
Privacy-Preserving Algorithms for Data Cooperatives with Directed
Graphs

Mark Dockendorf and Ram Dantu
Department of Computer Science, University of North Texas, 1155 Union Cir, Denton, TX, U.S.A.

Keywords: Data Cooperatives, Privacy, Applications of Homomorphic Encryption (HE), Graph Algorithms, Encrypted
Graphs.

Abstract: A handful of companies currently hold large collections of data about most people. In addition to the question-
able ethics of collecting personal data with few-to-no options to limit what these companies collect, there exist
exceptionally few ways to regulate how your data is stored and used once it is collected. Furthermore, these
data collections cannot be easily cross-referenced to gain insight. Data cooperatives provide an alternative to
these separated collections of data. As a participant-driven organization, similar to a credit union, data cooper-
atives have a vested interest in preserving the privacy of individuals while offering insight similar to other big
data analytics. Another bonus of the data cooperative model is the voluntary (and ethical) sourcing of data. The
downside of giving participants the freedom to choose which data they contribute is incomplete data sets. To
help address this, we adapt label propagation, a semi-supervised learning algorithm for community detection
based on partially labeled data, to work over homomorphically encrypted (HE) graphs. We also adapt triangle
counting and a vertex scoring scheme to work over directed heterogeneous-vertex, heterogeneous-edge HE
graph data.

1 INTRODUCTION

1.1 Data Cooperatives

Data cooperatives provide an alternative to traditional
large data collections. A data cooperative is the vol-
untary collaborative pooling of data by individuals
for the benefit of the group or community (Pentland
and Hardjono, 2020). Unlike current big data solu-
tions, data cooperatives are participant-driven, volun-
tary collections of data. This differs from the cur-
rent “data silos” held by a handful of organizations
(FAANG, governments, etc.) in that data and insights
derived from it can be had by anyone, not just those
that have these data collections. Furthermore, the spe-
cific insights delivered are custom to the questions
asked by the data consumer, not a set of generic in-
dicators.

As all data collection is voluntary, data coopera-
tives can serve as ethical data sources. If a participant
does not wish to share a particular type of data, they
are not forced to do so.

This leads to mixed levels of data sharing among
participants and contributes to the issue of incomplete
data within the cooperative. This is compounded with

the fact that of the many possible participants, a sig-
nificant number will not be sharing data at all.

1.2 Homomorphic Encryption (HE)

Homomorphic encryption (HE) allows for computa-
tion over ciphertext values using specific functions.
There exists a homomorphism between these func-
tions and cleartext operators such as addition, mul-
tiplication, etc.

Some common HE schemes include BFV, which
allows for addition and multiplication of encrypted in-
tegers (Fan and Vercauteren, 2012); HEAAN/CKKS,
which allows for addition and multiplication of block
floating point values (Cheon et al., 2017); and TFHE,
which allows for the evaluation of binary gates over
ciphertext values (Chillotti et al., 2019) (Chillotti
et al., 2016). CHIMERA (Boura et al., 2020) de-
scribes a method of converting between all three of
the aforementioned schemes without decrypting.

We use HE in our data cooperative to protect per-
sonal data in case of a data breach, a snooping 3rd
party, or a cooperative that betrays the participants.
We will achieve this by using a multikey HE (Chen
et al., 2019)(López-Alt et al., 2017) where the key is

876
Dockendorf, M. and Dantu, R.
Privacy-Preserving Algorithms for Data Cooperatives with Directed Graphs.
DOI: 10.5220/0012140200003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 876-884
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

divided among the participants and the cooperative.
Thus, the cooperative will need the cooperation of the
participants in order to decrypt any query result that
uses private information as described in our previous
work (Dockendorf and Dantu, 2023).

1.3 Related Work

1.3.1 Data Privacy Survey

According to GDMA’s 2022 global data privacy sur-
vey (GDMA and Acxiom, 2022), 48% of US respon-
dents are data pragmatists: willing to share data if
there is a clear benefit to it, and 31% of US respon-
dents are data unconcerned: not caring how their data
is used. Their survey further finds that “data funda-
mentalists”, those who are unwilling to share data, ac-
count for approximately 21% of US respondents, with
79% of US respondents “willing to engage in the data
economy”.

