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Abstract: Attribute-based encryption (ABE) is an asymmetric encryption method that allows expressive access granting
mechanisms, with high applicability in modern IT infrastructure, such as Cloud or IoT systems. (Ezhilarasi
et al., 2021; Touati and Challal, 2016) One open problem regarding ABE is using Boolean circuits as access
structures. While Boolean Formulae were supported since the first ABE scheme proposed, there is still no
efficient construction that supports Boolean circuits. We propose a new ABE scheme for a new access structure
type, situated between Boolean formulae and Boolean circuits in terms of expressiveness. This key point in
our construction is the usage of CAS-nodes, a structure modeling compartmented groups access structures.
We also show that our CAS-nodes can be used to improve the efficiency of existing ABE schemes for Boolean
circuits. Our construction is secure in the Selective Set Model under the bilinear Decisional Diffie-Hellman
Assumption.

1 INTRODUCTION

In our days, Cloud and IoT services are experiencing
continuous growth, and a large amount of data ends
up being stored in such systems. Hence, the Cloud
service provider has access to sensitive data, such as
personal documents or confidential information. For
example, suppose we need an online platform for stor-
ing personal documents, medical records, and other
sensitive data, such that you should be able to down-
load your data on-demand, at any time. We do not
wish the Cloud Service provider to have access to
such information.

The natural approach to solving this problem is to
encrypt all documents containing sensitive informa-
tion. However, we then face the problem of granting
access to these encrypted documents. Using conven-
tional techniques, each user should keep a decryption
key for each encrypted document for which he has the
right to decrypt. This approach is impractical, due to
the large number of decryption keys a user may have.

A modern solution for this problem could be
Attribute-based encryption (ABE). This allows us to
grant content-based or role-based access over the en-
crypted data, depending on which flavor of ABE we
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are using - key-policy (KP-ABE) or ciphertext-policy
(CP-ABE).

Using a KP-ABE system, each user could have set
up an instance of the scheme, having a public key and
a secret key. With the public key, any doctor could
encrypt the respective user’s medical data, such as
test results or medical examinations. Using the pri-
vate key, the user is in full control of granting access
to its data. Not even the third party which provides
the system infrastructure will be able to decrypt these
pieces of information, as it will not have access to a
user’s decryption keys.

Each user can control who has decryption privi-
leges over his data using an access policy defined over
some attributes. Thus, we can identify 2 vital features
such a system should have:

• expressiveness: to have fine-grained access over
the encrypted data, using an expressive access
policy

• efficiency: the running time and decryption key
size of our scheme should be as low as possible
since our data should be accessible even from de-
vices with limited computational power.
Due to the expressiveness it provides, ABE is a

subject of high interest in network security. Many
researchers are developing secure ABE systems with
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many functionalities, such as outsourced decryption
(Green et al., 2011), access revocation (Attrapadung
and Imai, 2009), or multi-authority ABE (Chase,
2007; Zhong et al., 2018). Recently, European
Telecommunications Standards Institute (ETSI) has
published technical specifications for implementing
ABE in the cloud, IoT, and other Internet services
(ETSI TS 103 458 (ETSI, 2018))

One challenge is to construct ABE systems with
more expressive access structures while maintaining
the computational cost of the scheme in reasonable
parameters. Finding the best trade-off between these
two properties has been widely studied. There are ef-
ficient solutions for Boolean formulae access struc-
tures in ABE system (Goyal et al., 2006), but for more
complex ones, such as Boolean Circuits (Ţiplea and
Drăgan, 2014; Hu and Gao, 2017a) we only have in-
efficient solutions.

1.1 Our Contribution

Starting from the secret sharing for compartmented
access structure (CAS) proposed in (Ghodosi et al.,
1998), we propose a new access structure - CAS-
circuit. We build an efficient KP-ABE system for
this structure, with decryption key linear in the access
structure size. Since (Tiplea et al., 2020) showed that
compartmented access structures cannot be expressed
via access trees, our new access structure offers more
expressiveness than Boolean formulae. Our scheme
is secure in the Selective Set Model for ABE, under
the decisional bilinear Diffie-Hellman Assumption.

Moreover, using the CAS-nodes, we can improve
the state-of-the-art solutions in terms of ABE for
Boolean circuits, namely, (Ţiplea and Drăgan, 2014)
for KP-ABE and (Hu and Gao, 2017a) for CP-ABE.
The CAS-node can be used to re-write a Boolean cir-
cuit such that the decryption key will be smaller and
the decryption algorithm will run faster. This brings
us one step closer to solving the open problem of con-
structing efficient ABE schemes for Boolean circuits
from bilinear maps.

