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Abstract: The Digital Patient is an analytic platform that has the potential to transform personal and public healthcare, 
pharmaceutical research, medical device development, and patient and professional education. It is the 
ultimate big data project in healthcare; however, its power will derive not from the volume of data, but from 
the successful and efficient integration of disparate sources of data into a validated and reliable computational 
model of combined biological processes, social context and treatment efficacy. That integration, successively, 
is largely dependent on the evolving theoretical approaches known as systems biology and physics-based 
modeling that lead to the successful meshing of multi-scale models. 

1 WHAT IS A DIGITAL PATIENT? 

The Digital Patient is a comprehensive approach to 
providing a computational platform for personalized 
medicine. It is a digital representation of a person’s 
‘health’ and ‘disease’ status or in another word, a 
whole-body system. It may include computer models 
of the mechanical, physical, and biochemical 
functions of a living human body calibrated by multi-
scale and length data collected from the multiple 
physiological levels. This is not only the ultimate big 
data project, but also the ultimate technical challenge 
in medicine. When executed, it can be used as a 
powerful in silico (in silico means carried out in the 
computer, which is in contrast to in vitro (on the 
bench), ex vivo (outside the living organism), or in 
vivo (inside the living organism)) decision support 
technology that can be customized to represent each 
one of us, individually and/or collectively (C. D. 
Combs et al., 2015; Dıaz-Zuccarini et al., 2015; 
Parodi, 2015). It is an integrated approach for 
achieving a broader, more systematic understanding 
of the human body in a single computational platform. 

One of the key aspects to the project is the need 
for a new analytic framework for understanding the 
whole-body, that is, being able to deal with the 
complexity of physiology by creating and integrating 
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properly annotated, curated, validated and 
documented modules of individual organ systems. 
Ultimately, more complex models are expected to 
merge upon linking these modules semantically to 
represent the whole-body system. In the construction 
of a Digital Patient framework, significantly 
important things to consider are what level of detail is 
necessary, and more importantly, how to accurately 
predict the efficacy of a patient-specific treatment. In 
addition, the processes for achieving a Digital Patient 
framework involve generation of data and 
information, biomedical information management, 
knowledge-driven and data-driven computational 
modeling (i.e., in silico models based on prior 
knowledge on cause-and-effect relationships, and/or 
nature of data), clinical user interface, and end 
translation and adoption.  

1.1 Integrative Whole-Body View  

The human body is the ultimate efficient machine 
comprised of multiple organs, tissues, and cellular 
complexes that interact to maintain a homeostasis. 
Pathology is due to alterations in one or more tissues 
or systems or in a single biological process (Talbot et 
al., 2016). Alterations in one system often induce 
changes in the physiology of other systems. 
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Therefore, the development of an integrated model of 
human physiology is essential for the understanding 
of how molecular, cellular, organ and system levels 
interact for a total physiological response (An & 
Cockrell, 2022; Hester et al., 2011). However, 
biologists have traditionally sought to understand 
living entities by investigating their constituent parts 
in a controlled environment, i.e., in a reductionist 
way, popularly known as reductionism (Morchio, 
1991; Schaffner, 1976; Woese, 2004). For example, 
first they isolated the individual genes, proteins, or 
signaling molecules, and then they studied them 
individually to learn everything they could about the 
structure and function of that single biological entity, 
without necessarily considering how they interact 
with one another (Bertolaso, 2022; Bricmont, 2022; 
Brigandt, 2013; Kuijper, 2022; Mazzocchi, 2008). In 
contrast, the Digital Patient concept is based on an 
integrated approach for achieving a broader, and 
more systematic understanding of the human body, 
and how it interacts with its environment, i.e., social 
and behavioral factors (e.g., age, gender, body 
weight, genetic make-up, lifestyle, etc. (C. D. Combs 
& Combs, 2014).  

Future healthcare will rely more and more on data 
from monitoring devices and in some cases, 
implanted medical devices such as wearable 
biosensors. Interpretation of data, and their 
therapeutic application requires knowledge that is 
much more integrated and personalized than is 
currently available (C. D. Combs & Combs, 2014; 
Hatzikirou et al., 2012; D. P. Nickerson et al., 2015; 
D. P. Nickerson et al., 2020; Tolk et al., 2015). Most 
chronic diseases involve multiple organ systems. 
Therefore, it is crucial to understand how the body 
works as an integrative whole during homeostasis, 
and at the same time to be able to utilize our detailed 
knowledge of individual organs. Moreover, in order 
to represent a comprehensive Digital Patient, social 
systems and environmental factors must ultimately be 
integrated into this analytic framework (C. D. Combs, 
2017).  

1.2 Biology View 

Focusing more directly on converging different levels 
of biological systems that are essential to the Digital 
Patient framework is the discipline of systems 
biology and its applications. Systems biology is an 
integrative and interdisciplinary approach in contrast 
to the traditional reductionist nature of biology 
(Bertolaso, 2022; Bricmont, 2022; Brigandt, 2013; 
Kuijper, 2022; Mazzocchi, 2008; Schaffner, 1976; 
Woese, 2004). It attempts to explain complex 