We would like to note that as an online survey,
GDMA’s research possibly missed the most privacy-
concerned among the populace as such individuals
may not be willing to answer an online survey. Typ-
ically, online surveys have a response rate below
30% (Nayak and Narayan, 2019)(Lindemann, 2023).
While this percentage is not reported in the survey,
the survey shows that among respondents, people are
becoming more willing to share their data.

1.3.2 HE for Data Cooperatives

We have adapted (and benchmarked) several graph
algorithms to work over HE graph data with spe-
cial consideration given to a data cooperative use-
case (Dockendorf et al., 2021) (Dockendorf. et al.,
2022). The algorithms adapted to work over HE
graph data include ring-based BFS, vertex degree,
farness centrality, Bellman-Ford (single-source short-
est path), Floyd-Warshall (all-pairs shortest path),
Kruskal (minimum spanning forest), betweenness
centrality, and random walk.

We use HE in our data cooperative to provide pri-
vacy by encrypting edges that constitute PII. As an
example, an edge representing residence between a
vertex representing a person and and a vertex repre-
senting a plot of land would be encrypted as a home
address is considered PII.

1.3.3 HE Undirected Triangle Counting

The authors of CryptGraph (Xie and Xing, 2014)
showed results for computing the clustering coeffi-
cient of an undirected HE graph, which, as a subrou-
tine, requires triangle counting. This year, a paper

detailing structural encryption for graphs with accu-
rate triangle counting is set to publish (Wu and Chen,
2023).

Our results differ from the aforementioned works
as we count directed triangles, where these works
only considered undirected triangles. Distributed tri-
angle counting has also been previously explored with
performance sufficient for “small and medium size
data” (Do and Ng, 2016). This work is also the most
similar to ours conceptually, despite being distributed,
as each party contributes edges from their perspec-
tive as participants in our data cooperative would con-
tribute their outgoing edges from their perspective.

2 MOTIVATION

2.1 Incomplete Data

Naturally, as some potential data cooperative partici-
pants will not join due to privacy concerns, any data
cooperative will have to work with incomplete data.
This is further compounded by the fact that partici-
pants are not required to share all data types. As such,
certain data that some participants are unwilling to
share will be incomplete, even among active partic-
ipants.

This is further compounded by the fact that not
all participants will provide updates at the same rate.
This difference in update rate may lead to temporary
inconsistencies in the data.

2.2 Graph Database

Our model for a data cooperative uses a graph
database. Graph databases provide more flexibility
than rigid-schema databases, allowing the cooperative
to accommodate varying levels of data contribution
from participants and adapt more quickly to chang-
ing data needs of data consumers. Furthermore, many
graph algorithms are useful for extracting metrics and
data insight from the collected data (Robinson et al.,
2015).

Graph algorithms can be used to predict social me-
dia activity (Pitas, 2016), detect money laundering
(Li et al., 2020), optimize supply chains (Robinson
et al., 2015), and much more. To put it plainly, storing
data in graph form facilitates the production of data
insight, the primary product of a data cooperative.
A number of existing graph algorithms have already
been adapted to work over HE graph data (Dock-
endorf. et al., 2022) (Dockendorf et al., 2021)(Xie
and Xing, 2014).

Privacy-Preserving Algorithms for Data Cooperatives with Directed Graphs

877

Finally, since participants submit data from their
point of view, they are effectively submitting directed
graph data (outgoing edges from their perspective).
This is why all of our HE graph algorithms specifi-
cally accommodate directed graph data.

3 OUR CONTRIBUTION

In this paper, we demonstrate three algorithms over
HE graph data: HE label propagation, HE directed
triangle counting, and HE weighted triangle creation
vertex scoring. We touch on issues that data cooper-
atives using HE will face related to incomplete data
and propose HE label propagation for inferring data
without disclosing labels to the cooperative. Label
propagation is an algorithm for inferring communi-
ties given a set of known values (labeled vertices) and
a graph which has edges that are a good indicator of
communities.

