
The Partition Problem, and How The Distribution of Input Bits Affects
the Solving Process

Nikita Sazhinov1 a, Ruben Horn1,2 b, Pieter Adriaans3,4 c and Daan van den Berg1,3 d

1Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
2Helmut-Schmidt-University Hamburg, Germany

3University of Amsterdam, The Netherlands
4Institute for Logic, Language, and Computation, The Netherlands

Keywords: Partition Problem, Subset Sum, Instance Hardness, Exact Algorithms, Heuristic Algorithms, Karmarkar-Karp.

Abstract: The hardness of the partition problem does not only depend on the number of integers in the problem instance,
but also on their magnitude, measured in informational bits. In this work, we will show that also the exact
distribution of informational bits among the integers influences the hardness for at least one exact and three
heuristic algorithms.

1 INTRODUCTION

“The easiest hard problem” (Mertens, 2006; Hayes,
2002) must be the best nickname ever given to an
NP-hard problem. It belongs to the well-known parti-
tion problem (Korf, 1998), which in its most common
form, involves splitting a set of n integers in two, so
that their summed values are as close as possible. For
instance, the set

S1 = {242,238,181,165,134,208,161,181} (1)

can be split in {238, 181, 134, 208} and {242, 165,
161, 181} which sum up to 761 and 749 respectively
and hence have a difference of 12. It has another so-
lution, when split in subsets {242, 165, 134, 208} and
{238, 181, 161, 181}, which also have a difference of
12, but a better solution, meaning a closer split with a
smaller difference, does not exist. This instance there-
fore has multiple global minima, but no perfect splits.
Contrarily, set

S2 = {207,153,186,146,230,217,175,212} (2)

a https://orcid.org/0000-0002-2089-9602
b https://orcid.org/0000-0001-6643-5582
c https://orcid.org/0000-0002-8473-7856
d https://orcid.org/0000-0001-5060-3342

has only one solution and it is perfect, meaning the
difference between the subsets is zero – {207, 153,
186, 217} and {146, 230, 175, 212}, both summing
up to 763. Finding a perfect solution during the search
process is great, because it allows the algorithm to halt
immediately, saving computational costs.

This property, the a priorily known optimum of
zero for all imaginable instances, sets the partition
problem apart from other NP-hard problems. In the
traveling salesman problem for example, the value of
the optimal solution of some given instance cannot be
known aforehand, with the exception of a few rare
cases. This prior knowledge greatly influences the
solve time for a partition problem instance; the more
perfect solutions a problem instance has, the sooner
one will be found, and the earlier the search can be
halted. As it turns out, this number of perfect solu-
tions depends on m/n, in which m is the number of
informational bits of a typical integer of the set (Fig-
ure 1). The higher m/n, the lower the number of per-
fect solutions. In other words: if the instance’s inte-
gers are small compared to its number of integers, the
number of perfect solutions is high, and the instance
is expected to be relatively easy. If on the other hand,
a same-sized instance holds large integers, it is sig-
nificantly harder because it has few or no perfect solu-
tions, thereby requiring a long time to find the optimal
split, much like solving a traveling salesman problem.
The 8-integer instance S3 for example

Sazhinov, N., Horn, R., Adriaans, P. and van den Berg, D.
The Partition Problem, and How The Distribution of Input Bits Affects the Solving Process.
DOI: 10.5220/0012143600003595
In Proceedings of the 15th International Joint Conference on Computational Intelligence (IJCCI 2023), pages 143-150
ISBN: 978-989-758-674-3; ISSN: 2184-3236
Copyright © 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

143



Figure 1: For the partition problem, the number of ways to reach the optimal solutions depends on both the number of integers
n and informational bits m. As the ratio m/n exceeds 1, the optimal solution is likely unique, making the problem much harder.

