
Sharding and Master-Slave Replication of NoSQL Databases:
Comparison of MongoDB and Redis

Anikó Vágner a and Mustafa Al-Zaidi b

Department of Information Technology, Faculty of Informatics, University of Debrecen, Hungary

Keywords: NoSQL Databases, Cluster, Replication, Sharding, Distribution Models.

Abstract: One of the reasons that NoSQL databases were born is that they can be used in clusters, namely, computers
work together, share data and from the client side, the clustered computers look as if there is only one computer.
In this paper, the distribution models of two NoSQL databases are introduced. We chose the databases from
the database ranking website (noa, 2023a), exactly the two first NoSQL databases: MongoDB and Redis.
However they belong to two different NoSQL database categories, they use similar key-value pairs which is
the main basis of the clustering. Additionally, the distribution models do not depend on the categories of
the databases, both database management systems know sharding and master-slave replication, and can use
these two distribution models together. These two database management systems do not know peer-to-peer
replication. Our goal was to get to know whether there are similarities between the structures of clustered
computers of each database management system. If we consider the theory, the answer should be yes, they are
similar to each other: for the sharding 2 computers are enough, similarly for the replication 2 computers are
also enough, and if both of the techniques are used, 4 computers should be enough.

1 INTRODUCTION

In the early 21st century new types of database man-
agement systems were born, which got a new name:
NoSQL databases. They were born because develop-
ers needed easier development, faster solutions, and
distributed databases compare to relational database
management systems. Considering the distributed
database concept, reliability can be mentioned as the
main advance of the NoSQL databases, since in clus-
tered environment, if a computer fails the whole sys-
tem can work and can be available. (Sadalage and
Fowler, 2013)

The NoSQL database topic distinguishes more
categories, like key-value, column-family, document,
graph, and search engines. The list of categories is
long, and each category is not exactly clean. For ex-
ample, MongoDB is a document database but can also
be considered a search engine. Additionally, Mon-
goDB can also be regarded as a key-value database
since it stores JSON documents as values under keys.
Moreover, Redis is a key-value database, but it can
store JSON also, so in an extended sense it can be

a https://orcid.org/0000-0001-8843-2403
b https://orcid.org/0009-0003-2561-4500

a document database. Despite this fact, Redis does
not offer many tools which manage JSON documents
well. (noa, 2023a) (noa, 2023b) (noa, 2023c) (Banker
et al., 2016) (Sadalage and Fowler, 2013)

Many NoSQL databases offer more kinds of
distribution models, like master-slave replication or
peer-to-peer replication and sharding. They can call
it some other names, but the concepts finally are
the same. The replication and the sharding can be
used together in a cluster. The sharding splits the
whole database into many parts, whereas the replica-
tion copies each piece of the database to many com-
puters. (Sadalage and Fowler, 2013)

MongoDB as a document database and Redis as a
key-value database offer master-slave replication and
sharding (noa, 2023b) (noa, 2023c) (Banker et al.,
2016) (Carlson and Sanfilippo, 2013). In this paper,
we introduce their exact architecture, examine how
they work, and finally, we compare them.

2 DISTRIBUTION MODELS

In this section, we consider the distribution models of
NoSQL databases in general.

576
VÃągner, A. and Al-Zaidi, M.
Sharding and Master-Slave Replication of NoSQL Databases: Comparison of MongoDB and Redis.
DOI: 10.5220/0012142700003541
In Proceedings of the 12th International Conference on Data Science, Technology and Applications (DATA 2023), pages 576-582
ISBN: 978-989-758-664-4; ISSN: 2184-285X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



2.1 Master-Slave Replication

In the master-slave replication solution the master
contains all data of the database, it gets every update
for the data. A slave copies every data from the mas-
ter. The master can have many slaves, additionally,
the slaves can also have slaves.

This solution is good when the application needs
a lot of reading and only a little writing. The slaves
can support the reads, as there can be more slaves, and
the reading workload can go to the slaves. In a very
heavy reading environment, the master can send the
data to 2-3 slaves, which can have also slaves. The
task of the first-level slaves is only to give the data
to the second-level slaves which satisfy the reading
tasks.