We demonstrate a variant of label propagation de-
signed to work over HE graph data given an encrypted
labeled vertex set. This algorithm achieves the same
result as its cleartext counterpart with O(r ∗ S(|V |))
runtime complexity, where S(|V |) is the time com-
plexity of squaring a |V | by |V | matrix, |V | is the
number of vertices in the graph, and r is the re-
peated square count to produce the desired conver-
gence. This algorithm can be used by data cooper-
atives to infer labels of previously unlabeled vertices
given a graph that is a good indicator of the labels
in question, all without disclosing any previously-
unknown information. Thus, HE label propagation
can offer a solution to data cooperatives for certain
types of incomplete data.

We demonstrate directed triangle counting over
HE graph data. We define three types of directed tri-
angles: true, strong, and weak and benchmark our HE
graph algorithms for counting these.

Finally, we provide an example of weighted trian-
gle creation vertex scoring over HE graph data. This
scoring method places different weights based on the
types of triangles that would be created should an
edge be added between a given vertex and any one of
the candidate vertices. These weights are tuned based
on which shared neighbor vertices and edge types are
more desirable. This algorithm has a variety of appli-
cations, including multi-factor friend suggestion and
network security risk assessments.

4 ALGORITHMS

4.1 HE Label Propagation

4.1.1 Cleartext Algorithm

Cleartext label propagation is as follows (Raghavan
et al., 2007):
1. Initialize the labels at all vertices in the network.

For a given vertex x, Cx(0) = x.
2. t := 1
3. Randomize the order of vertices and set it to X .
4. For each x ∈ X chosen in that specific or-

der, let Cx(t) = f (Cxi1(t), ...,Cxim(t),Cxi(m+1)(t −
1), ...,Cxik(t−1)). Return the label occurring with
the highest frequency among neighbours (select
random label on tie).

5. If every vertex has a label that the maximum num-
ber of their neighbours have, then stop the algo-
rithm. Else, t := t +1 and goto (3).
Naturally, the conditional jump in 5 above must

be eliminated in order to create a HE algorithm as the
program counter cannot be updated based on an en-
crypted value. Thus t will iterate until the maximum
possible steps for full propagation on a given graph or
will terminate after a user-defined number of steps (if
the user specifies a number of iterations less than the
maximum number of steps).

4.1.2 HE Algorithm

Homomorphic label propagation with weighted prob-
ability for transition works on the same premise as
cleartext label propagation. To initialize, we create a
|V | by |V | matrix, A. For each vertex of the graph,
if the vertex is labeled, place a 1 on the diagonal of
A and zero in all other columns; otherwise, invert all
values, with 0 inverting to 0, and store to A. Next,
sum each row of A and divide all values in the row
by the sum; this normalizes the sum of each row of A
to 1. Finally, repeatedly square A until convergence
(r times). This convergence threshold, which is the
repeated square count, r, is passed as an argument to
homomorphic label propagation.

To get around the conditional termination of clear-
text label propagation, homomorphic label propaga-
tion uses a repeated square count. This value can be
tuned based on the number of values in the graph. For
all experiments in this paper, the value was 5; this
means that the A matrix is repeatedly squared 5 times,
resulting in A25

= A32. A good repeated square count
for real-world data may be 7, which would result in
A128.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

878

While the number of vertices, |V |, is the primary
contributor to the algorithm’s growth rate, the re-
peated square count, r, contributes multiplicatively to
the algorithm’s growth rate. Luckily, a small r value
can still be very effective in converging the labels: this
is due to the fact that convergence is exponential in
nature (due to repeated squaring). Since A is a |V |
by |V | matrix and naive matrix multiply is O(|V |3),
the overall complexity for label propagation ends up
O(r|V |3). A faster HE matrix multiplication or squar-
ing algorithm will benefit HE label propagation.