S3 = {6,8,4,12,2,10,14,16} (3)

is very easy. Its perfect split is 36-36, and there are
many ways to achieve one1. Set S4 on the other hand,
also holding 8 integers

S4 = {76579,62450,91942,9188,
68382,30234,36504,28103} (4)

has no perfect split, so an exact algorithm has to
search the entire search tree to guarantee that it finds
the best solution, at great computational cost. This de-
pendency, the dependency of the computational hard-
ness not only on the number of variables in an in-
stance but also on their magnitude, measured in infor-
mational bits, is know as ‘weak NP-hardness’ (Hayes,
2002).

In this study, we go one step beyond n and m in an-
alyzing the hardness of the partition problem. We will
generate 7000 partition problem instances of equal
size, all n = 14 integers and m = 105 informational
bits, but we will vary the distribution of bits over
the integers. Using 7 different distributions (“strict
templates”, see Table 1) to generate 1000 random in-
stances each, we will solve these with one exact algo-

1Try it yourself.

rithm and three heuristic algorithms and evaluate the
results.
About the organization of this paper: the next section
can be safely skipped for those already familiar in the
field; it provides related work on the partition problem
and about easy-hard phase transitions in other prob-
lems. Section 3 details on the generation of the 7000
problem instances and their bit distributions, while
Section 4 explains the algorithms used to solve these.
The effects of the bit distributions on the efficiency of
the algorithms are presented in the results (Section 5)
after which the conclusion and discussion in Section
6 wrap up the read.

2 RELATED WORK

The partition problem can be seen as a special case
of the multi-way partition problem, where rather than
dividing the set into two equal sum subsets, one di-
vides it into k subsets (Martens, 2006) and finds ap-
plications in areas such as task scheduling (Graham,
1969), voting manipulation (Walsh, 2009), multipro-
cessor scheduling (Schreiber et al., 2018; Dell’Amico
and Martello, 1995; Dell’Amico et al., 2008). The
most prominent name in this field is probably that
of Richard Korf (Korf, 2009; Schreiber et al., 2018),
who published for over two decades on algorithmics
for the (multi-way) partitioning problem, e.g. improv-
ing on the Karmarkar-Karp algorithm (Karmarkar and

ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

144



Table 1: The 7 strict templates used in this experiment, each with an example partition problem instance. All generated
instances have exactly 14 integers and exactly 105 informational bits, but bits are distributed differently over the integers for
each template.

Strict Template Example instance
ST3 26b, 20b, 17b, 13b, 9b, 4b, 3b, 3b, 3b, 3b, 2b, 2b, 1b, 1b 38553645, 832461, 111689, 4981, 357, 14, 7, 6, 5, 4, 3, 2, 1, 0
ST2 22b, 18b, 15b, 12b, 9b, 6b, 5b, 5b, 4b, 3b, 2b, 2b, 1b, 1b 2614847, 158808, 24310, 2818, 511, 59, 24, 23, 9, 5, 3, 2, 1, 0
ST1 17b, 15b, 13b, 11b, 10b, 9b, 7b, 6b, 5b, 4b, 4b, 2b, 1b, 1b 120760, 32272, 8143, 2011, 591, 472, 77, 46, 21, 15, 7, 3, 1, 0
ST0 14b, 13b, 12b, 11b, 10b, 9b, 8b, 7b, 6b, 5b, 4b, 3b, 2b, 1b 15411, 6345, 3880, 1947, 783, 469, 202, 110, 40, 16, 13, 3, 1, 0
ST 1 13b, 12b, 11b, 10b, 9b, 9b, 9b, 7b, 6b, 5b, 4b, 4b, 3b, 3b 4272, 2169, 1294, 682, 440, 316, 276, 66, 52, 31, 10, 8, 6, 5
ST 2 10b, 10b, 10b, 8b, 8b, 8b, 7b, 7b, 7b, 6b, 6b, 6b, 6b, 6b 808, 703, 564, 221, 188, 133, 122, 86, 72, 63, 59, 53, 46, 40
ST 3 8b, 8b, 8b, 8b, 8b, 8b, 8b, 7b, 7b, 7b, 7b, 7b, 7b, 7b 251, 246, 229, 225, 198, 166, 146, 118, 116, 109, 93, 89, 84, 81