1.2 Related Work

The general idea of Attribute-based encryption was
introduced in (Sahai and Waters, 2005), and the first
ABE system was proposed one year later in (Goyal
et al., 2006). In their system, the access policy is
represented as an access tree and it is associated with
the key (hence the name Key-Policy ABE). Their con-
struction is efficient, the key size being linear in the
access policy size, and it is proven to be secure in
the Selective Set Model under the decisional bilinear

Diffie-Hellman (DBDH) Assumption.
Later on, Bethencourt et al. in (Bethencourt et al.,

2007) proposed the first Ciphertext-Policy ABE sys-
tem. They used the same access structure as in (Goyal
et al., 2006), an access tree, but their security was only
proven in the generic group model. The first CP-ABE
systems proven to be secure under cryptographic as-
sumptions in the standard model were introduced a
few years later in (Goyal et al., 2008; Waters, 2011).

ABE and Boolean Circuits. Garg et al. (Garg
et al., 2013) proposed the first ABE system with
access structures represented by Boolean circuits.
They have shown that the sharing technique used for
Boolean formulae does not work for Boolean circuits,
and proposed a new ABE scheme, based on multi-
linear maps. Later, (Drăgan and Ţiplea, 2015) pro-
posed a more efficient system, which relies on a sim-
ple form of multi-linear maps, called chained multi-
linear maps. Since at the moment there is no se-
cure cryptographic construction for any type of multi-
linear maps (Albrecht and Davidson, 2017; T, iplea,
2018), these two systems presented above have no
practical applicability.

Ţiplea-Dragan (Ţiplea and Drăgan, 2014) pro-
posed the first ABE system for Boolean circuits that
relies solely on bilinear maps, which proves to be
secure under the bilinear Decisional Diffie-Hellman
(BDDH) Assumption. They make use of special fan-
out gates (FO-gates) in their Boolean circuit represen-
tation, and for each such gate they attach a group el-
ement to the decryption key. Hu-Gao (Hu and Gao,
2017a) refined their result and proposed a similar sys-
tem, which removes this element associated to the
FO-gates. (Hu and Gao, 2017b) creates a similar sys-
tem for KP-ABE, by expanding the circuit, resulting
in a Boolean access tree, equivalent to the initial cir-
cuit. However, all three systems presented above have
exponential key size and decryption time in the worst-
case scenario.

More progress regarding Boolean circuits ABE
schemes was made in the system recently proposed
in (Kowalczyk and Wee, 2019), which offers efficient
solutions for NC1 circuits for both CP and KP ABE
systems from bilinear maps. Their system is proven
to be secure under the k-Lin Assumption.

In (Bolocan, 2020) is proposed a solution for ABE
for general circuits using bilinear maps. However, this
solution’s correctness is questionable, due to the se-
cret sharing technique they provide for NAND gates.
More precisely, an output wire of such a gate will be
divided into a1 and a2 such that a =−a1 −a2. a1 and
a2 are forwarded to the children nodes of the gate.
However, we note that in this case, the reconstruction
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is possible only if both values from the children are
available. This leads to an incorrect construction of
the scheme.

Secure ABE schemes for Boolean circuits (Gor-
bunov et al., 2015; Agrawal and Yamada, 2020) were
proposed from Learning With Errors (LWE) assump-
tion. Although LWE offers a strong security guaran-
tee, encryption schemes based on this assumption are
often impractical due to the great computing power
that they require (Steinfeld et al., 2019).

2 PRELIMINARIES

Bilinear Maps (Goyal et al., 2006). Given G1 and
GT two multiplicative cyclic groups of prime order p,
a map e : G1 ×G1 → GT is called bilinear if it satis-
fies:

• e(xa,yb) = e(x,y)ab, for any x,y ∈ G1 and a,b ∈
Zp;

• gT = e(g,g) is a generator of GT , for any genera-
tor g of G1.

G1 is called a bilinear group if the operation in G1
and e are both efficiently computable.

Decisional Bilinear Diffie-Hellman Assumption.
Let a,b,c,z ∈ Zp chosen randomly, and g a genera-
tor of G1.