biological systems that include biochemical systems 
(e.g., enzyme activity regulation and flux in 
metabolic pathways), cellular processes (e.g., gene 
regulation, protein transport, signaling pathways, the 
cell cycle, and apoptosis), cell-cell interaction (e.g., 
cell–cell signaling), as well as cell differentiation and 
organismal development (Boogerd et al., 2007; 
Kitano, 2001; Klipp et al., 2016), using a variety of 
conceptual and experimental methods such as 
genomics, transcriptomics, proteomics, molecular 
biology, cell biology, and carefully developed animal 
models. Thus, systems biology has the potential to 
provide valuable insights into the physiological 
workings of the human body. The current goal of 
systems biology research is to utilize scientific 
advancements from the past two decades, such as 
genomics and proteomics, in an effort to develop 
targeted therapeutic strategies (Fitzgerald et al., 2006; 
Khoo et al., 2021; Kohl et al., 2010). Over the past 
two decades, sequencing technologies (e.g., Next-
Generation Sequencing, Whole-Genome Sequencing, 
and etc.) have made remarkable progress (Hartman et 
al., 2019). As these new technologies continue to 
develop, the costs associated with sequencing have 
decreased dramatically, making these technologies 
more affordable and accessible. Rapid advances in 
high-throughput technologies coupled with the 
decrease in sequencing costs have led to generation 
of massive amounts of biological data, and in turn, the 
abundance of biological data has made data 
integration approaches increasingly popular in the 
field of systems biology 

Systems biology not only addresses interactions 
in biological systems at different scales of biological 
organization, but also is characterized by quantitative 
descriptions of biological processes, using a variety 
of statistical and computational techniques (Baccam 
et al., 2006; Karr et al., 2022; Perelson et al., 1996). 
As was stated before, biological systems consist of a 
large number of functionally diverse components, 
which interact highly selectively and often 
nonlinearly to produce coherent behaviors (Klipp et 
al., 2005; Likić et al., 2010). These components may 
be individual molecules (e.g., signaling or metabolic 
networks), assemblies of interacting complexes, sets 
of physical factors that guide the development of an 
organism (genes, mRNA, associated proteins and 
protein complexes), cells in tissues or organs, and 
even entire organisms in ecological communities. 
What is common to all these examples is the sheer 
number of components, and their selective, non-linear 
interactions that render the behaviors of these systems 
beyond the intuitive grasp. Mathematical models of 
biological systems are most suitable and are 
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increasingly being used to represent our knowledge 
about these systems (Iglesias & Ingalls, 2010; Ingalls, 
2013). Thus, systems biology combines the 
development and application of predictive 
mathematical and computational modeling with 
experimental studies. The quantitative techniques, 
such as high-resolution microscopy, mass 
spectrometry, flow cytometry, and more, that are 
employed to incorporate multiple spatial and 
temporal scales are consistent with the integrative 
perspective of the Digital Patient framework. 

1.3 Physics-Based Multi-Scale 
Modeling View 

Multi-scale modeling (MSM) integrates multiple 
physiological processes across different length and 
time scales to provide improved predictive and 
individualized healthcare. The highly complex nature 
of biomedical systems resulting from several distinct 
factors includes the non-linearity and redundancy of 
physiological states. They arise from multiple 
mechanisms simultaneously pushing and pulling on 
clinically relevant and/or experimentally observable 
response variables (Vieira & Laubenbacher, 2022). 
The concept of non-linearity states that many high-
level and integrative behaviors of the biological 
system cannot be described solely through the sum of 
inputs from basic processes (Auslander et al., 1972; 
Oster & Perelson, 1973). The resulting heterogeneity 
along with the disparate time constraints further 
stimulates individual variability leading to distinct 
disease outcomes across the population. Despite the 
extensive complexities of biological and biomedical 
systems, researchers are using both linear and non-
linear sophisticated biological and physiological 
models to better understand fundamental relationships 
within the human body (Bauer et al., 2009; 
Beauchemin & Handel, 2011; Hester et al., 2011).  

MSM, also known as knowledge-driven 
modeling, mechanistic modeling, hypothesis- based 
modeling, or physics-based modeling, is an equation-
based approach based on ordinary differential 
equations, partial differential equations, stochastic 
processes, agent-based modeling, etc. that 
incorporates nonlinear coupled processes that occur 
at different temporal and/or spatial scales, and lead to 
a systematic integration of knowledge at the 
molecular, cellular, and tissue levels (Altan-Bonnet et 
al., 2020; Coveney & Fowler, 2005; Perelson & 
Weisbuch, 1997; Pinky et al., 2021; Pinky & 
Dobrovolny, 2017). Since biological entities have a 
complex hierarchy of structure, mechanical 
properties, and behavior across spatial and temporal 

scales, MSM supports this integrative view by 
explicitly defining the biological hypothesis or the 
primary mechanisms and formalizing it into 
mathematical equations (Harline et al., 2021; Pruett 
& Hester, 2015; Radhakrishnan, 2020). This 
approach assumes that behavior at larger scales 
emerges naturally from the processes occurring at 
smaller scales; in other words, embedding processes 
at a small scale into the larger scales leads to a 
prediction of overall system behavior (Gold et al., 
2019; Meier-Schellersheim et al., 2009). The 
relationship between the biological and mathematical 
theory determines the balance of phenomenology and 
quantitative prediction. This step may become 
iterative as the modeler balances the complexity of 
the biological inputs included in the system with the 
level of mathematical theory most suitable to form a 
“minimum model” Kamerlin & Warshel, 2011; 
Laubenbacher et al., 2021; Radhakrishnan, 2021; 
Sego et al., 2022). 

Working through biological and mathematical 
theory should also reveal what data can be collected 
from the system to inform the model construction, 
i.e., what mechanisms and relationships are known to 
exist, and which will be inferred, and what outcomes 
or predictions will be tested. In addition, they can take 
into account the influence of behavioral and social 
context on the whole biological system. Thus, the 
model connects the association of genetics to 
proteins, proteins to cells, cells to organs, organs to 
complete whole-body systems, as well as systems to 
the organism itself and to the surrounding social 
environment. For example, social and behavioral 
context refers to taking into account the 
understanding of the impact of the behavior of family 
and friends on individual lifestyle choices and health 
(C. D. Combs et al., 2015; Tolk et al., 2015). 