Karp, 1982; Korf, 1995; Korf, 1998).
It’s actually remarkable that Korf has (apparently)

never attempted to quantify instance hardness for the
partition problem. His earlier work on the asymmet-
ric traveling salesman problem, together with WeiX-
iong Zhang, yielded a tremendous insights on how the
performance of an exact algorithm’s performance de-
pends on the actual numerical values inside the dis-
tance matrix (Zhang and Korf, 1996). We cannot es-
cape the feeling that constrainedly summing up inte-
gers from a matrix such as in asymmetric traveling
salesman problem is very close to the partition prob-
lem, or at least to subset sum.

Zhang & Korf’s work was at least partially in-
spired by an earlier work on instance hardness
for ATSP, namely the investigation of Cheeseman,
Kanefsky and Taylor2 (Cheeseman et al., 1991). It
must be the most cited paper in the field, showing
that for ATSP, the standard deviation of the integers in
the cost matrix of an instance was the critical indica-
tor of its algorithmic hardness. Sadly, Cheeseman et
al. were wrong, as they likely overlooked a roundoff
error which was only discovered three decades later,
practically nullifying all these results (Sleegers et al.,
2020). But that’s science, moving ahead by a stride
and a stumble. Still, Cheeseman et al.’s paper in-
flamed the instance hardness discussion like no other.

As once noted by Kevin Leighton-Brown, in-
stance hardness appears to be much better investi-
gated on NP-complete decision problems (Leyton-
Brown et al., 2002). At the root of all decision prob-
lems sits satisfiability, for which a solvability phase
transition, and accompanying instance hardness was
identified in the number of clauses over the number of
variables (Larrabee and Tsuji, 1992; Kirkpatrick and
Selman, 1994; Gent and Walsh, 1994). The Hamilto-
nian cycle problem too, has a solvability phase tran-
sition, through its edge degree, as was demonstrated
by Cheeseman et al. in the same paper as the ATSP-
hardness (Cheeseman et al., 1991). This experiment

2One can tell not only from their references, but also
their reported personal communication with Peter Cheese-
man.

was later independently verified in an extended repli-
cation by Joeri Sleegers (van Horn et al., 2018). But
Sleegers moved beyond edge degree, showing not
only these results were valid for all major exact al-
gorithms (Sleegers and van den Berg, 2021; Sleegers
et al., 2022), but also that the hardest existable in-
stances were in a completely different region of the
combinatorial state space (Sleegers and van den Berg,
2020a; Sleegers and van den Berg, 2020b; Sleegers
and van den Berg, 2022). The fact that these instances
do not turn up in random ensembles might be due
to their high degree of (Kolmogorov-)structure, and
has direct implications for our benchmarking prac-
tices (Bartz-Beielstein et al., 2020).

For the partition problem however, recent work
on instance hardness showed that the distribution of
informational bits among the integers play a critical
role in instance hardness3 (van den Berg and Adri-
aans, 2021). Their work is rooted in information the-
ory (Adriaans, 2021), but their experiment, though in-
teresting, is fairly small. In our experiments, we will
add three more algorithms, and 100-fold the number
of instances, which we will discuss in the following
section.

3 PROBLEM INSTANCES

For generating partition problem instances, we use
‘strict templates’ containing explicit designations for
informational bits to integers. For example, a strict
template like (4b,3b,2b,1b) could give rise to ran-
domly generated instance such as {14,5,3,1} or
{9,6,2,0}. Here, the first integer containing exactly
4 bits of information, the second containing exactly 3
bits, then 2 bits and finally 1 bit. Note that the value
0 is a borderline case here, as it is discardable as an
input integer for the partition problem, but we leave
it in for generative purposes. A second remark con-
tains the notion of ‘strict’, meaning that e.g. a 4-bit

3The authors actually use the more general term ‘subset
sum’, but are practically investigating the partition problem.