The decisional BDH Assumption (Sahai and Wa-
ters, 2005) is that no polynomial-time algorithm
B can distinguish between (A = ga,B = gb,C =
gc,e(g,g)abc) and (A = ga,B = gb,C = gc,e(g,g)z)
with a non-negligible advantage.

The advantage of B is:

|Pr[B(A,B,C,e(g,g)abc)]−Pr[B(A,B,C,e(g,g)z)]|

where the probability is taken over the random choice
of the generator g, the random choice of a,b,c,z∈Zp,
and the random bits consumed by B .

Access Structures (Beimel, 2011). Let p1, . . . , pn
be a set of parties. A collection A ⊆ 2{p1,...,pn} is
monotone if B∈A and B⊆C imply that C ∈A. An ac-
cess structure is a monotone collection A ⊆ 2{p1,...,pn}

of non-empty subsets of {p1, . . . , pn}. Sets in A are
called authorized, and sets not in A are called unau-
thorized.

Boolean Formulae and Boolean Circuits. A
Boolean circuit is a directed acyclic graph over a set
of input wires, concluding to a single output wire,
with internal nodes representing logical gates of type

AND, OR, or NOT . These gates may have fan-out
greater than 1. A monotone Boolean circuit is a cir-
cuit without negation gates. A Boolean formula is a
Boolean circuit where each node is limited to a fan-
out of 1.

KP-ABE Model. A Key-Policy Attribute-based en-
cryption scheme, as first described in (Goyal et al.,
2006), consists of four algorithms:

setup(λ) A randomized algorithm that takes as input
the implicit security parameter λ and returns the
public and secret keys (MPK and MSK).

encrypt(m,A,MPK) A probabilistic algorithm that
encrypts a message m under a set of attributes A
with the public key MPK, and outputs the cipher-
text E.

keygen(C ,MPK,MSK) This algorithm receives an
access structure C , public and master keys MPK
and MSK, and outputs corresponding decryption
keys DK.

decrypt(E,DK,MPK) Given the ciphertext E and
the decryption keys DK, the algorithm decrypts
the ciphertext and outputs the original message.

Selective-Set Model for KP-ABE (Goyal et al.,
2006).
Init The adversary declares the set of attributes A ,

that he wishes to be challenged upon.

Setup The challenger runs the Setup algorithm of
ABE and gives the public parameters to the ad-
versary.

Phase 1 The adversary is allowed to issue queries for
private keys for many access structures A j , where
A /∈ A j for all j.

Challenge The adversary submits two equal length
messages M0 and M1. The challenger flips a ran-
dom coin b, and encrypts Mb with A . The cipher-
text is passed to the adversary.

Phase 2 Phase 1 is repeated.

Guess The adversary outputs a guess b′ of b. The ad-
vantage of an adversary A in this game is defined
as Pr[b′ = b]− 1

2 .

Notations and Abbreviations.
Notation Meaning

Γ A node in an access structure
attr(Γ) attribute corresponding to node Γ

Ini(Γ) value of i-th input wire of gate Γ

Out(Γ) value of the output wire of gate Γ
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3 OUR CONSTRUCTION

While access trees offer a decent level of expressive-
ness, it has been proven in (Tiplea et al., 2020) that
they cannot represent compartmented or multi-level
access structures. One way of achieving a more re-
fined access control would be by using Boolean cir-
cuits instead of access trees. Unfortunately, at the
moment there is no efficient and secure construction
of ABE systems for them. We can divide the existing
schemes into three categories, based on the crypto-
graphic primitives which they are using, and show for
each case why it cannot be used in practice:

• ABE for Boolean circuits from LWE (Gorbunov
et al., 2015): although secure, current LWE-
based ABE systems have large public keys, which
makes them unpractical.

• ABE for Boolean circuits from multi-linear maps
(Garg et al., 2013; Drăgan and Ţiplea, 2015):
multi-linear maps are very powerful primitives,
however, there is still no secure cryptographic
solution for implementing them. (Albrecht and
Davidson, 2017; T, iplea, 2018)

• ABE for Boolean circuits from bilinear maps:
For some Boolean circuits, the current approaches
could lead to an exponential expansion of keys or
ciphertexts.

The constructions from bilinear maps are the most
promising ones at the moment. In order to develop
more expressive ABE schemes which can be used in
practice, we focus on optimizing existing schemes for
Boolean circuits from bilinear maps.