1.4 Artificial Intelligence View 

Artificial Intelligence (AI) is ideally suited to 
discovering meaningful patterns in big data that may 
otherwise escape human attention, and can offer a 
more efficient means of understanding systems 
dynamics and hence structuring preventive care 
strategies more efficiently. Machine learning (ML) 
method, a subset of AI tools, is at its core a data-
driven process, and defined as in silico models that 
develop a predictor automatically for the data without 
making any causal assumptions (Alber et al., 2019; 
Peng et al., 2021). Unlike ML, MSM is generally 
considered to be a theory-driven process and a more 
traditional approach. It starts with developing 
hypotheses, followed by collecting and analyzing data 
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to test these hypotheses and drawing theoretical 
conclusions based on the results (Pruett & Hester, 
2015). It focuses on identifying abstract constructs 
and the relationships among them. However, due to 
the complexity of the environments and processes that 
generate data, there may not be a strong theoretical 
basis for the questions being studied ( T e i c h e r t  
e t  a l . , 2 0 1 9 ) . In contrast, data-driven research 
involves analyzing data to extract scientifically 
interesting insights (i.e., robust correlations between 
sets of variables) by applying analytical techniques 
and modes of reasoning based on the data available 
rather than prediction based on theory. It is worth 
noting that some instances of ML in the literature are 
described as theory-guided and seek causality by 
integrating physics-based mechanistic models at 
multiple temporal and spatial scales with big data 
(Giansanti, 2022). In this way, ML can make up for 
any unknown physics by learning the dynamics of the 
system overall and thereby possibly classify patients 
into specific treatment regimens. However, this 
approach benefits from the knowledge and 
mechanistic insights achieved through MSM to 
develop novel learning algorithms with greater 
robustness, data-efficiency, and generalization of 
performance in data-limited situations (Peng et al., 
2021). As such, perhaps this approach can be 
described as a meeting of ML and MSM to optimize 
the contributions of both techniques. There are many 
examples of data-driven MSM that appear to involve 
the use of ML to optimize the parameter estimation 
and functions. Perhaps these cases can also be 
described as precursors to the combination of MSM 
and ML (Alber et al., 2019; Maass et al., 2018).  

In general, MSM provides insight into biological, 
biomedical, and behavioral systems at a high level of 
resolution and precision, which naturally produces 
massive output data sets. Because computational 
physiological simulations, e.g., physics-based MSM, 
are too slow for clinical application, AI tools can 
provide ways to speed up Digital Patient workflows. 
For example, using ML methods one can develop a 
simplified surrogate model (i.e., a statistical model to 
accurately approximate simulation output) to reduce 
complexity (Kennedy & O’Hagan, 2001). In the 
context of the Digital Patient, MSM and ML 
complement one another with respect to biological, 
biomedical, and behavioral research and are possibly 
even more powerful when combined (Costello & 
Martin, 2018; Linka et al., 2020; Muzio et al., 2021). 

The most sophisticated Digital Patient models are 
expected to be self-improving. These models can 
continuously monitor divergence between predictions 
and observations, and use these divergences to 

improve their own accuracy. Their deployment would 
enable rapid refinement and improvement, especially 
if they were designed in a modular fashion to permit 
the parallel development and optimization of their 
component sub-models (Maass et al., 2018).  

1.5 Personalized Medicine View  

Physiology is a basic medical science as knowledge 
of normal functions of the body is the basis for 
understanding diseases and identifying targets for 
effective treatment (Sherwood, 2015). Just as 
physiology is a branch of biology, systems 
physiology, systems medicine and personalized 
medicine are subsets of systems biology. Successful 
responses to such a grand challenge, like the Digital 
Patient, require this cross-disciplinary integration (An 
& Cockrell, 2022; Grieves, 2019; P. Hunter et al., 
2002; Niarakis et al., 2022). Systems physiology 
focuses on the function of interacting parts of the 
system at the cell, tissue, organ and organ-system 
scales, and is tightly coupled with structural 
anatomical information (Sherwood, 2015). Systems 
medicine is a subset of systems physiology that 
addresses applications to clinical problems. Examples 
include the application of the systems physiology 
framework to develop quantitative understanding of 
disease processes, leading to drug discovery, and to 
the design of diagnostic tools (Tyson et al., 2001). A 
subset of systems medicine that relies on individual 
patient data or the data from a specific group of 
similar patients is the emerging domain of 
personalized medicine. 

Realizing this goal requires the ability to make 
accurate predictions about how a patient will react to 
a treatment or no treatment; however, the previous 
reductionist approach to science and modeling cannot 
satisfy that need. Instead, the systems approach to 
biological modeling is growing in importance as a 
translational tool in clinical practice (Doyle III et al., 
2014). The explosion of data over the past twenty 
years is providing novel opportunities to develop new 
clinical treatments. New technologies such as DNA 
sequencing, imaging, and proteomics provide 
massive amounts of new information about the 
human body. Further, these data can now be analyzed 
at bulk or at the single-cell level, which has been 
particularly useful to assess the tissue-level 
heterogeneity in many diseases including cancer. The 
ability to extract useful information from these data 
has begun to lead to custom treatments for diseases, 
such as cancer (Goldenberg et al., 2019; Khoo et al., 
2021), infectious diseases (Castiglioni et al., 2021; de 
Fátima Cobre et al., 2021), diabetes (Kavakiotis et al., 
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2017) and hematological and metabolic disorders (De 
Bruyne et al., 2021). This will, in turn, help improve 
the health of individuals by converting research 
findings into diagnostic tools and procedures. 