The Partition Problem, and How The Distribution of Input Bits Affects the Solving Process

145



Figure 2: Recursions required for the branch and bound algorithm on all 7000 partition problem instances. Different strict
templates representing different bit distributions are represented by different colours, and show the impact on the instances’
hardness.

number has exactly 4 bits of information, and no less.
Therefore, integers valued 8 ≤ x ≤ 15 are considered
strict 4-bit numbers, as smaller numbers can also be
represented with fewer bits of information. This no-
tion is needed pertaining the weak NP-hardness of the
partition problem: we want to compare instances with
identical numbers of integers and identical total num-
bers of informational bits.

The strict templates (ST ) we used all generated
instances of 14 integers with a total of 105 informa-
tional bits. The central and in some ways most regular
strict template is ST0, which is linearly decreasing in
its informational bits: {14b, 13b ,12b ... 1b} 1. Going
down through ST−1 ST−2 and ST−3, templates are be-
coming ‘flatter’, with the number of bits more equally
distributed among the integers; ST−3 is the flattest
template possible for these numbers of integers and
bits. Going up through ST1 ST2 and ST3, templates be-
come ever more ‘eccentric’, with steep differences be-
tween the largest and the smallest entries. Despite be-
ing on top, ST3 is certainly not the most eccentric tem-
plate imaginable, but preliminary investigations and
postliminary reasoning affirmed that strict templates
above ST3 will not induce substantially different algo-
rithmic behaviour over ST3. It should be noted that
our templates are a bit different from Van den Berg &
Adriaans’s work (van den Berg and Adriaans, 2021),

who accidentally generated multisets along their reg-
ular sets (Adriaans and van den Berg, 2023). Even
though we do not expect the experimental results to
be substantially different when allowing multisets, we
prefer to stay closer to the most common definition of
the partition problem.

From each of the 7 strict templates, we made 1000
randomized partition problem instances, totalling to
7000 problem instances of 14 integers, all of which
are unique. This is 100 times more than the early
study on this subject, exposing a lot of fine grain in
the hardness diagram. Apart from that, we will in-
vestigate the effect of these template-based instances
on the performance of some common heuristic algo-
rithms for the partition problem. All instances, codes,
figures and supplementary material can be found in
an online repository (Horn, 2022).

4 ALGORITHMS

The 7000 instances genererated by the 7 strict tem-
plates are all solved by 1 exact algorithm and 3 heuris-
tic algorithms, all of which require the problem in-
stance to be sorted in descending order. Apart from
this commonality, there is no real reason why specif-
ically these algorithms are used in this study other

ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

146



Table 2: The performance of the heuristic algorithms, expressed in heuristicDeficiency, for different strict templates used in
this study.

Template Greedy KK-largdif KK-pairdif
- min µ max min µ max min µ max

ST3 8.231 15.149 26.810 8.231 15.149 26.810 8.275 15.260 27.083
ST2 2.542 4.361 7.284 2.542 4.361 7.284 2.578 4.427 7.469
ST1 1.145 1.513 2.114 1.145 1.513 2.114 1.209 1.615 2.255
ST0 1.000 1.026 1.182 1.000 1.026 1.182 1.000 1.200 1.564

ST−1 1.000 1.015 1.126 1.000 1.014 1.126 1.000 1.203 1.572
ST−2 1.000 1.005 1.017 1.000 1.001 1.010 1.000 1.086 1.214
ST−3 1.000 1.005 1.034 1.000 1.001 1.024 1.000 1.006 1.036
All 1.000 3.582 26.810 1.000 3.581 26.810 1.000 3.685 27.083

than just expanding our knowledge on the subject. We
could equally well imagine a similar study being done
with dynamic programming, simulated annealing, or
the plant propagation algorithm, just to name a few.

