Analyzing Image Based Strategies for Android Malware Detection and
Classification: An Empirical Exploration

Chirag Jaju'*, Dhairya Agrawal'* Rishi Poddar!*, Shubh Badjate'*, Sidharth Anand'+*,
Barsha Mitra"" and Soumyadeep Dey?
LDepartment of CSIS, BITS Pilani, Hyderabad Campus, Hyderabad, India
2Microsoft India, India

Keywords: Android Malware, APK, Image Conversion, CNN, Classification.

Abstract: In recent years, the popularity of Android as a mobile operating system has grown exponentially and so it has
been widely used in a huge array of mobile phones. This large scale proliferation of Android has resulted
in it being extensively targeted by malware. Numerous families of malware have been developed with the
sole purpose of infecting mobile phones and perpetrating different types of attacks on these devices and their
users. Naturally, in the past few years, researchers have focused on developing strategies for detecting and
classifying malware families. A large number of such strategies are based on converting the malware APK files
to grayscale or color images. In this paper, we survey six APK to image conversion techniques and perform
a comparative empirical analysis of these methods with respect to malware detection and classification. We
implement the six approaches to convert the benign as well as malware binaries into images and then use
three CNN-based models to distinguish between benign and malware files and also to classify the various
malware families. We use two very popular open-source Android malware datasets, CICAndMal2017 and the
Drebin dataset for comparing the performance of the different image conversion techniques for the detection
and classification tasks in terms of accuracy and Fl-score. The results of the study provide insights into
the relative performance of these approaches and help to determine the combination of the image conversion

approach and the classification model that provides the best detection and classification performance.

1 INTRODUCTION

Mobile phones, especially smartphones have become
an indispensable aspect of our lives. These smart-
phones have several types of applications installed on
them and store a huge amount of data, a large percent-
age of which is user data and thus is quite sensitive
in nature. As a result, smartphones are targeted by
hackers and cyber criminals for stealing private user
information and for perpetrating various malicious ac-
tivities exploiting such information. These attacks are
primarily launched by infecting the smartphones with
malicious softwares or malwares. Since Android is
one of the most widely used mobile operating sys-
tems, in recent years, scores of Android malware have
been developed and disseminated into the cyberspace.
This has triggered the design and development of var-

*Chirag Jaju, Dhairya Agrawal, Rishi Poddar, Shubh
Badjate and Sidharth Anand have equal contribution
TCorresponding Author

Jaju, C., Agrawal, D., Poddar, R., Badjate, S., Anand, S., Mitra, B. and Dey, S.

ious malware detection and classification strategies as
countermeasures. In the recent past, researchers have
focused on creating image based malware detection
and classification methods which include (Ni et al.,
2018), (Gibert et al., 2020), (Mohammed et al., 2021),
(O’Shaughnessy and Sheridan, 2022), (Joyce et al.,
2023). These approaches convert the malware APKs
into images (grayscale or color) and identify the mal-
ware families by classifying these converted images.
Such methods differ from one another with respect to
the algorithm for creating the images.

In this paper, we study six APK to image con-
version techniques and compare as well as analyze
their performance. The methods that we have se-
lected include (Kumar et al., 2016), (Kalash et al.,
2018), (Fang et al., 2020), (Unver and Bakour, 2020),
(Zhang et al., 2021) and (Zhu et al., 2023). We have
implemented the image conversion methods proposed
in these papers to obtain either grayscale or color
images from the APKs. The converted images are

863

Analyzing Image Based Strategies for Android Malware Detection and Classification: An Empirical Exploration.

DOI: 10.5220/0012139100003555

In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 863-869

ISBN: 978-989-758-666-8; ISSN: 2184-7711

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

SECRYPT 2023 - 20th International Conference on Security and Cryptography

then classified using Convolutional Neural Network
(CNN) based models like Resnet50 (He et al., 2015),
MobileNetV2 (Sandler et al., 2019), and 3C2D (Mo-
hammed et al., 2021). The primary objective of our
work is to provide an experimental comparative anal-
ysis of the above-mentioned image conversion based
malware detection and categorization techniques and
present an insight regarding the relative performance
of these approaches to researchers exploring this do-
main. The insights obtained from our empirical study
will help to determine the combination of the image
conversion approach and the classification model that
provides the best detection as well as classification
performance. It is to be noted here that we focus
only on the algorithms to obtain the converted im-
ages presented in the above-mentioned works in an
attempt to study and analyze how the performance of
malware detection and categorization is affected by
various image transformation techniques. Our study
does not focus on presenting any new neural network
architecture or classification method for malware de-
tection and identification.