2 CHALLENGES IN 
DEVELOPING A DIGITAL 
PATIENT FRAMEWORK 

A large-scale implementation of human health into a 
digital format requires the construction and execution 
of highly complex computer models composed of 
several component submodels which span multiple 
spatial and temporal scales (P. Hunter, 2020; Pan et 
al., 2021). In addition, multi-scale data is needed to 
build this computational representation of biological 
processes of the whole-body under both disease-free 
and diseased states. Thus, several pieces must be in 
place to realize this interplay in a single 
computational model. These pieces include 
reductionist modeling at a variety of spatial and 
temporal scales, the development of an ontology 
allowing models to communicate with one another, 
and finally, the creation of a top-level model that 
allows reductionist models to be plugged in, creating 
an integrated model framework for the testing and 
generation of hypotheses. Different groups have 
developed distinct philosophies for approaching these 
challenges, but none has solved the problem 
completely (Hussan et al., 2022). Several challenges 
to building a Digital Patient framework have been 
identified and are discussed below. 

2.1 Lack of a High Throughput 
Approach to Modeling 

A Digital Patient describing the disease state and 
treatment requires the development, validation, and 
integration of numerous component submodels in the 
context of a rapidly developing scientific 
understanding of biological behaviors and continual 
generation of new experimental and clinical data 
(Laubenbacher et al., 2021; Masison et al., 2021). 
Although individual laboratories around the world 
may construct submodels, the development of a 
comprehensive Digital Patient framework will 
require modularity to ensure validation and 
interoperability with one another. In this way, the 
submodels will handle complexity with modules that 
are properly annotated, curated, and documented, and 
then linked semantically to establish more complex 
models. Enabling such parallel development requires 

a flexible simulation architecture that uses a multi-
scale map of all the relevant components of a patient’s 
response to the disease, as well as responses to 
available treatments s (An & Cockrell, 2022; Grande 
Gutiérrez et al., 2021; Masison et al., 2021). 

2.2 Lack of Model Reproducibility and 
Transparency 

It is essential that component models utilized in the 
Digital Patient are reproducible and reusable. 
Published models relevant to this discussion 
demonstrate a lack of transparency in model 
implementation (Baker, 2016; Fitzpatrick, 2019). Not 
all published models are reproducible and hence not 
reusable. Furthermore, a significant number of 
published mathematical models are not experimentally 
validated, making model extensions more difficult 
(Blinov et al., 2021; Niarakis., et al., 2022). 

2.3 Generation of Heterogeneous  
High-Dimensional Data 

Development of a multi-scale model of an organ 
requires the collection of synchronous measurements 
at multiple physiological scales. This includes omics 
data from tissues and single cells, from diverse 
experimental systems, including two-dimensional 
(2D) and 3D cell cultures, in vivo and ex vivo animal 
models, patients, and biophysical and structural data 
from tissues and organs, combined with data 
characterizing transport throughout the body. 
Technologically this is very challenging if not 
impossible (Vieira & Laubenbacher, 2022).  

2.4 Lack of Standardization in Data 
Collection and Model Specification  

Ever growing uncoordinated and heterogeneous 
formats of data that capture the various determinants 
of our health from genomic sequences to behavioral 
influence lack (Vieira & Laubenbacher, 2022). 

Thus, the use of incompatible data structures 
along with almost no standard model specification 
and different software environments, make 
distributed collaboration difficult (Lubbock & Lopez, 
2021; Malik-Sheriff et al., 2020). 

2.5 Lack of Effective Communication 
and Collaboration Among 
Biomedical Researchers  

Building a useful Digital Patient requires improved 
communication between clinicians, experimentalists, 
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and modelers in order to create sufficiently credible 
interchangeable computational models and/or tools 
that have value in the clinic, such as mobile apps, 
dedicated web pages and medical devices. Inevitably, 
this has led to the inability to efficiently translate 
basic science knowledge obtained from pre-clinical 
studies into effective therapies (An & Cockrell, 2022; 
Grieves, 2019. To date, relatively few clinical and 
biological insights are currently translated into 
computational models that could serve as building 
blocks for the Digital Patient framework. 

2.6 Health Information Management 

Having clinical information in electronic form that is 
computable has been a grand challenge for 
biomedical informatics (Acosta et al., 2022). 
Unfortunately, most health information still sits in 
silos today and health information exchange for the 
purpose of supporting care between organizations and 
levels of care (e.g., hospital to primary care), has, 
until very recently, been the exception rather than the 
norm. It is fair to say that, to a large extent, 
management of health information has encountered 
the most variability when we consider other related 
domains like bioinformatics, pharmaceutical research 
and development and medical device technology in 
the quest for integrated biomedicine. Post-hoc data 
collection has been shown to be very expensive and 
error-prone because data sources can be very diverse 
and range from operational electronic health record 
systems to well-structured longitudinal disease 
registries and bio-banks. Therefore, capturing 
structured and computable clinical data as part of 
routine clinical practice is ideal as it may otherwise 
impossible to capture the clinical context in which the 
data were collected initially. In addition, effectively 
managing the enormous amount of personalized data 
requires the development of broadly accepted policies 
addressing security, quality control, data mining, and 
privacy protection. This represents another 
fundamental challenge to completing the Digital 
Patient. 