The exact algorithm for splitting sets is a depth-
first branch and bound algorithm, and our implemen-
tation can be seen as binarily looping through the
sorted integers of the instance. Initially, the first (and
therefore largest) integer is marked as ‘included’. If
the included integers sum up to at least the target value
of half the summed set, the addition of further integers
need not be considered. This value can therefore be
considered the ‘bound’ along which the search tree
is pruned. Note that this bound thereby is a posi-
tive bound: the algorithm should keep branching as
long as the incumbent value is smaller than the tar-
get value, because the closest approximation of the
perfect partition might be slightly higher than the tar-
get value. After that, the branch without the respec-
tive integer is considered, adding the second, third and
fourth solution to the sum, again backtracking when
the target value is exceeded. A particular subset hit-
ting the target value exactly constitutes a hard stop-
ping criterion; in this case, it found a perfect partition,
and the search can be halted because no better solu-
tions exist. Consequently, when an instance has many
perfect partitions, one can be discovered early, halt-
ing the search and significantly saving computational
costs.

The complete search tree of a problem instance
has 2n nodes, a theoretical upper bound that cannot
be reached by branch and bound in this setting of the
partition problem, where the target value is always
1
2 ∑

n
i=1(integeri). More general instances of the subset

sum problem might make close approximations, but
branch and bound’s runtime will be closer to 2(n/2) for
these particular sorted problem instances. However,
as typical for exact algorithms, we will be getting a
guaranteed optimal partition for this exponential run-
time.

Computational history however, traditionally not
too fond of the exponential runtimes that come with

solving NP-hard problems, produced a good lot of al-
ternatives. The O(n) greedy heuristic, the Karmarkar-
Karp largest difference (KK-largdif) and Karmarkar-
Karp paired difference (KK-pairdif) algorithms, both
O(n2), produce good or even near-optimal results for
partition problem instances (Hayes, 2002; Karmarkar
and Karp, 1982). Although these old algorithms
are heuristics, they are deterministic and parameter-
less; this in stark contrast to many of the bio-inspired
population-based algorithms that have been published
in the 21st century, often taking myriads of input pa-
rameters, and being stochastic in nature. The case for
KK-largdif is even stronger; although called a heuris-
tic, it is much better, guaranteeing a 7/6 ·opt solution
from the best possible split opt in polynomial time,
thereby being a 7/6 - approximation algorithm (Fis-
chetti and Martello, 1987).

The greedy algorithm starts off with two empty
sets, and iterates through the instance’s sorted inte-
gers, assigning each integer to the set with the small-
est sum so far. The KK-largdif grabs the first two inte-
gers of the sorted instance, which are the two largest,
and replaces them by their absolute difference, after
which the instance is resorted. The process is repeated
until the instance is empty, the last integer is the dif-
ference of the split, and the explicit solution can be
reconstructed through backtracking if needed.

The KK-pairdif works slightly different, first cre-
ating an empty set E1, which is filled with the differ-
ence between the first and second integers from the
sorted instance, the third and fourth integers, fifth and
sixth, and so forth. E1 is then sorted, and the operation
is repeated on E1, producing E2. The process contin-
ues until there is only one integer left in En, which
is the difference of the split, and the explicit solution
can be reconstructed through backtracking.