If a slave fails, it will not influence the work of
the whole system. If the master fails, a slave can eas-
ily take over the task of the master. (Sadalage and
Fowler, 2013)

2.2 Peer-to-Peer Replication

In this case, every node has the same data, namely the
whole database, and every node can accept writes and
reads. If one node has a write the changed data should
be sent to other nodes to update there also. Redis and
MongoDB do not support this solution. (noa, 2023b)
(noa, 2023c) (Banker et al., 2016) (Carlson and San-
filippo, 2013) (Sadalage and Fowler, 2013)

2.3 Sharding

Sharding means that the database has pieces. One
piece is a shard. In the three NoSQL models (key-
value, column-family, and document), every piece has
a key, and under the key, there is a kind of ”value”. In
the document database, the “value” is a document, in
the column-family database, the “value” is a column-
family, and in the key-value database, the “value” is a
value. So a shard is a key-”value” pair, where the key
helps to grab a shard.

In the sharding distribution model, every shard is
stored only on one node. There are more opportuni-
ties for how the shards are assigned to the nodes:

• the application (the developer) decides it,

• an additional software decides it, or

• the NoSQL database itself decides it.

From these three solutions, we will consider only the
last one, where the NoSQL database decides where
the shared should be stored because the advantage of
the NoSQL databases and the distribution model is
that the cluster can be easily expanded even with more

nodes at the same time, and the cluster should give the
solution on which node will be the new place of each
shard and how they will be moved there.

With the sharding, we can realize the horizontal
scaling, namely, we can add more nodes to the cluster,
so we can increase the capacity of the whole system.

2.4 Master-Slave Replication and
Sharding

In this case, there are more masters, and we can con-
sider that these more masters realize the sharding. Ev-
ery master has their own slaves, who get copies of the
data of the master. We can say that the slaves do not
need to know that there is a sharding also in the sys-
tem. (Sadalage and Fowler, 2013)

2.5 Peer-to-Peer Replication and
Sharding

In this case, every shard is copied more times. It
is a parameter called replication factor that shows
each shard how many times is copied to the differ-
ent nodes. The replication factor is 3 in most cases,
the literature and the documentation take it as a simple
fact, and everybody uses this number, even though the
database management systems support other numbers
as replication factors also. (noa, 2023b) (noa, 2023c)
(Banker et al., 2016) (Carlson and Sanfilippo, 2013)
(Sadalage and Fowler, 2013)

If the replication factor is one it means that there
is no replication. If the replication factor is two, it
means there is one copy of every piece of data, but
they say that it is not enough, if we lose one of them,
the other copy is not enough. With replication factor
3, there are 2 copies of each shard, if we lose one, the
two copies help our application, namely, the system
can find the other two copies of the data. Finally, if
the replication factor is 4 or more, it is very hard to
maintain the database, it needs a lot of waiting when
the data is inserted, updated, or deleted. So in the
NoSQL world, it is decided that the replication factor
is 3 in most cases.

If the replication factor is 3, we need at least 4
computers to realize this distribution model. Every
shard is stored 3 times on three different nodes. So
each node does not contain every shard.

Sharding and Master-Slave Replication of NoSQL Databases: Comparison of MongoDB and Redis

577



3 LITERATURE

Many research papers compare NoSQL databases,
but in most cases not in detail. They introduce
the four main categories and give information about
distribution models, as they know the replication
and the sharding. (Corbellini et al., 2017) (Gajen-
dran, 2012) (Hecht and Jablonski, 2011) (Indrawan-
Santiago, 2012) (Jing Han et al., 2011) (Lourenço
et al., 2015) (Tudorica and Bucur, 2011)

Gajendran (Gajendran, 2012) says that MongoDB
uses multi-version concurrency control (MVCC),
which means that multiple versions are stored for
each data, but only one is the latest. They state that
MongoDB uses automatic sharding with automatic
failover and load balancing. Sharding is based on a
collection and not on the database. They state that
MongoDB uses asynchronous replication.

Cattell (Cattell, 2011), Diogo (Diogo et al., 2019),
Gessert (Gessert et al., 2017), Hecht (Hecht and
Jablonski, 2011), and Moniruzzaman (Moniruzzaman
and Hossain, 2013) compared MongoDB and Re-
dis with some other database management systems.
They considered the sharding and the replication of
the DBMSs with some other aspects like storage and
query processing.