2.7 Patient Data Management 

Further complicating the construction of the Digital 
Patient framework is the current lack of agreement on 
how we categorize patient information. An individual 
patient’s ideal data set includes molecular data, 
clinical data, and social context data, and these data 
sets are not often integrated in a manner that is 
understandable or easily usable by patients or 
healthcare providers or even by research domain 

experts (Kondylakis et al., 2015). Developing a 
consistent terminology and aggregation methodology 
for this disparate data is therefore an additional 
fundamental challenge to building the Digital Patient 
framework. Privacy, synchronicity (the timeliness 
with which models produce actionable information), 
and clarity of data organization and analysis are also 
fundamental challenges that must be addressed in 
completing the Digital Patient platform. Recent 

3 DEVELOPMENT IN BUILDING 
THE DIGITAL PATIENT 
FRAMEWORK 

There are many collaborative and individual efforts 
underway that address some of the issues important 
to building out the Digital Patient framework. 
Following is a summary of several past and current 
efforts, and tools developed. This list is a selection 
and not exhaustive. 

Projects that contributed most significant progress 
are the Physiome and the 12 Labours projects; briefly 
described below, the Physiome Project is an umbrella 
term that refers to human modelling with methods 
accommodating cross-disciplinary science 
(chemistry, biology, physics) and a breadth of 
dimensional and temporal scale (sub-cellular to 
organs, sub-microsecond to tens-of-years) (P. Hunter 
et al., 2002). The International Union of Physiological 
Sciences (IUPS) Physiome Project, established in 
1993, focused on providing a “computational 
framework for understanding human and other 
eukaryotic physiology”. This effort resulted in 
databases, markup languages, software for 
computational models of cell functions, as well as 
software for interacting with organ models, as was 
described in P. J. Hunter & Borg, 2003; P. Hunter, 
2004. The primary limitation with the Physiome 
Project has been the lack of integration of the multiple 
narrow-focused models that could, if successfully 
integrated, lead to a comprehensive and integrative 
model of human physiology (D. P. Nickerson et al., 
2015; Viceconti et al., 2008). Today this project has 
been extended into the 12 Labours research effort 
currently underway within the Auckland 
Bioengineering Institute at the University of 
Auckland in New Zealand.  

3.1 12 Labours Project  

Initiated by the Auckland Bioengineering Institute 
(ABI), University of Auckland in New Zealand, the 
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intent of 12 Labours project is to extend the Physiome 
Project to clinic and home-based healthcare 
applications (P. Hunter, 2020). The focus and goal of 
12 Labours is to create the infrastructure to integrate 
multi-scale models into a whole-body computational 
physiology system. This will include a platform for 
precision medicine and sensor-based health 
monitoring. Migrating the efforts from a research 
focus to a clinical focus will necessarily require 
changes in design and execution, e.g., model 
reduction strategies must be utilized in order to 
increase the speed at which models can be analyzed 
and output a useful result. Additional foci include 
coupling the physiome to body sensors for real-time 
data exchange, an energy based mathematical 
framework for understanding physiology, and a new 
semantic approach to physics based multi-scale 
modeling. In addition, with the goal of integrating 
medical data with predictive physics modeling, this 
project includes the development of workflow 
management systems, the identification of 
technologies for clinical translation of those 
workflows, and the infrastructure for deploying those 
workflows in a clinical environment. Some of the 
suitable tools for workflow and data management 
initially include Snake Make, NextFlow, iRods, 
Pennsieve (Rajagopal et al., 2022).  

Through the NIH Stimulation Peripheral Activity 
to Relieve Conditions (SPARC) program, ABI has 
been developing scaffolds of high-level descriptions 
of organ anatomy on a 3D coordinate system 
framework to relate multi-species organ models 
(Osanlouy et al., 2021). These frameworks provide a 
single common reference frame, upon which one can 
register (or align) data across species, i.e., human, 
mouse, pig. In other words, the framework is 
consistent across multiple species, and the scaffolding 
method facilitates cross-species comparisons as well 
as the analysis of variation within a population. 
Likewise, sub-scaffolds are used to define individual 
characteristics within these scaffolds. The concept of 
the whole-body scaffold reflects the use of this logic 
for personalized models for virtual clinical trials via a 
workflow in which organs and systems could be 
assembled into whole body reference coordinates.  

3.2 Computational Frameworks 

Modularity is a particularly important consideration 
when model dependencies are involved as the 
introduction and absence of models can throw off the 
entirety of a simulation. Similarly, multiple scales 
require a framework with internal compensation to 
account for varying definitions of, e.g., time. 

Following are two examples of recent frameworks 
that have been developed specifically to address these 
concerns and that may serve to better light the way 
forward for a Digital Patient framework. The first is 
focused on medical digital twins and is a multi-
institutional effort of the Universities of Connecticut, 
Michigan, and Florida. The second supports global 
resource management and is out of Johns Hopkins 
APL. Despite unrelated disciplines, the designs are 
strikingly similar. If this review proves useful, there 
may be others that can be reviewed in a similar 
fashion. Following are two example computational 
platforms for the integration of multiple, disparate 
models. 