The rest of the paper is organized as follows. Sec-
tion 2 outlines the preliminaries related to APK files.
In Section 3, we describe the different techniques to
convert the APK files to grayscale and color images.
Section 4 presents detailed information regarding the
datasets used for the experiments. Experimental re-
sults and their analysis are presented in Section 5 with
Section 6 concluding the paper.

2 APK PRELIMINARIES

An APK file is an Android application package,
which is used to distribute and install applications on
devices running the Android operating system. It is
essentially a compressed archive of all the files that
make up the application. The APK file contains the
compiled code, resources, and manifest files that are
necessary for the application to run properly. The
contents of an APK file typically include the follow-
ing components:

* AndroidManifest.xml. This is an XML file that
contains information about the application, such
as the package name, version number and nec-
essary permissions. It also contains information
about the application’s activities, services, broad-
cast receivers, and content providers.

e resources.arsc. This folder contains all the re-
sources used by the application such as images,
audio, video, strings, and layouts.

e classes.dex. This file format is used for stor-

864

ing compiled code for Android applications. It
contains the Dalvik bytecode, which is the byte-
code that Android devices use to run applications.
The Dalvik bytecode is compiled from Java class
files and is optimized for Android devices. The
.dex file format consists of several distinct com-
ponents:

— Header: contains the header information which
includes the file size, the number of strings,
types, classes, and methods, and the checksum.

— Strings: contains the strings used in the appli-
cation.

— Types: contains information about the types of
data used in the application.

— Classes: contains information about the classes
that are used in the application.

— Methods: contains information about the meth-
ods that are used in the application.

— Data: contains the actual data used by the ap-
plication.

— Debug Info: contains debugging information
which can be used to debug the application.

¢ lib. This folder contains any native libraries used
by the application.

* Assets. This folder contains any additional as-
sets needed by the application, such as text files,
databases and other files.

* META-INF. This is the directory that contains the
cryptographic signature of the application and is
used to verify the authenticity of the application.

3 IMAGE CONVERSION
TECHNIQUES STUDIED

In this section, we first describe the method for trans-
forming binary files to images and then briefly discuss
the techniques that we have considered in this work
for converting the malware APKs to images.

3.1 Byteplot-based Binary File to Image
Conversion for APKs

The process of converting binary files to images is
known as byteplot-based binary file to image conver-
sion. This process is a powerful tool for reverse en-
gineering binary files and allows for the visualization
of their internal static structure. The byteplot-based
binary file to image conversion method was first in-
troduced by (Conti et al., 2008). The authors present
an approach for transforming binary files into visual

Analyzing Image Based Strategies for Android Malware Detection and Classification: An Empirical Exploration

images that are referred to as byteplots. This method
provides a visual representation of binary file frag-
ments to help in the identification of common file
formats, thus improving the capabilities of text-based
hex editors. Byteplot-based binary file to image con-
version involves converting a binary file into a 1D ar-
ray containing 8-bit unsigned integers. (Nataraj et al.,
2011) applied byteplots for the first time to represent
malware binaries as images for the purpose of mal-
ware classification.

This paper explores the use of byteplot-based bi-
nary file to 1D array of unsigned integers conver-
sion strategy for converting APK files to 1D arrays
of unsigned integers. Subsequently, these arrays are
used to obtain the image representations of the APKs.
Six techniques are explored for this purpose, includ-
ing three grayscale and three color image conversion
methods. The converted images are then used for var-
ious downstream tasks such as benign vs. malware
classification and malware family classification. In
the following sub-sections, we describe the methods
considered in this study for converting APKs to im-
ages.

3.1.1 Converting APKs to Grayscale Images

Converting a binary file into an image can be done
using byteplot. The resultant 1D array can be con-
sidered as a grayscale image with a range of 0 to
255 (0 corresponding to black and 255 correspond-
ing to white). The width of the image is fixed, while
the height can vary across different file sizes as men-
tioned in Table 1. The information presented in the
tables is obtained from (Nataraj et al., 2011).

Table 1: Relation between File Size and Image width
(Nataraj et al., 2011).