Davoudian (Davoudian et al., 2018) gives a
very comprehensive research paper about NoSQL
databases. They introduce the evolution of NoSQL
databases and speak about the four main categories
and distribution models. They introduce the key-
oriented and traversal-oriented sharding strategies.
MongoDB and Redis use the key-oriented sharding
strategy, where the unit of the shard is the key-”value”
pair. Using the traversal-oriented strategy NoSQL
databases partition less connective nodes and group
highly related nodes. This solution is used in for ex-
ample graph databases.

4 MongoDB

MongoDB (noa, 2023b), (Banker et al., 2016) stores
BSON documents. It organizes documents into col-
lections. A collection stores similar documents,
namely, it acts as a database table of relational
database management systems. However, MongoDB
does not offer a predefined structure for a collection
like the relational DBMSs, only a kind of optional val-
idation that is similar to the XML validation. So a
MongoDB collection stores many documents, which
can be considered to be similar to each other, but their
structure does not need to be the same.

The collections are stored in a MongoDB

database. A MongoDB server can store more Mon-
goDB databases.

4.1 Master-Slave Replication of
MongoDB

The master node is called primary by MongoDB (noa,
2023b), (Banker et al., 2016) and it receives the write
operations. The slaves are called secondaries, which
copy the operations from the primary node based on
a kind of log stream called oplog.

MongoDB thinks in replica sets for which the doc-
umentation recommends using three nodes: a primary
node and two secondary nodes. In the initial replica
set, we have to add at least three nodes with some con-
figuration parameters and statements, and the nodes
of the replica set vote which one is the primary (mas-
ter). Despite the recommended 3 nodes, MongoDB
can build the replica set only with two nodes also. In
a replica set, there must be one and only one primary
node.

If the primary (master) fails, one of the secon-
daries (slaves) can be a new primary. The nodes of
the replica set vote for the new master from among
the secondary nodes.

Next to the primary and secondary nodes, there
can be some arbiters in the replica set. The arbiter
takes part only in the voting if it is needed. An arbiter
node does not store any data. A ready replica set can
be expanded with an arbiter.

Of course, secondaries can be also added to the
replica set. Altogether a replica set can have a max-
imum of 50 members from which a maximum of 7
arbiters can be.

The primary can transmit the data and the opera-
tions to the secondaries in two ways: initial synchro-
nization when a new slave (secondary) connects to
the cluster the primary node sends the full data set
to the slave, and after the full synchronization, the
primary node sends the ongoing changes to the new
(and all) secondary nodes. For the ongoing changes,
namely, for the new write operations, MongoDB uses
the oplog, which is a kind of log of the write state-
ments. MongoDB supports asynchronous replication,
but with the options of the write statements, we can
reach that the write becomes synchronous.

The client can connect to the replica set itself, so
it should know all nodes. It means that the client does
not know with which node it communicates. So the
read and write statements go to the replica set itself,
and the database decides on which node the statement
is performed.

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

578



4.2 Sharding of MongoDB

In MongoDB, the unit of the sharding is a document.
MongoDB (noa, 2023b), (Banker et al., 2016) uses
shard keys to distribute the documents of a collection.
The shard key is a field or more fields of the docu-
ment. The shard key is not the same as the document
key (which is the document id in MongoDB) in most
cases.

To shard the data, the collection has to have an
index in which the first part should be the shard key.
This means that the sharding settings belong to a col-
lection. If a collection is sharded, MongoDB does not
provide any method to unshard the collection.

MongoDB offers two solutions to span the shard
keys:

• ranges: based on the keys it creates non-
overlapping ranges and based on the value of the
shard key(s) it distributes the documents among
the nodes.

• hashed shard key: using a hash function on the
shard key, MongoDB creates a hashed shard key.
Similar to the range solution, in this case, the
ranges will also be created but based on the
hashed shard keys. The hashed shard key supports
more even distribution of the sharded data.

If a new shard is added to the sharded cluster, Mon-
goDB can migrate the shards to the new node if we
ask it. MongoDB automatically migrates a shard if
the system is unbalanced.