• A Modular Computational Framework for 
Medical Digital Twins With a focus on digital 
twins in a medical context, researchers from 
University of Florida Health sought to 
optimize modularity by eliminating the 
potential pitfalls of model dependencies with 
an open source, “digital twin” architecture 
(Masison et al., 2021). Characterized as “hub 
and spoke” and hereafter referred to as MCF 
for Modular Computational Framework, it 
includes four components: a runtime 
configuration file, a global model state, 
modules, and a simulation framework that 
controls simulation runtime and provides data 
structures and algorithms useful for the 
development of modules. Modules are 
individual models, which can be added and 
taken away at will; each module must provide 
a subclass that defines the data relevant to that 
module to be stored in the model state, i.e., a 
pure data API. As such, the model state houses 
all potential model inputs and outputs, 
providing an indirect connection between 
modules. One model’s output is stored in the 
model state and can only from there be 
accessed as input by another model. This also 
ensures that all model processes stay 
contained within a particular module, thereby 
providing a clear separation between the 
model and the data. In one paper (Masison et 
al., 2021), MCF was applied to an existing 
dynamic computational model of the immune 
response to a respiratory fungal pathogen to 
illustrate the potential of extending it to a full 
digital twin use case. The MCF simulator is 
open-source and available at (Masison, Joseph 
and Beezley, Jonathan and Mei, Yu and 
Ribeiro, Henrique Assis Lopes and Knapp, 
Adam C and Sordo Vieira, L and Adhikari, 
Bandita and Scindia, Yogesh and Grauer, 
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Michael and Helba, Brian and others, 2021). 
Additional platform access information is 
available in the reference.  

• System Integration with Multiscale 
Networks (SIMoN) SIMoN was built to 
realize the complex inter-relationships that 
exist between the different facets of global 
resource management (Hughes et al., 2020). 
Each of these facets is a domain unto itself, 
and models use their own geospatial, 
temporal, and other scales. SIMoN is an open-
source framework built to allow these 
disparate models to be coupled. In the 
referenced paper, they include climate, 
population, and food-energy-water systems. 
Specifically, SIMoN is used to “integrate 
models and data from disparate domains by 
predicting water availability in 2050, as it 
depends on population growth, climate 
change, and corresponding increases in 
demand for thermoelectric cooling". While 
SIMoN is not a biomedical use-case, the 
challenges of integrating multiple distinct 
models with different processes and scales 
remain the same, requiring a framework that is 
modular and extendable. Interestingly, SIMoN 
employs a similar approach to the previous 
example, with a “broker” construct taking the 
place of the model state. Each model exists 
inside of wrapper to standardize its interface 
with the broker. The broker performs the 
transformations necessary to reconcile the 
varying geo-spatial scales of each model so 
that those models can be integrated 
seamlessly. In addition, it handles all data 
inputs and outputs between models; like MCF, 
this broker prevents direct dependencies of 
one model on another. The only requirement 
is that the models agree on the “scope” of a 
given scale, e.g., the entirety of the contiguous 
United States is the geo-spatial scope. The 
scope can be subdivided by an individual 
model as needed with the assumption that the 
sum of all subdivisions exactly equals the 
scope, with no overlap. It is not hard to 
imagine how the same principle might be 
applied to temporal and possibly other scales. 
SIMoN is available at (Hughes, Marisa and 
Kelbaugh, Michael and Campbell, Victoria 
and Reilly, Elizabeth and Agarwala, Susama 
and Wilt, Miller and Badger, Andrew and 
Fuller, Evan and Ponzo, Dillon and Arevalo, 
Ximena Calderon and others, 2020).  

3.3 Collaborative Organizational 
Efforts 

The challenges of maximizing value from big data are 
being addressed by the U.S. National Institutes of 
Health’s (NIH) BD2K program, through the 
European Union’s Horizon 2020 initiative, through 
the European Big Data Value Association and 
through various Chinese Ministry of Science and 
Technology initiatives. In addition, the challenge of 
encouraging consistency in terminology, ontology, 
and registries is being addressed through the 
International Health Terminology Standards 
Development Organization, the Simulation Industry 
Standards Organization and the NIH Data Discovery 
Index Consortium. Moreover, model construction 
and interoperability are the foci of the Physiome and 
12 Labours Project, and of the researchers that are 
involved in several organizations, including the 
Virtual Physiological Human Institute (VPHi), the 
U.S. Interagency Modeling and Analysis Group, and 
its companion group, the Multi-Scale Modeling 
Consortium. More such organizational efforts are 
listed below.  

• Insigneo, based on the Institute for In Silico 
Medicine, is a collaboration between the 
University of Sheffield, UK and the Sheffield 
Teaching Hospitals with a focus on clinical 
translation of in silico medicine. The project 
implements the ambition behind the European 
VPHi program. This is the largest organization 
in Europe dedicated to the development, 
validation, and use of in silico medical 
technology.  

• InSilco, dedicated to coronary artery disease, 
is an international multidisciplinary 
consortium focused on in silico trials for drug 
eluting bioresorbable vascular scaffold design, 
development, and evaluation.  

• Physiome Journal is dedicated to the 
reproducibility and reusability of models. 
Each article is linked to a primary publication 
in a peer-reviewed journal and includes access 
to the presented model itself. This effort is 
supported by the IUPS, VPHi, the University 
of Auckland, Digital Science, and more.  

• IMAG stands for Interagency Modeling and 
Analysis Group (IMAG) based on NIH, USA, 
holds multi-scale Modeling (MSM) 
Consortium. Their goal includes supporting 
research funding for modeling and analysis of 
biomedical, biological, and behavioral 
systems. 

• InSilicoWorld is a worldwide community of 
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practice working towards wider adoption of in 
silico trials in the biomedical industry that is 
currently led by Marco Viceconti (Viceconti et 
al., 2008).  

• SimBios, lead by NIH and Stanford 
University, is a center for physics-based 
simulation of biological structures. It provides 
SimTK, developed OpenSim, and publishes 
Biomedical Computation Review. It has also 
established an inventory of bio-sim tools 
called SimBiome in 2017.  

Tools that were developed by the organizational 
efforts are listed below.  