One of the reasons for the great success of Goyal’s
et al. ABE scheme (Goyal et al., 2006) is that their ac-
cess tree policy could support more than just Boolean
formulae with AND and OR nodes: their construction
uses the more expressive threshold nodes (t out of n).
Similarly, we propose extending these access struc-
tures by

adding a new node type: a compartmented access
structure - node (further referred to as CAS−node).

However, to be able to create even more expres-
sive schemes, we provide construction for secret shar-
ing through a general circuit, by adding sharing tech-
niques for FO-gates. These are special gates intro-
duced in (Ţiplea and Drăgan, 2014), which multiply
the output of a node in order to represent Boolean cir-
cuits more easily. More details on the efficiency and
the improvements added by this new construction can
be found in Section 4.

3.1 Compartmented Nodes

A CAS-node Γ will be a special node having 1 out-
put wire (values associated to this wire are stored
in Out(Γ)) and nΓ input wires. These wires are di-
vided into k disjoint compartments, compartment i
having ni nodes, respecting nΓ = n1 + n2 + . . .nk.
The i-th compartment input wires are denoted with:
Ini.1(Γ), Ini.2(Γ), . . . Ini.ni(Γ). Each compartment i
will have a threshold ti associated to it: ti ≤ ni, and
the CAS-gate will also have a general threshold t, such
that t1 + t2 . . . tk ≤ t ≤ nΓ.

A CAS-node Γ is satisfied if and only if:
• each compartment is satisfied (the number of the

satisfied input wires in the compartment i exceeds
or equals the threshold value ti)

• the general threshold value is satisfied: The sum
of all satisfied input wires of the gate is greater or
equal to the general threshold t
Since Ghodosi et al. (Ghodosi et al., 1998) pro-

posed an ideal secret sharing scheme for Compart-
mented Groups, we can apply a slightly modified
technique to our CAS-node. Thus, the share CAS(y)
procedure receives a value from Zp at the output wire
- Out(Γ), and assigns a single value to each input wire
Ini. j(Γ), while ensuring that the reconstruction of the
initial value is possible if and only if the CAS policy
is satisfied.

share CAS(Γ,y):.

1. Let T = t −
k
∑

i=1
ti.

2. For each compartment, choose randomly the par-
tial secret yi and a public parameter pΓ from Zp
such that y1 + y2 + . . .yk + pΓ = y.

3. Then, for each compartment i = 1, . . . ,k: se-
lect randomly and uniformly ti − 1 values
ai.1, ...,ai.ti−1 from Zp corresponding to each
compartment i, i = 1, ...,k.

4. Choose randomly and uniformly T values
β1, . . .βT in Zp.

5. Determine a sequence of k polynomials,
qi(x) = yi + ai.1x + . . . + ai.ti−1xti−1 + β1xti +
. . .+βT xti+T−1 for every level i.

6. Assign the shares for each input node: Ini. j =
qi( j), and publish P(Γ) = gpΓ as the gate’s pub-
lic parameter.

Similar to most ABE schemes, in the reconstruc-
tion phase, the secret must be reconstructed using el-
ements from GT . For each value α associated to some
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Figure 1: Replacing a sub-circuit with an equivalent CAS-node. Shares obtained in (Ţiplea and Drăgan, 2014) sharing
compared to our scheme.

wire at the sharing phase, we will have a correspond-
ing value gαs

T attached to the same wire during the re-
construction phase. We further present how the re-
construction should be done:

recon CAS(Γ,P(Γ) = gpΓ ,S = gs,⟨e(g,g)qi( j)s, ...,⟩):.
During the reconstruction phase in out ABE sys-
tem, for each satisfied input wire i. j of the CAS-
node Γ, we will have some value e(g,g)qi( j)s,
which represents the result of an equation of form:

e(g,g)yis · e(g,g)ai.1 js · . . . · e(g,g)ai.ti−1 jti−1s·

e(g,g)β1 jti s · . . . · e(g,g)βT jT+ti−1s =

=e(g,g)s(yi+ai.1 j+...+ai.ti−1 jti−1+β1 jti+...+βT jT+ti−1) =

=e(g,g)qi( j)s

We need to select from each compartment ℓi
wires, namely ji.1, ji.2, . . . ji.ℓi , such that ℓ1 ≥
t1, ℓ2 ≥ t2, . . . ℓk ≥ tk and ∑

k
i=1 ℓi = t.