In the database, there can be sharded and non-
sharded collections. Non-sharded collections are
stored on the primary shard of the database. Each
database should have its own primary shard.

To build sharding with MongoDB, we need at
least two nodes for the shards, and additionally at
least a config server node and at least a router (mon-
gos) (in most cases in another node). The router
(mongos) connects to the config server, and the ad-
ministrator adds the shard nodes (replica sets) to the
cluster. The only way that the clients can commu-
nicate with the sharded database is by the mongos
(router).

4.3 Combination of Master-Slave
Replication and Sharding in
MongoDB

To build the combination of master-slave replication
and sharding in MongoDB, we need at least two
replica sets, each of which with at least two nodes (a
master and a slave), a replica set for the config server
with at least two nodes (a master and a slave), at

least a router (mongos), additional a client node, with
which we can connect to the cluster. In the replica
sets, there can be more than one slave, in a replica set
the nodes (master and slaves) will vote on who is the
master. So a minimal number of nodes to build this
cluster is 7 plus the client.

4.4 An Environment of a Cluster of
MongoDB

To try out the distribution models of MongoDB we in-
stalled MongoDB 5.0 on Ubuntu Linux 20.10 server.
As a client, we connected to the MongoDB cluster
from Python 3.10 with PyMongo 4.0.1.

5 Redis

Redis (noa, 2023c) (Carlson and Sanfilippo, 2013)
is a key-value database, it offers five data structures:
string, set, list, hash, and sorted set (zset). Every data
structure has a key, which can be used as a key of the
sharding.

5.1 Master-Slave Replication in Redis

The realization is very simple, the slave gets a config
entry, that shows it should copy the data of the mas-
ter which can be found in a given node. The master
recognizes the slaves. So in a minimal configuration,
Redis needs only two nodes to build this cluster.

The synchronization between the master and slave
is based on an initial replication in which the whole
database is copied to the slave and a replication stream
in which the new statements are sent to the slave.
When the slave loses the master, an initial replication
can happen again.

A master can have more slaves. Moreover, the
slaves can have also slaves. In this case, we can build
a tree with three (or more) levels. In the first level of
the tree, the root is the master, which sends data to the
second-level slaves. The task of second-level slaves
can only transmit the data to the third-level slaves. Fi-
nally, the third-level slaves can be read by the clients.

Redis allows the clients to read every node in this
cluster. The master can also be read, but the docu-
mentation suggests reading the slaves. The clients can
write the master only. If we try to write the slave it
will cause an error. (noa, 2023c) (Carlson and Sanfil-
ippo, 2013)

Sharding and Master-Slave Replication of NoSQL Databases: Comparison of MongoDB and Redis

579



5.2 Sharding in Redis

For the sharding, at least three nodes are needed, Re-
dis is not able to build a sharding with only two nodes.
Redis does the sharding automatically based on a hash
function of the keys. If we want to store two keys on
the same node, we can use the key hashtag, where the
hash function of the sharding will use only the hash-
tag part of the key in order that the system put the key
to a node.

A new node can be added to the sharded cluster
and the cluster can be resharded.

If we want to connect with a client to the cluster
we have to name all nodes where the cluster run. (noa,
2023c)

5.3 Combination of Sharding and
Master-Slave Repication in Redis

For the combination of sharding and master-slave
replication in Redis, at least six nodes are needed. Re-
dis needs three nodes to realize the sharding, and ev-
ery node has at least one copy (replication). When we
set up the cluster, we give the nodes and the number
how many replicas we want. So, with six nodes and
with cluster-replicas=1, we will have 3 masters and
each of which has its own slave. With 9 nodes and
cluster-replicas=2, we will have 3 masters and each
of which has 2 slaves.

A new master can be added to the cluster in the
same way as in the sharded cluster. Similarly, a new
replica (slave) can also be added to the cluster. When
a new slave is added to the cluster, the master can
be specified, otherwise, a random master will be as-
signed to the slave.

If we want to connect to the cluster with a client
we have to name all nodes where the cluster run.