File Size (in kB) | Width
<10 32
10-30 64
30-60 128
60 — 100 256
100 — 200 384
200 — 500 512
500 — 1000 768
> 1000 1024

Based on the above-mentioned strategy to convert
binary files to grayscale images, we have explored
three approaches that are discussed next. We refer to
the methods as M1Gray, M2Gray and M3Gray.

e M1Gray. In this method, the entire APK file is
considered as a binary file, and then the byteplot-
based technique is utilized to represent the APK
as an image file (Kalash et al., 2018).

* M2Gray. The AndroidManifest.xml and

classes.dex files have been observed to contain
enough information to classify various malware
families (Zhang et al., 2021). As a result, these
two files have been used to convert an APK to
an image for the purpose of malware classifi-
cation. The AndroidManifest.xml file describes
the behavior of the application and how it will
be executed, while the classes.dex code is the
compiled form of the application, containing the
main code.

* M3Gray. Researchers have investigated the
use of resources.arsc files, along with Android-
Manifest.xml, and classes.dex files for malware
classification (Unver and Bakour, 2020). Re-
sources.arsc files contain binary version of the
compiled resources of an Android application as
well as important information about user interface
layouts.

3.1.2 Converting APKs to Color Images

In this paper, we have investigated three methods for
visualizing an APK as a color image for malware
identification. The approaches explored in this work
are referred to as M1Color, M2Color and M3Color
and are discussed below.

* M1Color. The AndroidManifest.xml file and the
data part of the classes.dex file are initially used to
create a 1D array consisting of unsigned integers
as per the method described in Sub-section 3.1.
This 1D array is then converted to a 2D array us-
ing the width information from Table 1. Finally,
the 2D array is reshaped into a 3D array, which
can be used to construct an RGB image, providing
a visual representation of the data (Kumar et al.,
2016).

* M2Color. Researchers have observed that the In-
dex region of the classes.dex file contains enough
information for effective malware classification.
To reduce redundancy and facilitate analysis, the
.dex file is pre-processed by removing the header
and data sections, leaving only the Index sec-
tion (Zhu et al.,, 2023). The six hexadecimal
characters are then converted to three channels of
numbers between 0 and 255 and stored in a 2D
array. This array is reshaped to a 3D array to con-
struct an RGB image.

* M3Color. Using information from different sec-
tions of a .dex file, an APK to a color image
conversion technique is presented in (Fang et al.,
2020). The header section contains the byte off-
set of each section, and this information is used
to calculate the RGB channels for that section.

865

SECRYPT 2023 - 20th International Conference on Security and Cryptography

To calculate the green channel, the binary format
of the .dex file is used to build a vector consist-
ing of zeros and ones, which is then transformed
into an n X m matrix. The entropy matrix, which
represents the red channel of the image, is cal-
culated using Eq 1, where ¢; represents the fre-
quency of byte i and p(ci) is its probability. The
entropy is then mapped to the range [0 - 255] us-
ing Eq 2. The blue channel represents the propor-
tion of each section in the .dex file, which is cal-
culated and converted to the range [0 - 255] using
Eq 3.

255
entropy = — Y p(c;)log, p(ci) (1
i=0
255
R = (entropy’ mod 8) x Y 2
SectionSize
= Fiess ¥ 255 (3)

4 DATASET DESCRIPTION

In this work, we have used two datasets for the
malware detection and classification tasks - the
Drebin dataset (Arp et al., 2014) and CICAnd-
Mal2017 (Lashkari et al., 2018). In the following sub-
sections, we provide a detailed description of each
dataset.

4.1 Drebin Dataset

The Drebin dataset is a publicly available resource for
classification of Android malware families. It con-
tains 1,29,013 Android applications, with 5,560 of
them being malicious. The dataset was collected over
a period of more than two years, from August 2010
to October 2012. The samples have been collected
from Google Play Store, different alternative Chinese
and Russian Markets as well as from other sources
like Android websites, security blogs and malware fo-
rums. Moreover, all samples from the Android Mal-
ware Genome Project (Spreitzenbarth et al., 2013),
(Arp et al., 2014) are present in the dataset.

The dataset is divided into two categories - benign
applications (Google Play Store - 96,150 applications,
different alternative Chinese Markets - 19,545 appli-
cations, alternative Russian Markets - 2,810 applica-
tions, and other sources - 13,106 applications) and
malicious applications (detected by at least two of the
ten anti-virus scanners used which include ClamAYV,
AVG, F-Secure, Kaspersky, AntiVir, McAfee, Panda,
BitDefender, Sophos and ESET).