Putting all such equations together from all input
wires, we obtain the equation system from Figure
2:
Note that in this system the values yi, ai. j and βi
are unknown, but we do know all j indices. We
have a system of t equations with t unknowns.
Therefore, we can compute the partial secrets
gy1s

T , . . .gyks
T . Using these partial secrets, and the

gate’s public parameter P(Γ) we can compute

gys
T = e(gs,P(Γ))·gy1s

T ·. . .·gyks
T = gs(pΓ+y1+y2+...yk)

T .

We can simply observe that the system can be
solved if and only if the CAS-node is satisfied.

Sharing and Reconstruction Example. For a bet-
ter understanding, we provide an example of how
these procedures work in Figure 1. First, construct
the partial secrets y1 and y2 and p such that y =
y1 + y2 + p, and then the polynomials:

q1(x) = y1 +β1x

q2(x) = y2 +a2.1x+β1x2.

Since T = t−t1−t2 = 1, we require a single value
β1 common across all compartments. Then, each ter-
minal node will receive an evaluation of the poly-
nomial of his compartment. (Node 1.1 will receive
q1(1), 2.3 will receive q2(3), etc..)

If at the reconstruction phase we will receive at
least one element from each compartment, with a to-
tal of at least three elements, we will be able to recon-
struct the corresponding values from GT of the partial
secrets y1 and y2, namely gy1s

T and gy2s
T , and then com-

pute the corresponding value in GT for the secret y:
gys

T = gy1s
T gy2s

T gpΓs
T .

Note that using the CAS-node, we will obtain one
share for each input node. For comparison, using
the first approach from (Tiplea et al., 2020) (a regu-
lar Boolean circuit) will result in two shares for each
input node.

3.2 Access Structure Based on
CAS-nodes

We can use our newly defined CAS-node to con-
struct expressive access structures with efficient secret
sharing. We extend the access structure proposed in
(Goyal et al., 2006), namely the access tree, to CAS-
nodes, resulting in an access structure that we call a
CAS-circuit.
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Figure 2: Equation system.

Definition 1. A CAS-circuit is a tree with CAS-nodes.

Since threshold gate t/n can be modeled by a
CAS-node (by setting the threshold for each compart-
ment to 0, and the general threshold to t), then we can
model a Boolean formulae access structure through
a CAS-circuit. Although it has visually the form of a
tree, we have named our access structure a circuit, be-
cause Ţiplea et al. proved in (Tiplea et al., 2020) that
CAS cannot be represented as Boolean formulae, but
as Boolean circuits. Therefore, we have that:

Proposition 1. The class of access structures repre-
sented by CAS-circuits is a proper extension of the
ones represented by Boolean formulae

Our construction is very efficient for CAS-circuits,
producing only one decryption key element in G1 for
each attribute and one element in G1 for each access
structure internal node. Therefore, we can say that our
decryption key has linear size in the access structure
size.

3.3 Full Construction

We provide a full construction of our scheme for
CAS-circuits. For a better understanding, we have
separated the secret sharing part from our ABE
construction, by defining two special procedures:
share CAS circuit and recon CAS circuit. They
share and reconstruct a secret through a CAS-circuit
access structure. The sharing procedure starts with
a single value y assigned to the CAS-circuit’s output
wire and assigns values to all leaf nodes (correspond-
ing to attributes). The reconstruction procedure starts
with values in GT at the bottom of the CAS-circuit in
order to reconstruct the value e(g,g)ys required for de-
cryption. We will denote with Ini(Γ)/Out(Γ) the val-
ues associated with the i-th input/output wire of gate
Γ. Note that if a gate Γ2 is the i-th children of another
gate Γ1, then Ini(Γ2) = Out(Γ1).

We start by describing the sharing and reconstruc-
tion procedure, and then our full construction of the
KP-ABE scheme.

share CAS circuit(y,C ):.
1. Initially, all gates of C are unmarked;

2. Assign y to the output wire of the circuit:
Out(C ) = y

3. Choose an unmarked CAS-gate Γ with all
input wires defined, and run ⟨α,P(Γ)⟩ =
share CAS(Out(Γ)). This returns a collection of
values α, where α(x.y) represents the value of the
x-th input node from the y-th compartment. Thus,
we set Inx.y(Γ) = α(x.y). P(Γ) is the public pa-
rameter which is associated with this gate.