5.4 An Environment of a Cluster of
Redis

To try out the distribution models of Redis we in-
stalled Redis 5.0 on Ubuntu Linux 20.10 server. Con-
sidering the client, we connected to the Redis from
Python 3.10 with RedisPy 4.1.4, but it did not work
with the Redis cluster, so finally, we used Java 17 with
Lettuce 6.1.6 to connect to the cluster.

6 COMPARISON

In this section, we compare the distribution solutions
of MongoDB and Redis, considering the master-slave

replication, the sharding, and the combination of the
sharding and replication.

6.1 Master-Slave Replication of
MongoDB and Redis

The minimum number of nodes to build the master-
slave replication is 2 in both cases. No additional
nodes are needed to use the cluster in both cases. The
client should know all nodes of the replica set consid-
ering MongoDB, meanwhile, in the case of Redis, the
client can connect to the master or a slave. The rea-
son for this is that MongoDB itself chooses the master
from the nodes of the replica set, meanwhile, in the
case of Redis the database administrator can set the
slave and the master nodes.

Redis supports multilevel master-slave replica-
tion, namely, the slaves can be masters of other slaves,
whereas the MongoDB replica set does not offer this
solution. The default synchronization type is asyn-
chronous in both cases, and both databases can realize
the synchronous write with parameters.

6.2 Sharding in MongoDB and Redis

Redis needs at least 3 nodes to build sharding where
all nodes contain shards of the database. Meanwhile,
to build sharding in MongoDB, 2 nodes would be
enough to store the shards of the database, but Mon-
goDB needs additional nodes, namely a config node,
which stores metadata about the shard nodes only, a
mongos which is a router, connects to the config node
and accept the requests from the clients.

MongoDB can have more mongos services, to
which the clients can connect, and with the help of
the config node, the shard nodes give back or update
the data to answer the client requests. Redis has an-
other solution for the client connection, a client knows
all shard nodes. The client driver chooses a node ran-
domly, the node calculates on which node the asked
shard is, and reroutes the driver to this node. It does
not need additional nodes, the client driver and the
shard nodes solve everything.

Both MongoDB and Redis can place shards based
on using a hash function on the keys. But addition-
ally, MongoDB can use also range sharding, where
ranges of the sharding key are assigned to the nodes.
In the case of both databases, we can realize with set-
tings that two different shards will be stored on the
same node, namely, in Redis, the key hashtag can be
used for the keys of the shards, in MongoDB, we can
manipulate with the composite shard keys.

Both databases support dynamic horizontal scale,
namely, new nodes can be easily added to the sharded

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

580



cluster. Using the sharding based on a hash function,
the resharding is automatically performed by the sys-
tem.

In MongoDB, the sharding is assigned to the col-
lections, which means that each collection can have
different sharding settings. In contrast, Redis can use
an automatic sharding solution on the whole database,
so the database administrator has not so much oppor-
tunity to influence the sharing in a way.

6.3 Combination of Sharding and
Master-Slave Replication in
MongoDB and Redis

To build the combination of sharding and master-
slave replication in Redis at least 6 nodes are needed,
3 for the sharding, and every shard should have its
own replication. Considering the same problem of
MongoDB, it needs at least 7 nodes, namely mongos
(router), config servers (with replication 2 nodes), for
the sharding 2 nodes, and each shard node has its own
replication.

With this cluster type, both databases support the
dynamic horizontal scale, namely new nodes can be
added to the cluster even when the system work.

In this environment, it is not easy for Redis to
support the multi-level master-slave replication, since
the built system makes the decisions about who is
the masters and the slaves in the cluster and not the
database administrator (as in the case of the master-
slave replication). However, each node can have ad-
ditional slaves, since the slave is configured to be a
slave. MongoDB does still not support multilevel
master-slave replication.

The rest point of views are similar to the sharding
or the master-slave replication. The client knows all
the nodes of the cluster in the case of Redis, mean-
while, in the case of MongoDB, the client connects to
one of the mongos (routers). Both databases can use
a hash function to shard the keys, but MongoDB has
a range shard solution, too. The default synchroniza-
tion is asynchronous in both cases, and in both cases,
the synchronous write can be achieved. And finally,
Redis can add shard settings for the whole database
only, meanwhile, MongoDB can granulate the shar-
ing to collections.