866

The Drebin dataset comprises of 179 different
malware families, including several families that are
in active distribution in current application markets.
Drebin is one of the largest and most widely used
datasets for Android malware classification and is a
valuable resource for researchers and practitioners to
test and develop their malware identification algo-
rithms. The dataset contains a high degree of imbal-
ance with respect to the number of malware instances
per family. To address this issue, we have limited our
experiments to the top 20 malware families present in
the dataset. These top 20 families are shown in Ta-
ble 2.

Table 2: Top 20 Families of Malware of the Drebin dataset
(Arp et al., 2014).

Family Number | Family Number
Fakelnstaller 925 | Adrd 91
DroidKungFu 667 | DroidDream 81
Plankton 625 | LinuxLotoor 70
Opfake 613 | GoldDream 69
GingerMaster 339 | MobileTx 69
BaseBridge 330 | FakeRun 61
Iconosys 152 | SendPay 59
Kmin 147 | Gappusin 58
FakeDoc 132 | Imlog 43
Geinimi 92 | SMSreg 41

4.2 CICAndMal2017

CICAndMal2017 is an Android malware dataset
that consists of over 10,854 samples (4,354 mal-
ware and 6,500 benign) obtained from multiple
sources (Lashkari et al., 2018). The malware sam-
ples are classified into four categories: Ransomware,
Adware, SMS Malware and Scareware. The Ran-
somware category consists of samples from the fol-
lowing malware families - (i) Charger, (ii) Jisut, (iii)
Koler, (iv) LockerPin, (v) Simplocker, (vi) Pletor,
(vii) PornDroid, (viii) RansomBO, (ix) WannaLocker
and (x) Svpeng. The Adware category consists of
samples of (i) Dowgin, (ii) Ewind, (iii) Feiwo, (iv)
Gooligan, (v) Kemoge, (vi) koodous, (vii) Mobidash,
(viii) Selfmite, (ix) Shuanet, and (x) Youmi fami-
lies. The Scareware category consists of the fol-
lowing malware families - (i) AndroidDefender, (ii)
AndroidSpy.277, (iii) AV for Android, (iv) AVpass,
(v) FakeApp, (vi) FakeApp.AL, (vii) FakeAV, (viii)
FakeJobOffer, (ix) FakeTaoBao, (x) Penetho and (xi)
VirusShield. Lastly, the SMS Malware category con-
sists of samples from (i) BeanBot, (ii) Biige, (iii)
Fakelnst, (iv) FakeMart, (v) FakeNotify, (vi) Jifake,
(vii) Mazarbot, (viii) Nandrobox, (ix) Plankton, (x)
SMSsniffer and (xi) Zsone families. The samples
have been collected from Google play published in
three consecutive years - 2015, 2016, and 2017.

Analyzing Image Based Strategies for Android Malware Detection and Classification: An Empirical Exploration

Table 3: Experimental Results for CICAndMal2017 for Benign vs. Malware Classification.

Model M1Gray M2Gray M3Gray M1Color M2Color M3Color
Acc F Acc F Acc F Acc F Acc Fi Acc Fi
Resnet50 79.90 | 80.02 | 82.84 | 82.86 | 79.90 | 79.92 | 81.86 | 81.65 | 78.92 | 79.04 | 84.80 | 84.89
MobileNetV2 | 88.24 | 88.17 | 88.24 | 88.22 | 89.22 | 89.23 | 85.78 | 85.65 | 84.80 | 84.48 | 84.80 | 84.87
3C2D 85.78 | 85.72 | 86.76 | 86.79 | 86.27 | 86.27 | 82.84 | 82.83 | 85.29 | 85.33 | 83.82 | 83.84

S RESULTS AND DISCUSSION

In this section, we discuss our experimental setup, the
experimental results and an analysis of the results ob-
tained. We have used Convolutional Neural Network
(CNN) based architectures such as Resnet50 (He
et al., 2015), MobileNetV2 (Sandler et al., 2019), and
a simple but efficient shallow CNN-based architecture
3C2D (Mohammed et al., 2021) for our experiments.
We have evaluated the performance of the methods
with respect to the ability to distinguish between be-
nign and malware data using the benign data present
in the CICAndMal2017 dataset. We have also evalu-
ated the performance of the six APK to image trans-
formation methods on the CICAndMal2017 dataset
and the Drebin dataset with the top 20 malware fam-
ilies. For classification purposes, each converted im-
age is resized to a 256 x 256 dimension image before
feeding it to the CNN architectures. We have com-
pared the performance in terms of the popular classi-
fication metrics Accuracy (Acc) and F1-Score (F}) to
show the effectiveness of each of the techniques.