• Markup Language Standards have been 
developed to adequately describe physical and 
physiological properties and processes 
including CellML (Lloyd et al., 2004, FieldML 
(Chang et al., 2007), TissueML (J.Q. et al., 
2004), AnatML (J.Q. et al., 2004), PhysioML 
(J.Q. et al., 2004), SBML (Hucka et al., 2003).  

• DICOM: Digital Imaging and 
Communications in Medicine (DICOM) is the 
international standard for medical images and 
related information (Lim & Zein, 2006). It 
defines formats for medical images that can be 
exchanged with the data and quality necessary 
for clinical use.  

• OpenSim is an open-source simulation 
software that was developed by the Stanford 
National Center for Simulation in 
Rehabilitation Research (Delp et al., 2007).  

• BioModels is a repository of mathematical 
models representing biological systems and is 
written in SBML (Li et al., 2010). Models 
include signaling, protein-drug interactions, 
metabolic pathways, epidemic, and more. 
BioModels was developed by the Molecular 
Networks team EMBL-EBI based in UK and 
the SBML Team from Caltech, USA.  

• SimTK is a free biomedical project hosting 
platform for the biomedical computation 
community (Project-hosting platform for the 
biomedical computation community, n.d.). It 
provides an easy data sharing, shared resource 
tracking and an infrastructure for community 
connection and growth.  

• OpenEHR is an open standard specification 
in health informatics that allows semantic 
mapping annotations into EHR data storage 
formats (openEHR, 2017). From 2010-2020, 
OpenEHR has been deployed in Australia, 
Brazil, Switzerland, Germany, Finland, UK, 
Italy, Malta, Netherlands, Norway, 
Philippines, Russia, Sweden, and Slovenia. 

• BioUML is web-based integrated 
environment for systems biology and 
collaborative analysis of biomedical data 
(Russian Science Foundation, 2002). It was 
funded and initiated by the Russian Science 
Foundation in 2002. The initial goal of 
BioUML was common purpose visual 
language for formal descriptions of the 
structure and function of biological systems. 
The long-range plan is to be a computational 
platform for the VPH and digital patient. 
BioUML spans a comprehensive range of 
capabilities, including access to biological 
databases, powerful tools for systems biology 
(visual modelling, simulation, parameters 
fitting and analyses), a genome browser, 
scripting (R, JavaScript), and a workflow 
engine. The architecture is plugin-based. 
Users create a visual representation of a model 
and BioUML automatically generates the code 
to simulate the model behavior. The current 
version generates code in Java and uses its 
own simulation engines. To support 
collaborative work, there is a central 
authentication and authorization system. 
BioUML is open-source, in continued 
development, and is actively used.  

• MLBox was developed by the collaboration 
with the University of Miami’s Miller School 
of Medicine, the Media and Information Lab 
(MIL), Amazon Web Services, and the 
OpeHealth Network to create MLBox. 
MLBox is an automated machine learning 
Python library to support the development of 
digital twins that can take the place of patients 
to better test treatments options (Das & 
Cakmak, 2018). Inputs include data from 
wearable sensors and other smart devices, 
including biological, clinical, behavioral, and 
environmental. These are collected over a 
period of seven days and combined into a 
“biological health algorithm”, which in turn 
acts as a digital twin in treatment tests. The 
MLBox platform is in Python and is device 
agnostic, i.e., modular, which will allow input 
types to adjusted based on individual needs 
and constraints, as well as expanded in the 
future as technology evolves. The initial focus 
area is sleep apnea and its link to dementia and 
heart disease and inputs include sleep patterns, 
weight, environmental pressures, and stress 
levels.  

• promor was developed by researchers at the 
Eastern Virginia Medical School. Promor is an 
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open-source R package that streamlines 
biomarker discovery from proteomics data 
and builds predictive models of disease 
diagnosis and/or prognosis with top protein 
biomarker candidates (Ranathunge et al., 
2023). 

3.4 Other Collaborative Efforts   

Biomedical research groups worldwide are 
employing “digital twin” technologies to realize the 
promise of personalized medicine. For example, 
digital twins of the human heart can improve 
diagnosis, prognosis, and therapies (Martinez-
Velazquez et al., 2019). Developers expect that 
automated workflows for generating cardiac digital 
twins could serve as a blueprint for the generation of 
other types of medical digital twins (Corral-Acero et 
al., 2020). Although medical digital twins are much 
more difficult to develop than those for engineered 
devices, they have begun to find applications in 
improving human health. Examples include the 
“artificial pancreas” for type 1 diabetes patients  
(Breton et al., 2020; Brown et al., 2019; Kovatchev, 
2019). In the artificial pancreas model, a template 
mathematical model of human glucose metabolism 
and a closed-loop control algorithm modeling insulin 
delivery and data from an implanted glucose sensor 
are customized into a patient-specific digital twin that 
continuously calculates insulin needs and drives an 
implanted pump that adjusts blood insulin 
concentrations. Additionally, pediatric cardiac digital 
twins combine template models of the heart with 
patient-derived clinical measurements to optimize 
some heart surgeries  (Shang et al., 2019) and assess 
the risk of thrombosis (Grande Gutiérrez et al., 2021; 
Kondratova et al., 2019). The ARCHIMEDES 
diabetes model expands these technologies by 
including models not only of the progression of 
diabetes within individual patients but also of medical 
diagnosis, treatments, and the functioning of the health 
care system that is providing the treatment (Du et al., 
2013; Eddy & Schlessinger, 2003a, 2003b).  