Parallel HE Label Propagation
Input: G, the encrypted graph; L, encrypted set of la-
beled vertices; r, repeated square count
Output: A, encrypted label matrix
A, B, are zero-initialized |V| by |V| matrices
#parallel loop
for every edge in G[i,j]:
if i = j:
A[i,j] := (L[i]) ? 1 : A[i,j]

else:
A[i,j] := (!L[i]) ? G[i,j] : A[i,j]

#parallel loop
for each row, i, in A:
row_sum := 0
for each column, j, in A:
A[i,j] := (A[i,j] != 0) ? 1/A[i,j] : 0
row_sum := row_sum + A[i,j]

norm := (row_sum != 0) ? 1/row_sum : 0
for each column, j, in A:
A[i,j] := A[i,j] * norm

for k := 1 to r:
B := parallel_mm(A,A)
pointer swap B <-> A

return A

In the pseudocode above, parallel mm is a par-
allel matrix multiplication algorithm with at least
O(|V |) parallelism. This results in O(r|V |3) growth
complexity with up to O(|V |) parallelism or SIMD as
is possible with packed ciphertexts (a single cipher-
text containing multiple values, resulting in SIMD op-
erations).

We also make use of the HE MUX, similar to our
work in (Dockendorf. et al., 2022), which is repre-
sented in our pseudocode by the ternary operator. The
HE MUX is represented above as a ternary operator.
Given the expression (!L[i])?G[i,j]:A[i,j], first
c = !(L[i] != 0) is evaluated. Then the result, c,
a TFHE bit, is fed into the control of a TFHE MUX
circuit, which selects G[i,j] if c is an encrypted 1
and selects A[i,j] otherwise. This enables condi-
tional evaluation under HE so that one could use a
restricted if/else structure in an HE context, but re-
quires evaluation of both the if and else path before
committing results.

4.1.3 Equivalence to Cleartext Label
Propagation

Label propagaion is based on a simple premise: ran-
dom walk. Let us consider all labeled vertices, in set
L, to be absorbing: that is, once they are reached,
the random walk cannot transition to another vertex.
Thus, once a labeled vertex is reached, the walk will
end on that vertex, and a random walk started from a
labeled vertex will end on that same vertex. This is
expected and desired as vertices in L have known la-
bels. We encode this as a 1 on the diagonal of the A
matrix and all other values on that row as 0.

If a walk is started from an unlabeled vertex, a
vertex not in L, we need to determine the probability
that the walk of infinite length will end at any given
vertex. A walk of infinite length could only “end” at
an absorbing state: a vertex in L. To determine this,
we first figure out the probability of transitioning to
all neighbors, then to neighbors of neighbors, and so
on until eventually reaching an absorbing state.

We assemble matrix, A, that contains the probabil-
ity of transition by inverting outgoing edge weights
(assuming higher weights are more prohibitive to
transitioning across the edge, otherwise inversion is
skipped) and then summing the inverted values. The
total weight for each row is then inverted and the en-
tire row is multiplied by this value: this normalizes
the sum of each row to 1 with each entry being the
probability that a transition from vertex i to vertex j
occurring located at Ai j.

This A matrix is then repeatedly squared to pro-
duce convergence, where each unlabeled vertex’s
probability of ending up at a labeled vertex is present
in the labeled vertices’ columns.

4.1.4 Data Cooperative Optimization

In producing the A matrix, we assumed encrypted la-
bels to give the algorithm the ability to run over all-
encrypted data. However, if data is either provided
(labeled) or not provided (unlabeled) by a participant,
the cooperative could know whether a vertex was la-
beled or not. This knowledge allows for several small
optimizations.

The first parallel loop in the pseudocode could be
optimized to a copy based on a cleartext conditional
rather than a set of HE MUXes: this saves O(|V |2)
TFHE bootstrappings.

In the second parallel loop, we know that every
labeled vertex will have a row that is all 0 other than a
single 1 on the diagonal. This allows us to skip those
rows as they are already normalized to 1: this reduces
required bootstrappings by a factor of |L|/|V |.