The overall comparison of the strategies for the
benign vs. malware classification on the CICAnd-
Mal2017 dataset, malware family classification on the
CICAndMal2017 dataset and the Drebin dataset are
presented in Tables 3, 4, and 5 respectively. In these
tables, the red colored cells indicate the best perfor-
mance of a particular method across the three CNN-
based models, the gray colored cells correspond to
the best performance of a specific model across the
six methods and the bold-faced cells indicate the best
overall performance across all methods and models.
For the overall best performance, the cells are colored
gray and the values are also written in bold-face (the
red color has not been shown). We have used only
the CICAndMal2017 for classifying benign and mal-
ware files because out of the two datasets considered
in this work, only CICAndMal2017 contains benign
APK samples. The Drebin dataset contains the ex-
tracted features from the benign APKs and hence is
not suitable for our empirical study.

Results for the benign vs. malware classification
depicted in Table 3 provide the following insights:

* Resnet50 model achieved the highest accuracy of
84.8% and the highest Fl-score of 84.89% for

the M3Color conversion technique. The model
achieved the lowest accuracy of 79.9% and low-
est F1-score of 79.92% when used for the M2Gray
conversion technique.

* MobileNetV2 achieved the highest accuracy of
89.22% and the highest F1-score of 89.23% while
using the M3Gray method. The model achieved
the lowest accuracy of 84.8% and lowest F1-score
of 84.48% when used for the M2Color approach.

* 3C2D gave the highest accuracy of 86.76% and
the highest Fl-score of 86.79% for MZ2Gray,
whereas achieved the lowest accuracy of 82.84%
and the lowest F1-score of 82.83% for M1Color.

* Overall, MobileNetV?2 provided the highest accu-
racy and Fl-score values when used in conjunc-
tion with M3Gray conversion technique. How-
ever, all three classification models gave, on an
average, an accuracy and Fl-score of more than
80% for all six conversion methods.

We next analyze the results of malware categoriza-
tion. Some observations from Table 4 for CICAnd-
Mal2017 are as follows:

* Resnet50 model achieved the highest accuracy
and Fl-score for the MI1Color method, with
54.76% accuracy and 54.95% F1-score.

* MobileNetV2 achieved the maximum accuracy
and F1-score for M3Gray, with 54.76% accuracy
and 55.38% F1-score.

* 3C2D model achieved the highest accuracy and
F1-score for M1Gray method, with 61.90% accu-
racy and 62.47% F1-score.

e Overall, the results demonstrate that 3C2D is
the most accurate and performs the best for the
M3Color method, while the MobileNetV2 model
performs the best for M2Gray. MobileNetV2
gives the best performance for M3Gray, and its
performance is more or less consistent across all
the conversion techniques. Resnet50 gives the
best performance for the color-based conversion
methods.

Table 5 provides the performance of the three classi-
fication models for the six APK to image conversion
approaches for top 5, top 10 and top 20 classes of the

867

SECRYPT 2023 - 20th International Conference on Security and Cryptography

Table 4: Experimental Results for CICAndMal2017.

Model M1Gray M2Gray M3Gray M1Color M2Color M3Color
Acc F Acc F Acc F Acc F Acc Fi Acc Fi
Resnet50 42.86 | 43.39 | 39.29 | 39.22 | 53.57 | 53.80 | 54.76 | 54.95 | 53.57 | 53.32 | 51.19 | 51.92
MobileNetV2 | 47.62 | 48.27 | 51.19 | 50.70 | 54.76 | 55.38 | 46.43 | 47.43 | 50.00 | 50.83 | 50.00 | 50.59
3C2D 61.90 | 62.47 | 48.81 | 49.20 | 59.52 | 60.56 | 59.52 | 59.94 | 59.52 | 60.23 | 55.95 | 56.87

Table 5: Experimental Results for the Top 5, Top 10 and Top 20 Malware Families of the Drebin Dataset.