More recently, the NIH Maximizing Investigators 
Research Award (MIRA) was awarded to Dr. Tomas 
Helikar, Professor of Biochemistry, University of 
Nebraska, Lincoln, for the further development of a 
virtual immune system. The virtual immune system is 
meant to increase the understanding of immune 
related diseases as well as to speed up drug 
development and the time-to-market timeline. The 
first MIRA award resulted in the successful modeling 
of CD4+ T cells, which stimulate other cells to fight 
pathogens. This model encompasses four 

mathematical approaches, three spatial scales, and 
multiple tissues involved in immune response. The 
project established a method for computationally 
connecting multiple scales of the immune system 
(Wertheim et al., 2021. The goal of this second MIRA 
award is to expand the model to include more types 
of cells, molecules, genes, and organs.  

A large part of the focus will be on computational 
cost-effectiveness, improving the speed and 
efficiency of the model’s algorithms.  

In Europe, Neurotwin was initiated and funded by 
the EU Horizon 2020 on January 1, 2021. It is 
currently led by Neuroelectrics in Spain. It seeks to 
predict the effects of non-invasive stimulation for 
treatment of neurological disorders, e.g., Alzheimer’s 
disease and epilepsy. Two proof-of-concept clinical 
trials are planned for 2022 and 2023 in order to refine 
the application of this stimulation technology for the 
conditions of Alzheimer’s disease and epilepsy. If 
successful, the condition use cases will be extended 
to multiple sclerosis stroke rehabilitation, depression, 
and the effects of psychedelics in the future. 
Neurotwin combines 30 minutes of MRI and 10 
minutes of EEG to create a personalized digital twin 
that captures a brain’s electrical activity and 
simulations the brain’s main parts, including the 
scalp, skull, cerebrospinal fluid, and gray and white 
matter. The digital twin also includes neural mass 
models, or computational models of the average 
behavior neurons using a map of neural connections 
(connectome). This digital twin will be used to 
optimize the stimulation position or locations and 
strength of current via a headcap.  

These examples illustrate how current digital 
twins can operate in real time to maintain health 
continuously, or they can be used off-line to design 
personalized medical interventions.  

3.5 Community Efforts  

Community efforts such as the Systems Medicine 
Disease Map Project, COVID-19 Disease Map 
Project (Mazein et al., 2018; Ostaszewski et al., 2019; 
Ostaszewski et al., 2020) and Computational 
Modeling in Biology Network (COMBINE) are 
working to build such infrastructure, although much 
work needs to be done to adapt those for use in Digital 
Patient framework. To this end, these groups have 
built a large-scale data repository  (Kondylakis et al., 
2017; Kondylakis et al., 2018; Kondylakis et al., 2015; 
Kouroubali et al., 2019). 
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4 CONCLUSIONS AND FUTURE 
DIRECTIONS   

Data is everywhere now, being aggregated, analyzed, 
and repackaged. We are in an era of Big Data, living 
with the recognition that almost everything we do is 
being captured as one or another type of data, with the 
hope that all that data can be used to help us become 
smarter, healthier, safer, and richer. We also 
recognize that our privacy may be invaded and that 
our risk for harm is increasing. It is in this broader 
context that this article addresses one of the more 
hopeful Big Data undertakings - that is, the 
construction and deployment of the Digital Patient. 
The capacity to measure one’s personal physiological 
and social metrics, compare those metrics with the 
metrics of millions of other humans, personalize 
therapeutic interventions and measure the resulting 
changes will ultimately realize the vision of 
personalized medicine - wherein patients and their 
providers will be able to detect disease at an earlier 
age and provide optimal therapy based on the 
characteristics of each individual and reduce adverse 
responses to therapy. Similarly, pharmaceutical 
companies will improve the process of drug discovery 
and clinical trials. In this way, the healthcare 
industry’s emphasis truly shifts from reaction to 
disease to prevention of disease and promotion of 
wellness. Implicit in this vision is the integration of a 
sustained focus on improving the outcome measures 
of healthcare-safety, effectiveness, patient-
centeredness timeliness, efficiency, and equity in 
clinical practice. Underlying this focus is, of course, 
the development and integration of multi-scale 
models based on the understandings emerging from 
systems biology.  

While the application of physics-based models to 
the Digital Patient are exciting and varied, several 
substantial challenges face the community. The two 
most critical needs are connecting the top-down and 
bottom-up model approaches. Modeling languages 
have been established separately, and so the 
community must spend valuable time and effort 
replicating work already done by other groups. This 
represents a gross inefficiency in the development 
process, and hampers cooperation between groups. It 
is our belief that organizations such as, the industry-
academia-regulatory agency consortia Avicenna 
(European Commission, University of Sheffield and 
the consortium, 2013) and the Medical Device 
Innovation Consortium (Research collaborations in 
regulatory science, 2011) will provide the force to 
consolidate these efforts into a unified whole. The 
more troubling challenge is that of rigorous model 

validation. The assumptions that underlie the model 
induce a standard for evaluating the model. In the 
case of a larger target such as tissue, organ, or an 
individual, validation becomes a more difficult 
concept to define. Intense inter-subject variations 
exist in humans. A person even demonstrates 
different physiological characteristics at different 
ages, so the existence of a data set that represents a 
target for validation is often in question. Population 
modeling may be the key; by generating many 
individuals, a class of subjects similar to a given 
patient might be selected over a collection of 
observable variables. Consideration of differences in 
that population may suggest other observations to 
make in the patient, establishing an iterative process 
for matching an individual to a reasonable model. 
This challenge is not unique to biological models; it 
exists across all nonlinear dynamic models, and no 
systematic solution has been accepted (Barlas, 1996; 
Coveney & Fowler, 2005). That said, the potential for 
improving the modeling of individual patients and the 
strata of patients that is represented by the Digital 
Patient is clearly worth pursuing. 
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