The tradeoff here is clear: a good, but not perfect
heuristic solution can be obtained in exchange for bet-
ter runtimes, but how would the distribution of infor-
mational bits affect their performance? We will com-
pare the deficiency of the heuristic algorithms, which

The Partition Problem, and How The Distribution of Input Bits Affects the Solving Process

147



Figure 3: The heuristic performance of the three most popular partition problem heuristics (Greedy, Karmarkar-Karp-
largestDifference, Karmarkar-Karp-pairedDifference) is critically influenced by the bit distribution within the instance. Note
that the vertical axes denotes the heuristicDeficiency. Top-left subfigure shows the difference between the subsets in the
optimal split for instances in a strict template.

is given as

heuristicDe f iciency =
worstSplit−bestSplit

worstSplit−heuristicSplit
(5)

in which worstSplit is the summed instance, bestSplit
is the best possible split value, guaranteed by the
branch and bound algorithm which is an exact algo-
rithm, and heuristicSplit is the solution as returned
by the respective heuristic algorithm. If the heuris-
tic performs optimal, finding the smallest-difference
split, the heuristic deficiency is 1, if it approaches the
optimal split only half as good as the exact algorithm,
the heuristic deficiency is 2 (read: “it performs twice
as bad as the exact algorthm.”).

All 28,000 runs were executed on a 2015 HPx360
laptop with an I7 core, and 8GB of memory using sin-
gle threaded Python (find source code here: (Horn,
2022)). Even on this modest setup, the whole ex-

periment can be completed in a few days, especially
when screen logs are turned off. One should remem-
ber though, that every extra integer added to the tem-
plate doubles the expected computational effort.

5 RESULTS

The runtimes for branch-and-bound on instances from
the eccentric templates ST3, ST2 and ST1 are com-
pletely uniform at 8192 recursions. In retrospect, this
is no surprise because the first integer is more than one
bit larger than the second integer in the set, thereby in-
evitably constituting more than half of the instance’s
total sum. Therefore, the entire subtree containing the
first integer is immediately discarded, while the en-
tire subtree without the first integer gets checked for a
closer approximation of the perfect split, summing up
to 2n−1 recursions, which is 8192 for our instances of
n = 14.

ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

148



The first hardness variations occur in ST0 and
ST−1, which have both higher and lower numbers of
recursions (r) with r ∈ [5,8210], µ = 6262, σ = 3443
for ST0 and r ∈ [0,8235],µ = 4709,σ = 4009 for ST−1
respectively, in which µ is the mean and σ the stan-
dard deviation of r. This includes one extraordinary
‘rogue’ instance in ST−1 that required exactly 0 re-
cursions. It is the unlikely but true case of a ran-
dom instance whose first integer is exactly half of the
summed set.

ST−2 is the template that has generated the hard-
est instances (∈ [1,8527],µ = 722,σ = 2061). It has
roughly three hardness groups: one slightly over 8192
recursions, one near 0 recursions, and a very small
one just over 2000 recursions. We do not know why
this particular hardness grouping occurs, or what sets
the particularly hard instances apart.

ST−3 produces exclusively easier instances (∈
[4,2243],µ = 195,σ = 127) with 99% of its instances
under 2000 recursions. This is likely due to the high
number of solutions present in instances, such as in
S3 of Example 3.
A few notable differences occurred in the heuristics’
performance over the entire ensemble of 7000 in-
stances (Figure 3). When assessing the aggregate
values (Table 2), the greedy algorithm and the KK-
largdif performed nearly identical. Only 5 out 21 val-
ues (max, min, average heuristicDeficiency for 7 tem-
plates) differed, and these differences were all smaller
than 1%. We expected the difference to be greater,
and these results do raise the question for what (kind
of) instances these algorithms do show substantially
different performance.

These results do suggest however, why the second
variation of the Karmarkar-Karp algorithm has never
gained any popularity. KK-pairdif lagged behind sub-
stantially on 17 out of 21 measurements, underper-
forming from between 0.5% to 39.6%, over half of
which was over 5%. – quite significant if we re-
alize that these instances have only 14 integers. It
would be interesting to actively seek for which (kinds
of) instances these underperformances are maximal.
The common denominator for now, is that the per-
formance difference for the heuristic algorithms is
largest in strict templates ranging from ST0 to ST−3,
where we also find the largest variations in computa-
tional costs for the exact algorithm.