Finally, within the matrix squaring algorithm, we

Privacy-Preserving Algorithms for Data Cooperatives with Directed Graphs

879

know that labeled rows will not change: they will
remain a 1 on the diagonal with all other values 0.
This allows for optimization by skipping calculation
of those rows (as they will not change) and storing
those rows as cleartext, which reduces the number of
bootstrappings required in the matrix squaring algo-
rithm (the number of bootstrappings saved is depen-
dent on the squaring algorithm used and proportion of
labeled vertices).

4.2 Directed Triangles

Triangle counting is an important graph metric and
is used as part of calculating certain other metrics,
including clustering coefficients (Holland and Lein-
hardt, 1971)(Watts and Strogatz, 1998). Due to the
nature of a data cooperative accepting data from par-
ticipants, the data submitted to the cooperative will be
from the perspective of each participant. This means
that data submitted to the cooperative is directed, with
each participant supplying their outgoing edges. We
adapt the triangle definition to directed graphs and im-
plement HE directed triangle counting.

4.2.1 True Triangle

As triangles in an undirected graph are complete sub-
graphs on 3 vertices, a true triangle in a directed
graph is also a complete subgraph on 3 vertices. Con-
sequently, a true triangle can be detected by identify-
ing a reversible 3-cycle. That is to say, any set of 3
vertices forming a triangle with a return link for each
edge in the triangle constitutes a true triangle. Thus,
if a true triangle has vertices vi, v j, and vk, then:

Ttruei jk ⇒ vi→ v j→ vk→ vi∧vi→ vk→ v j→ vi (1)

4.2.2 Strong Triangle

A strong triangle loosens the definition of a true trian-
gle to a strongly-connected 3-vertex subgraph. A 3-
cycle subgraph in a directed graph that does not share
the same vertex set as any triangle that has already
been counted would then be a unique triangle. That
is to say, each 3-cycle is counted once, but only if its
reverse has not already been counted: this prevents
strong triangle counting from reporting true triangles
as 2 triangles.

Tstrongi jk ⇒ vi→ v j→ vk→ vi∨ vi→ vk→ v j→ vi
(2)

4.2.3 Weak Triangle

A weak triangle further loosens the definition of a
triangle to any weakly-connected 3-vertex subgraph.
For a triangle to be weak, one of its vertices must have
only incoming or only outgoing edges. When data is
expected to have return edges for all edges, the per-
vertex ratio of weak triangles to true triangles can be
used as an indicator for which vertices may have out-
dated or inconsistent data.

4.2.4 Triangle Types

With each definition including more 3-vertex struc-
tures, the following relationship can be observed for
the different sets of directed triangles:

Ttrue ⊆ Tstrong ⊆ Tweak (3)

4.3 HE Weighted Triangle-Creation
Scoring

There are many applications of vertex scoring, includ-
ing friend suggestions (in social networks), risk as-
sessment, and network security. Weighted triangle-
creation scoring is particularly suited for heteroge-
neous graphs, those that have multiple types of ver-
tices and edges, as each type of potential triangle can
have its own associated weight. We call this triangle-
creation scoring as vertices are scored based on the
number and type of triangles that will be created in
the graph should the proposed edge be added.

We demonstrate, as an example, a simple
weighted triangle-creation scoring that can be used
to generate friend suggestions for hobbies and other
in-person activities. The query steps are as follows:

1. Start from a list of all people.

2. Filter out subject’s current friends.

3. Filter out people that do not share at least one
common location with subject.

4. Add points for each activity interest shared with
subject (triangle type a).

5. Add points for each friend shared with subject
(triangle type f).

6. Return score vector.

If the result is to be disclosed to a 3rd party,
only a short list can be sent. This can be
achieved by making a 2-tuple out of each vector slot:
(person uuid,score). These tuples would then be
sorted by their score and the top-k results returned.
Examples include “top-5 friend recommendations for

SECRYPT 2023 - 20th International Conference on Security and Cryptography

880

Figure 1: An example (in cleartext) of weighted triangle-creation scoring: multi-factor friend suggestion in a social network.
The candidates (in yellow) were selected by filtering all people down to those that shared at least one common location with
our subject (blue circle). Candidates are then scored based on the number and type of edge shared with friends (green) of our
subject and activity interests (in red) of our subject. Three scores and rankings are given in this example, with a being the
value of a shared activity interest and f being the value of a shared friend. Of particular interest are the candidates with a red
arrow as their rankings vary significantly when a and f are adjusted. The sum of the coefficients of the considered factors (a’s
and f ’s coefficients in this example) is the number of triangles that will be created if that candidate is selected and an edge is
added. Analysis similar to this could also be applied to network security and risk management.