M1Gra; M2Gra M3Gra Mi1Color M2Color M3Color

Dataset Model Acc 143:1 Acc 1*271 Acc IZII Acc F Acc F Acc Fi
Resnet50 93.36| 93.25| 92.73| 92.80| 92.89| 93.21| 91.47| 91.61| 88.78| 88.76| 93.05| 93.06
Top5 MobileNetV2 | 91.47| 91.64| 92.73| 92.79| 92.42| 92.53| 90.84| 90.93| 88.47| 88.31| 90.52| 90.31
3C2D 92421 92.40| 93.52| 93.49| 91.94] 92.00| 93.52| 93.52| 90.36| 90.48| 93.84 | 93.85
Resnet50 80.31| 76.26] 91.50| 89.62| 91.30| 90.52| 91.91| 90.93| 83.75| 80.81| 76.87| 71.59
Top10 MobileNetV2 | 76.20| 69.64| 81.05| 76.02| 84.69| 81.70| 75.46| 69.91| 78.35| 73.34| 79.97| 75.36
3C2D 97.71| 97.69| 97.24| 97.23| 97.10| 97.07| 96.70| 96.63| 95.08| 95.01| 96.22| 96.15
Resnet50 74.66| 66.89| 51.23| 37.51| 80.95| 75.88| 74.66| 67.23| 69.62| 61.02| 71.42| 63.01
Top20 MobileNetV2 | 65.79| 54.50| 73.58| 65.51| 63.51| 53.52| 64.41| 56.12| 54.34| 43.52| 65.43| 55.12
3C2D 96.29 | 96.28| 96.29| 96.20| 96.29| 96.23 | 94.97| 94.83| 93.65| 93.56| 93.53| 93.20

Drebin dataset. The following can be observed for the
top 5 classes from the table.

* For top 5 classes, the Resnet50 model performs
the best with an accuracy of 93.36% and an
F1-score of 93.25% for the conversion method
M1Gray.

* MobileNetV2 gives the best performance with
M2Gray which has an accuracy of 91.47% and an
F1-score of 91.64%.

* 3C2D performs the best among all the three clas-
sifiers giving an accuracy of 93.84% and an F1-
score of 93.85% for the M3Color method.

* All three models with all six APK to image con-
version techniques perform similarly for Drebin
top 5 classes.

The observations for the top 10 classes of Drebin from
Table 5 are:

* The best performance of Resnet50 has an accu-
racy of 91.91% and an F1-score of 90.93% for the
method M1Color.

* For the M3Gray method, MobileNetV2 has the
best accuracy of 84.69% and the highest F1-score
of 81.70%.

* 3C2D performs the best with an accuracy of
97.71% and an F1-score of 97.69% with M1Gray.
Table 5 depicts the following for the top 20 classes.

* The best performance of the Resnet50 model
is obtained for the conversion method M3Gray
with an accuracy of 80.95% and an Fl-score of
75.88%.

* The best performance of MobileNetV2 provides
an accuracy of 73.58% and an F1-score of 65.51%
with the M2Gray conversion technique.

868

* 3C2D model has 96.29% accuracy and 96.28%
F1-score for M1Gray. These metric values are the
highest across all the methods.

Overall, the performance of the models varies for the
three different dataset classes with the 3C2D model
performing the best for all the three dataset classes,
in terms of the highest values of accuracy and F1-
score. Resnet50 gives the second best performance,
followed by MobileNetV2. It can be observed from
Table 5 that the performance of the 3C2D model in-
creases significantly with the increase in the number
of classes and the imbalance in the classes compared
to that of Resnet50 and MobileNetV2. Thus, it can be
said that 3C2D is capable of handling class imbalance
existing in the malware dataset effectively. This is a
vital aspect of classification performance since in the
real-world, it is not necessary that the same number
of samples will be available for all types of malware.
Moreover, it has been observed through experiments
that the simple APK to image conversion technique
M1Gray, which uses the byteplot method to convert
the entire APK file into a grayscale image without any
parsing of the individual files present in the APK, is
effective for malware classification.

3C2D is a shallow network composed of three
convolutional layers followed by two fully connected
layers. Each convolutional layer is accompanied by a
max pooling layer, resulting in a reduced input image
size of % before entering the fully connected layers.
This allows the model to learn long-range dependen-
cies present in the embedded feature space. We are of
the opinion that this fact contributes towards the im-
proved performance of 3C2D compared to other clas-
sification models. However, the lesser degree of im-
age size reduction before the fully connected layers

Analyzing Image Based Strategies for Android Malware Detection and Classification: An Empirical Exploration

leads to a large number of parameters being associ-
ated with the model, resulting in a larger model size
for 3C2D.