7 CONCLUSION

In this paper, the distribution models of NoSQL
database management systems were introduced, high-
lighting the master-slave replication, the sharding,

and their combinations. The real solutions were in-
troduced on two NoSQL databases: MongoDB and
Redis. They are not in the same NoSQL categories,
but both of them realize the sharding and master-slave
distribution models and their combinations. And they
do not realize the peer-to-peer replication.

Finally, we compared the distribution models of
the two NoSQL databases. We found that there is
no big difference between the two realizations, but of
course, they are not the same. The main difference is
that MongoDB needs additional nodes to realize the
sharding, namely, it uses config servers and the mon-
gos as a router, but it is enough of two nodes to store
the shards. At the same time, the Redis needs 3 nodes
to realize sharding. Both of them can use a hash func-
tion to shard the data, but MongoDB has another so-
lution to this question. Both of them have a solution
to store two different shards on the same node. Both
of them support horizontal scalability with sharding.
By default, both of them use asynchronous replica-
tion, but both of them have solutions to realize syn-
chronous replication.

Altogether we found that it is easy to build the
clusters with both NoSQL databases. We can state
that the distribution models of MongoDB are more
complex than the distribution model of Redis. In this
way, it is easier to build a Redis cluster as a MongoDB
cluster. All in all, the application to be developed will
show which database management system should be
chosen.

REFERENCES

(2023a). DB-Engines Ranking. https://db-engines.com/en/
ranking.

(2023b). MongoDB documetation. https://www.mongodb.
com/docs/manual/tutorial/getting-started/.

(2023c). Redis Documentation. https://redis.io.
Banker, K., Bakkum, P., Verch, S., Garrett, D., and

Hawkins, T. (2016). MongoDB in action. Manning,
Shelter Island, NY, second edition.

Carlson, J. L. and Sanfilippo, S. (2013). Redis in action.
Manning, Shelter Island, NY.

Cattell, R. (2011). Scalable SQL and NoSQL data stores.
ACM SIGMOD Record, 39.

Corbellini, A., Mateos, C., Zunino, A., Godoy, D., and
Schiaffino, S. (2017). Persisting big-data: The
NoSQL landscape. Information Systems, 63.

Davoudian, A., Chen, L., and Liu, M. (2018). A Survey on
NoSQL Stores. ACM Computing Surveys, 51.

Diogo, M., Cabral, B., and Bernardino, J. (2019). Consis-
tency Models of NoSQL Databases. Future Internet,
11.

Gajendran, S. (2012). A survey on nosql databases.

Sharding and Master-Slave Replication of NoSQL Databases: Comparison of MongoDB and Redis

581



Gessert, F., Wingerath, W., Friedrich, S., and Ritter, N.
(2017). NoSQL database systems: a survey and de-
cision guidance. Computer Science - Research and
Development, 32.

Hecht, R. and Jablonski, S. (2011). NoSQL evaluation: A
use case oriented survey. In 2011 International Con-
ference on Cloud and Service Computing. IEEE.

Indrawan-Santiago, M. (2012). Database Research: Are We
at a Crossroad? Reflection on NoSQL. In 2012 15th
International Conference on Network-Based Informa-
tion Systems. IEEE.

Jing Han, Haihong E, Guan Le, and Jian Du (2011). Survey
on NoSQL database. In 2011 6th International Con-
ference on Pervasive Computing and Applications.
IEEE.

Lourenço, J. R., Cabral, B., Carreiro, P., Vieira, M., and
Bernardino, J. (2015). Choosing the right NoSQL
database for the job: a quality attribute evaluation.
Journal of Big Data, 2.

Moniruzzaman, A. B. M. and Hossain, S. A. (2013).
NoSQL Database: New Era of Databases for Big data
Analytics - Classification, Characteristics and Com-
parison. arXiv:1307.0191 [cs].

Sadalage, P. J. and Fowler, M. (2013). NoSQL distilled: a
brief guide to the emerging world of polyglot persis-
tence. Addison-Wesley, Upper Saddle River, NJ.

Tudorica, B. G. and Bucur, C. (2011). A comparison be-
tween several NoSQL databases with comments and
notes. In 2011 RoEduNet International Conference
10th Edition: Networking in Education and Research.
IEEE.

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

582