Figure 2: The two types of triangles considered in our ex-
ample of HE weighted triangle creation scoring. The “pro-
posed edge” is dotted at the bottom of both triangles. Cir-
cles represent people, while squares represent activities;
further, black edges indicate friendship, while orange edges
indicate participation. Type ‘a’ is a heterogeneous-vertex,
heterogeneous-edge weak triangle where both people par-
ticipate in a shared activity. Type ‘f’ is a homogeneous-
vertex, homogeneous-edge true triangle where both the can-
didate (yellow) and the subject (blue) have a shared friend
(green).

hobbies you enjoy”, “top-8 servers by potential finan-
cial damage if breached by an attacker”, etc.

Importantly, scores for creating different types of
triangles do not have to be and generally should not
be the same. For example, if the subject is looking
for someone to join a tight-knit group of friends for
an activity, shared friendships may be more impor-
tant than shared activity interest. As another example,
the financial risk of a breach on a server that handles
payment information is generally higher than one that

only serves images or static web pages.

5 EXPERIMENTAL RESULTS

All experiments were performed using TFHE encryp-
tion with 128-bit equivalent security (Chillotti et al.,
2016) on an AMD 3960X using individual (non-
packed) ciphertexts. We use a single-key scheme to
demonstrate the validity of these algorithms in a gen-
eral TFHE or CHIMERA context. A final product
would use a multi-key CHIMERA (or similar) con-
text with threshold decryption to split the key among
participants.

5.1 HE Label Propagation

Label propagation results are slow at this stage,
mostly due to using TFHE. We use TFHE for the in-
version step as inversion is currently unsupported by
the other standardized HE (Albrecht et al., 2018).

HE label propagation’s runtime is dominated by
the naive parallel matrix multiply, which has O(|V |3)
runtime. Using a more efficient matrix multiplica-
tion or matrix squaring algorithm would greatly bene-

Privacy-Preserving Algorithms for Data Cooperatives with Directed Graphs

881

Figure 3: Timing results for all forms of triangle counting over HE graphs. Only “triangles” is performed on an undirected
graph; all others are for directed graphs. All-in-all, other than a scaling factor, the time taken grows with O(|V |2) when O(|V |)
parallelism is available. Linear time (single-thread) growth rate is O(|V |3) as a result of graph sparsity being held constant at
75% (25% of possible edges are present in the graph). Triangle counting in undirected graphs is fastest, with weak triangle
counting on directed graphs being second-fastest. Strong and true triangle counting are roughly tied in terms of performance;
however all grow the same asymptotically.

Figure 4: Label propagation timings. The odd shape can
be attributed to thread saturation at 7x7 matrix; all larger
matrix sizes show the original growth pattern resuming
(O(|V |3), r was held constant at 5).

fit asymptotic runtime, assuming said algorithm does
not result in undue ciphertext bootstrapping.

5.2 HE Directed Triangle Counting

Triangle counting in all forms scales with O(V 3) lin-
ear time. Triangle counting of all forms takes ad-
vantage of parallelism with O(V) threads, reducing
time to O(V 2) when O(V) processors are available. In
all forms, triangle counting is time-invariant with the
number of triangles in the graph, scaling only with the
number of vertices.

5.3 HE Weighted Triangle-Creation
Scoring

We benchmark the query shown in Figure 1 over HE
graph data. This means that unlike the example, the
edges are encrypted and unknown to the cooperative.
In our tests, we hold the number of locations and ac-
tivities/hobbies constant and vary the number of peo-
ple. Realistically, the number of locations will gen-
erally not change given a constant service area for
the data cooperative. Further, the number of activi-
ties/hobbies available for people to do does not vary
with population, so it too is held constant.