6 CONCLUSION

In this paper, we have empirically analyzed the per-
formance of image based malware detection and clas-
sification techniques. Each approach converts an
APK to either a grayscale or a color image. These
converted images are then input to CNN-based mod-
els like Resnet50, MobileNetV2, and 3C2D to distin-
guish between benign and malware samples as well
as identify the various malware families. We have
used two widely used open-source datasets, CICAnd-
Mal2017 and the Drebin dataset for our experiments.
Our experimental results show that 3C2D is capa-
ble of providing the most accurate performance for
grayscale-based techniques. Based on the observa-
tions and insights obtained from this work, in fu-
ture, we intend to design lightweight malware detec-
tion and categorization strategies suitable for resource
constrained environments like mobile devices. More-
over, we wish to explore different non-image based
features as well for malware classification.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the computing
time provided on the high performance computing fa-
cility, Sharanga, at the Birla Institute of Technology
and Science - Pilani, Hyderabad Campus.

REFERENCES

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., and
Rieck, K. (2014). Drebin: Effective and explain-
able detection of android malware in your pocket. In
NDSS. The Internet Society.

Conti, G., Dean, E., Sinda, M., and Sangster, B. (2008). Vi-
sual reverse engineering of binary and data files. In In-
ternational Workshop on Visualization for Computer
Security, page 1 —17.

Fang, Y., Gao, Y., Jing, F,, and Zhang, L. (2020). Android
malware familial classification based on dex file sec-
tion features. IEEE Access, 8:10614—10627.

Gibert, D., Mateu, C., and Planes, J. (2020). Hydra: A mul-
timodal deep learning framework for malware classi-
fication. Computers & Security, 95:101873.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep resid-
ual learning for image recognition.

Joyce, R. J., Amlani, D., Nicholas, C., and Raff, E. (2023).
Motif: A malware reference dataset with ground truth
family labels. Computers & Security, 124:102921.

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D. B.,
Wang, Y., and Igbal, F. (2018). Malware classification
with deep convolutional neural networks. In 2018 9th
IFIP International Conference on New Technologies,
Mobility and Security (NTMS), pages 1-5.

Kumar, A., Sagar, K. P, Kuppusamy, K. S., and Aghila, G.
(2016). Machine learning based malware classifica-
tion for android applications using multimodal image
representations. In 2016 10th International Confer-
ence on Intelligent Systems and Control (ISCO), pages
1-6.

Lashkari, A. H., Kadir, A. F. A., Taheri, L., and Ghor-
bani, A. A. (2018). Toward developing a system-
atic approach to generate benchmark android malware
datasets and classification. In 2018 International Car-
nahan Conference on Security Technology (ICCST),
pages 1-7.

Mohammed, T. M., Nataraj, L., Chikkagoudar, S., Chan-
drasekaran, S., and Manjunath, B. (2021). Malware
detection using frequency domain-based image visu-
alization and deep learning. In Proceedings of the 54th
Hawaii International Conference on System Sciences,
page 7132.

Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B.
(2011). Malware images: Visualization and automatic
classification.

Ni, S., Qian, Q., and Zhang, R. (2018). Malware identifi-
cation using visualization images and deep learning.
Computers & Security, 77:871-885.

O’Shaughnessy, S. and Sheridan, S. (2022). Image-
based malware classification hybrid framework based
on space-filling curves. Computers & Security,
116:102660.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2019). Mobilenetv2: Inverted residuals
and linear bottlenecks.

Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T,
and Hoffmann, J. (2013). Mobile-sandbox: Having a
deeper look into android applications. In Proceedings
of the 28th Annual ACM Symposium on Applied Com-
puting, SAC *13, page 1808-1815, New York, NY,
USA. Association for Computing Machinery.

Zhang, W., Luktarhan, N., Ding, C., and Lu, B. (2021). An-
droid malware detection using tcn with bytecode im-
age. Symmetry, 13(7).

Zhu, H., Wei, H., Wang, L., Xu, Z., and Sheng, V. S.
(2023). An effective end-to-end android malware de-
tection method. Expert Systems with Applications,
218:119593.

Unver, H. and Bakour, K. (2020). Android malware de-
tection based on image-based features and machine
learning techniques. SN Applied Sciences, 2(1299).

869