6 CONCLUSION & DISCUSSION

In retrospect, the results are almost trivial: how could
the distribution of bits not have influenced the hard-
ness? Still, these results paint a different picture from

the traditional (weak NP-)hardness of the partition
problem. Would it make sense to in some way com-
bine the classical diagram of Figure 1 with Figure 2?
It would require a systematic way of quantifying ec-
centricity in the strict templates, which is not trivial.
Maybe just studying non-eccentricity is sufficient, as
only the strict templates below ST0 show interesting
behaviour.

A more poignant question is what the hardest in-
stances in ST−2 actually look like, and whether any
form of universal hardness can be extracted from
them. If we generate more instances from this tem-
plate, how hard can they possibly get? A third av-
enue of exploration could be the performance of non-
deterministic (meta)heuristics such as simulated an-
nealing (Paauw and van den Berg, 2019; Dijkzeul
et al., 2022; Dahmani et al., 2020) or the plant propa-
gation algorithm (Vrielink and van den Berg, 2021a;
Vrielink and van den Berg, 2021b; De Jonge and
van den Berg, 2020). Can strict template generation
also influence the structural properties of these algo-
rithms’ hardness landscapes?

Many issues are still open, and we cannot wait to
start future work, which will surely incorporate larger
templates, larger instance ensembles and more de-
tailed hardness pictures.

REFERENCES

Adriaans, P. (2021). Differential information theory. arXiv
preprint arXiv:2111.04335.

Adriaans, P. and van den Berg, D. (2023). Communication.
From personal email communication with Daan van
den Berg and Pieter Adriaans.

Bartz-Beielstein, T., Doerr, C., van den Berg, D., Bossek,
J., Chandrasekaran, S., Eftimov, T., Fischbach, A.,
Kerschke, P., La Cava, W., Lopez-Ibanez, M., et al.
(2020). Benchmarking in optimization: Best practice
and open issues. arXiv preprint arXiv:2007.03488.

Cheeseman, P. C., Kanefsky, B., Taylor, W. M., et al.
(1991). Where the really hard problems are. In Ijcai,
volume 91, pages 331–337.

Dahmani, R., Boogmans, S., Meijs, A., and van den Berg,
D. (2020). Paintings-from-polygons: simulated an-
nealing. In International Conference on Computa-
tional Creativity (ICCC 2020).

De Jonge, M. and van den Berg, D. (2020). Parameter sen-
sitivity patterns in the plant propagation algorithm. In
IJCCI, pages 92–99.

Dell’Amico, M., Iori, M., Martello, S., and Monaci, M.
(2008). Heuristic and exact algorithms for the iden-
tical parallel machine scheduling problem. INFORMS
Journal on Computing, 20(3):333–344.

Dell’Amico, M. and Martello, S. (1995). Optimal schedul-
ing of tasks on identical parallel processors. ORSA
Journal on Computing, 7(2):191–200.

The Partition Problem, and How The Distribution of Input Bits Affects the Solving Process

149



Dijkzeul, D., Brouwer, N., Pijning, I., Koppenhol, L., and
van den Berg, D. (2022). Painting with evolutionary
algorithms. In International Conference on Compu-
tational Intelligence in Music, Sound, Art and Design
(Part of EvoStar), pages 52–67. Springer.

Fischetti, M. and Martello, S. (1987). Worst-case analysis
of the differencing method for the partition problem.
Mathematical Programming, 37(1):117–120.

Gent, I. P. and Walsh, T. (1994). The sat phase transition.
In ECAI, volume 94, pages 105–109. PITMAN.

Graham, R. L. (1969). Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics,
17(2):416–429.

Hayes, B. (2002). Computing science: The easiest hard
problem. American Scientist, 90(2):113–117.

Horn, R. (2022). Repository containing source mate-
rial: https://anonymous.4open.science/r/subset-sum-
problem-bit-distribution-4FDB/README.md.

