hence, derive a wait-free implementation of the
methods. This shall not only capture the sequential
specification intended in Solidity but also enables one
to arrive at an efficient implementation that do not use
locks. We are of the opinion that such a methodology
will provide further directions in analysing smart con-
tracts and arriving at proof carrying smart contracts.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

564

Applications to Revisions of ERC20: Some of the
most popular revisions of token standards are:

1. ERC-721: is a standard interface for non-fungible
tokens, like a deed for an artwork or a song,

2. ERC-777: allows people to build extra function-
ality on top of tokens such as a mixer contract for
improved transaction privacy or an emergency re-
cover function to bail you out if you lose your pri-
vate keys,

3. ERC-1155: allows for more efficient trades and
bundling of transactions – thus saving costs. This
token standard allows for creating both utility to-
kens (such as $BNB or $BAT) and Non-Fungible
Tokens like CryptoPunks, and

4. ERC-4626 - A tokenized vault standard designed
to optimize and unify the technical parameters of
yield-bearing vaults.

ERC777 is a refinement of ERC20 and provides a new
feature called hooks, to simplify the sending process
offering a single channel for sending tokens to any
recipient. One of the main differences with respect
to ERC20 is the mechanism of allowing processes
to manage tokens on behalf of others. In ERC20,
the approve method lets an account owner p define
an amount of tokens that some process p′ can spend
from the account of p. In contrast, the operator in
ERC777 allows process p′ that has been approved by
p to spend all the tokens owned by the approving pro-
cess p.

It is clear that standards like ERC777, ERC721
etc., need to be further analyzed for robustness with
respect to the intended interpretation. Our methods
discussed above provide a sound approach for fur-
ther investigation of the revisions and assist in arriv-
ing at robust deterministic behaviour of correspond-
ing smart contracts.

7 CONCLUSIONS

We have discussed the issues of nondeterminism in
ERC20, and analysed the complexity of synchroniza-
tion requirements of ERC20. Using the approach of
linearization , we have shown how the general ERC20
smart contract is not linearizable demonstrating the
strong synchronization requirements of ERC20 in
comparison to just simple smart contracts for cryp-
tocurrency operations. Further, we have demonstrated
through the approach of interference-freedom, how
constraints can be derived for enforcing a determin-
istic behaviour on ERC20. We discussed a sketch
of the implementation in Solidity using guarded

execution of method calls - that is all the meth-
ods are preceded by appropriate guards (as in Dijk-
stra’s guarded commands). In a sense, our applica-
tion of linearization and the approach of interference-
freedom have highlighted how overlapping execution
of interfering programs leads to nondeterministic be-
haviour. The approach of interference-freedom high-
lighted allows us to see how appropriate constraints
can be placed to overcome concurrent overlapped ex-
ecution of interfering programs. As illustrated in 6.2,
the approach provides assistance in arriving at con-
straints for which efficient wait-free implementations
can be realized without loosing the intuition of the So-
lidity sequential specification of smart contracts. The
approach further assists in analysing a plethora of to-
ken standards as most of the revisions are backward
compatible and have additional features along with
powerful methods.

In summary, the paper has analysed the complex-
ity of ERC20 from different perspectives and the tech-
niques proposed are also of general interest to smart
contract designers to visualize deterministic execu-
tion of smart contracts on blockchain platforms.

REFERENCES

Alpos, O., Cachin, C., Marson, G., and Zanolini, L. (2021).
On the synchronization power of token smart con-
tracts. In 2021 IEEE 41st ICDCS, pages 640–651.

Berry, G., Ramesh, S., and Shyamasundar, R. K. (1993).
Communicating reactive processes. In Proc. of the
20th ACM POPL, page 85–98.

Bouajjani, A., Emmi, M., Enea, C., and Hamza, J.
(2013). Verifying concurrent programs against se-
quential specifications. volume LNCS, 7792, pages
290–309. Springer Berlin Heidelberg.

Dickerson, T., Gazzillo, P., Herlihy, M., Saraph, V., and
Koskinen, E. (2018). Proof-carrying smart contracts.
In Financial Cryptography and Data Security: FC
2018, page 325–338. Springer-Verlag.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985).
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382.

Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovič, M., and
Seredinschi, D.-A. (2019). The consensus number of
a cryptocurrency. In Proc. 2019 ACM PODS, page
307–316, New York, NY, USA.

Herlihy, M. and Shavit, N. (2012). The Art of Multipro-
cessor Programming, Revised Reprint. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1st
edition.

Owicki, S. and Gries, D. (1976). An axiomatic proof
technique for parallel programs i. Acta informatica,
6(4):319–340.

Sergey, I. and Hobor, A. (2017). A concurrent perspective

ERC20: Correctness via Linearizability and Interference Freedom of the Underlying Smart Contract

565

on smart contracts. In Financial Cryptography and
Data Security, pages 478–493. Springer.

Shyamasundar, R. K. (2022). A framework of runtime mon-
itoring for correct execution of smart contracts. In Int.
Conf. on Blockchains, LNCS (ICBC2022)), pages 92–
116. Springer Nature.

Shyamasundar, R. K. and Thatcher, J. W. (1989). Language
constructs for specifying concurrency in cdl. IEEE
Trans. Software Engineering, 15(8):977–993.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

566