Let |P| be the number of people, and let P ⊂
V . With O(|P|) parallelism available, HE weighted
triangle-creation scoring runtime grows at O(|P|)
when sparsity is held constant at 75% (25% of pos-
sible edges exist). Single-thread growth complexity
for this scoring method would be O(|P|2), as we have
near-perfect multithreaded speedup with each vertex
score being calculated independently.

6 CONCLUSION

In this paper, we discuss the fact that data coopera-
tives will, by nature of respecting participants will-
ingness to share data, be forced to work with incom-
plete data. We demonstrate and analyze algorithms

SECRYPT 2023 - 20th International Conference on Security and Cryptography

882

Figure 5: Time (in ms) to complete HE weighted triangle-
creation vertex scoring for the aforementioned friend rec-
ommendation vs number of people in the graph. With
O(|P|) parallelism, and constant sparsity in the graph, the
runtime is O(|P|).

for label propagation and directed triangle counting
over HE graph data. We also provide an example of
weighted triangle-creation scoring, a vertex scoring
scheme effective over HE heterogeneous graphs.

HE label propagation allows the data cooperative
to infer labels for data that is unlabeled, thereby cre-
ating a complete, but inferred, set of labels from a
set of encrypted labels. We demonstrate HE label
propagation in O(r ∗S(|V |)) runtime, where S(|V |) is
the time complexity of squaring a |V | by |V | matrix,
and O(|V |2) space. Our benchmarked implementation
uses a parallel naive matrix multiply as the squaring
algorithm, resulting in O(r ∗ |V |3) runtime. There is
room for improvement on this front with a more effi-
cient matrix squaring algorithm, so long as the algo-
rithm does not require an asymptotically larger num-
ber of ciphertext bootstrappings.

We expand the definition of a graph triangle to di-
rected graphs, and demonstrate triangle counting al-
gorithms for various forms of directed triangles over
HE directed graph data. These HE directed triangle
counting algorithms share an O(max(degree(V))3)
runtime with up to O(|V |) parallelism.

Finally, we explore and benchmark HE weighted
triangle-creation scoring. This allows data coopera-
tives to generate vertex scores while strictly using HE
graph data in O(|V |) runtime given O(|V |) (or possi-
bly less) parallelism. The applications of this vertex-
scoring scheme go beyond the demonstrated hetero-
geneous social network friend recommendations: it
can be applied to network security, risk management,
and much more.

6.1 Future Work

Improvements to all of these can potentially be made
by utilizing CHIMERA (Boura et al., 2020) bridges.
Label propagation can be improved by bridging to
BFV or HEAAN/CKKS after the inversion step of

assembling the A matrix, with matrix squaring being
done in BFV or HEAAN/CKKS. Triangle counting
could potentially be improved by bridging to BFV af-
ter the binary logic and prior to the addition steps.

Although, this assumes the conversion will take
asymptotically less time than keeping the ciphertexts
in TFHE-mode. This is likely to be the case for label
propagation, but could offer questionable speedup for
triangle counting.

ACKNOWLEDGEMENTS

We sincerely acknowledge and thank the National
Centers of Academic Excellence in Cybersecurity,
housed in the Division of Cybersecurity Educa-
tion, Innovation and Outreach, at the National Secu-
rity Agency (NSA) for partially supporting our re-
search through grants H98230-20-1-0329, H98230-
20-1-0414, H98230-21-1-0262, H98230-21-1-0262,
and H98230-22-1-0329.

REFERENCES

Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser,
S., Gorbunov, S., Halevi, S., Hoffstein, J., Laine,
K., Lauter, K., Lokam, S., Micciancio, D., Moody,
D., Morrison, T., Sahai, A., and Vaikuntanathan,
V. (2018). Homomorphic encryption security stan-
dard. Technical report, HomomorphicEncryption.org,
Toronto, Canada.