Karmarkar, N. and Karp, R. M. (1982). The differencing
method of set partitioning. Computer Science Divi-
sion (EECS), University of California Berkeley.

Kirkpatrick, S. and Selman, B. (1994). Critical behavior in
the satisfiability of random boolean expressions. Sci-
ence, 264(5163):1297–1301.

Korf, R. E. (1995). From approximate to optimal solutions:
A case study of number partitioning. page 266–272.

Korf, R. E. (1998). A complete anytime algorithm for num-
ber partitioning. Artificial Intelligence, 106(2):181–
203.

Korf, R. E. (2009). Multi-way number partitioning. IJCAI.
Larrabee, T. and Tsuji, Y. (1992). Evidence for a satisfiabil-

ity threshold for random 3CNF formulas. University
of California, Santa Cruz, Computer Research Labo-
ratory.

Leyton-Brown, K., Nudelman, E., and Shoham, Y. (2002).
Learning the empirical hardness of optimization prob-
lems: The case of combinatorial auctions. In Interna-
tional conference on principles and practice of con-
straint programming, pages 556–572. Springer.

Martens, S. (2006). The easiest hard problem: Number
partitioning. Computational complexity and statisti-
cal physics, page 125.

Mertens, S. (2006). Number partitioning. Computational
Complexity and Statistical Physics, page 125.

Paauw, M. and van den Berg, D. (2019). Paintings,
polygons and plant propagation. In International
Conference on Computational Intelligence in Music,
Sound, Art and Design (Part of EvoStar), pages 84–
97. Springer.

Schreiber, E. L., Korf, R. E., and Moffitt, M. D. (2018).
Optimal multi-way number partitioning. Journal of
the ACM (JACM), 65(4):1–61.

Sleegers, J., Olij, R., van Horn, G., and van den Berg, D.
(2020). Where the really hard problems aren’t. Oper-
ations Research Perspectives, 7:100160.

Sleegers, J., Thomson, S. L., and van den Berg, D. (2022).
Universally hard hamiltonian cycle problem instances.
In ECTA 2022: 14th International Conference on
Evolutionary Computation Theory and Applications,

pages 105–111. SCITEPRESS–Science and Technol-
ogy Publications.

Sleegers, J. and van den Berg, D. (2020a). Looking for
the hardest hamiltonian cycle problem instances. In
IJCCI, pages 40–48.

Sleegers, J. and van den Berg, D. (2020b). Plant propaga-
tion & hard hamiltonian graphs. Evo* LBA’s, pages
10–13.

Sleegers, J. and van den Berg, D. (2021). Backtracking (the)
algorithms on the hamiltonian cycle problem. arXiv
preprint arXiv:2107.00314.

Sleegers, J. and van den Berg, D. (2022). The hardest hamil-
tonian cycle problem instances: the plateau of yes and
the cliff of no. SN Computer Science, 3(5):1–16.

van den Berg, D. and Adriaans, P. (2021). Subset sum and
the distribution of information. pages 134–140.

van Horn, G., Olij, R., Sleegers, J., and van den Berg, D.
(2018). A predictive data analytic for the hardness of
hamiltonian cycle problem instances. Data Analytics,
2018:101.

Vrielink, W. and van den Berg, D. (2021a). A dynamic
parameter for the plant propagation algorithm. Evo*
LBA’s, pages 5–9.

Vrielink, W. and van den Berg, D. (2021b). Parameter con-
trol for the plant propagation algorithm. Evo* LBA’s,
pages 1–4.

Walsh, T. (2009). Where are the really hard manipulation
problems? the phase transition in manipulating the
veto rule. arXiv preprint arXiv:0905.3720.

Zhang, W. and Korf, R. E. (1996). A study of complex-
ity transitions on the asymmetric traveling salesman
problem. Artificial Intelligence, 81(1-2):223–239.

ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications

150