Boura, C., Gama, N., Georgieva, M., and Jetchev, D.
(2020). Chimera: Combining ring-lwe-based fully ho-
momorphic encryption schemes. Journal of Mathe-
matical Cryptology, 14(1):316–338.

Chen, H., Chillotti, I., and Song, Y. (2019). Multi-key ho-
momorphic encryption from tfhe. In Galbraith, S. D.
and Moriai, S., editors, Advances in Cryptology – ASI-
ACRYPT 2019, pages 446–472, Cham. Springer Inter-
national Publishing.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Ho-
momorphic encryption for arithmetic of approximate
numbers. In Takagi, T. and Peyrin, T., editors, Ad-
vances in Cryptology – ASIACRYPT 2017, pages 409–
437, Cham. Springer International Publishing.

Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M.
(August 2016). TFHE: Fast fully homomorphic en-
cryption library. https://tfhe.github.io/tfhe/.

Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M.
(2019). Tfhe: Fast fully homomorphic encryption
over the torus. Journal of Cryptology.

Do, H. G. and Ng, W. K. (2016). Privacy-preserving tri-
angle counting in distributed graphs. In 2016 IEEE
30th International Conference on Advanced Informa-
tion Networking and Applications (AINA), pages 917–
924.

Privacy-Preserving Algorithms for Data Cooperatives with Directed Graphs

883

Dockendorf, M. and Dantu, R. (2023). Heterogeneous
graph storage and leakage prevention for data coop-
eratives. In International Conference on Security and
Cryptography.

Dockendorf., M., Dantu., R., and Long., J. (2022). Graph
algorithms over homomorphic encryption for data
cooperatives. In Proceedings of the 19th Interna-
tional Conference on Security and Cryptography - SE-
CRYPT,, pages 205–214. INSTICC, SciTePress.

Dockendorf, M., Dantu, R., Morozov, K., and Bhowmick,
S. (2021). Investing data with untrusted parties us-
ing he. In International Conference on Security and
Cryptography.

Fan, J. and Vercauteren, F. (2012). Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive,
Paper 2012/144. https://eprint.iacr.org/2012/144.

GDMA and Acxiom (2022). Us data privacy: What the
consumer really thinks. https://globaldma.com/wp-
content/uploads/2022/03/GDMA-US-Data-Privacy-
2022.pdf.

Holland, P. W. and Leinhardt, S. (1971). Transitivity
in structural models of small groups. Comparative
Group Studies, 2(2):107–124.

Li, X., Liu, S., Li, Z., Han, X., Shi, C., Hooi, B., Huang, H.,
and Cheng, X. (2020). Flowscope: Spotting money
laundering based on graphs. In AAAI.

Lindemann, N. (2023). What’s the average survey response
rate? [2021 benchmark].

López-Alt, A., Tromer, E., and Vaikuntanathan, V. (2017).
Multikey fully homomorphic encryption and applica-
tions. SIAM Journal on Computing, 46(6):1827–1892.

Nayak, M. and Narayan, K. (2019). Strengths and weak-
nesses of online surveys. Technology, 6(7):0837–
2405053138.

Pentland, A. and Hardjono, T. (2020).
2. Data Cooperatives. 0 edition.
https://wip.mitpress.mit.edu/pub/pnxgvubq.

Pitas, I. (2016). Graph-based social media analysis, vol-
ume 39. CRC Press.

Raghavan, U. N., Albert, R., and Kumara, S. (2007). Near
linear time algorithm to detect community structures
in large-scale networks. Phys. Rev. E, 76:036106.

Robinson, I., Webber, J., and Eifrem, E. (2015). Graph
databases: new opportunities for connected data. ”
O’Reilly Media, Inc.”.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics
of ‘small-world’ networks. nature, 393(6684):440–
442.

Wu, Y. and Chen, L. (2023). Structured encryption for trian-
gle counting on graph data. Future Generation Com-
puter Systems, 145:200–210.

Xie, P. and Xing, E. P. (2014). Cryptgraph: Privacy pre-
serving graph analytics on encrypted graph. CoRR,
abs/1409.5021.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

884