4. Repeat step 3 until all gates are marked.

5. Return S(Ψ) = Out(Ψ) for all terminal nodes Ψ

and the public parameters P of CAS-gates.

recon CAS circuit(C ,V,P).
1. Initially, all gates of C are unmarked;

2. Out(Ψ) = VΨ, for all leaf (starting) nodes Ψ.
Mark these nodes.

3. Choose an unmarked gate Γ with all input wires
defined. We consider that Γ has k input wires, and
we do the following: Mark Γ and set Out(Γ) =
recon CAS(Γ,P,gs, In(Γ)).

4. Repeat step 3 until all gates are marked.

5. return the value from the output wire of the cir-
cuit: Out(C ).

3.3.1 KP-ABE for CAS-circuits Scheme

setup(λ). This algorithm receives a security parame-
ter λ, which is used to choose two multiplicative
groups G1 and GT of prime order p, g a generator
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of G1, and a bilinear map e : G1 ×G1 → GT . The
set of attributes is defined by U = {1,2 . . .n}.
Then choose random y∈Zp, and generate random
ti ∈ Zp, and sets the public key as:

MPK = ⟨p,G1,GT ,e,g,n,Y = e(g,g)y,Ti = gti⟩

and the master key:

MSK = ⟨y,(ti,1 ≤ i ≤ n)⟩

encrypt(m,A,PK). The encryption algorithm re-
ceives a message m, and encrypts it under the
set of attributes A ⊆ U, with the public key mpk.
Generate a random element s ∈ Zp, and se the ci-
phertext as:

E = ⟨A,E ′ = mY s,T s
i = gtis,gs⟩

keygen(MPK,C ). The key generation algorithm
shares the y component of the MSK through the
circuit using the sharing procedure:

S,P = share CAS circuit(y,C ).

Then, for every i ∈ U, output the decryption key
as:

DK = ⟨DΨ = gSΨ/ti ,P⟩, where Ψ is a leaf node

decrypt(E,DK). This algorithm receives a valid ci-
phertext and a decryption key, and returns the
original message. For all leaf nodes Ψ, and con-
sidering i = attr(ψ), compute:

VΨ =


e(T s

i ,DΨ) = e(gtis,gSi/ti) = e(g,g)Sis,

if i ∈ A
⊥, otherwise

R = recon CAS circuit(C ,V,P)

Then compute the message as:

m = E ′/R = m · e(g,g)ys/e(g,g)ys

4 EFFICIENCY AND
IMPROVEMENTS

4.1 CAS-nodes in Other ABE Systems

Our CAS-node could be easily combined with other
access structures from other KP-ABE schemes. For
example, alongside AND and OR nodes, (Ţiplea and
Drăgan, 2014) or (Hu and Gao, 2017b) can be mod-
ified to support also CAS-nodes, by simply adding to

the scheme the secret sharing and reconstruction pro-
cedures provided in our construction.

Similarly, our construction could be applied also
to CP-ABE schemes such as (Bethencourt et al.,
2007) or (Hu and Gao, 2017a) to increase expressive-
ness or efficiency. We show in the following sections
how this node can improve the efficiency of such sys-
tems.

4.2 Comparison with Other ABE
Systems

We provide comparisons of our system with exist-
ing KP-ABE systems. The relevant schemes are
Goyal et al.’s (Goyal et al., 2006), Tiplea-Dragan
(Ţiplea and Drăgan, 2014) and Hu-Gao (Hu and Gao,
2017b). Regarding the scheme proposed by Goyal et
al. (Goyal et al., 2006), we have only compared our
system with the access trees version. Their construc-
tion for Monotone Span Programs could offer a solu-
tion of similar efficiency. However, we do not know
how to efficiently convert a CAS-circuit to a Mono-
tone Span Program. Using the construction provided
in (Beimel et al., 1996), which transforms any Lin-
ear secret sharing scheme to a Monotone Span Pro-
gram, we obtain an impractically large matrix, with p
columns, where p represents the order of our group
Zp.

Besides our basic construction for CAS-circuits,
we also added to the comparison an altered version
of our scheme, referred to as “Ours-2”, as we said
that we are able to do in Section 4.1. This scheme
supports, besides CAS-nodes, also threshold (from
(Goyal et al., 2006)) and FO gates (as in (Hu and Gao,
2017a) or (Ţiplea and Drăgan, 2014)).

The Ciphertext size and the setup/encryption algo-
rithms are the same in all these schemes. The decryp-
tion time in all these schemes is proportional to the
decryption key size. Therefore, we will only analyze
the key size in these systems.

In our comparison, we have considered that the ac-
cess structure contains n input nodes, r fan-out gates,
j input wires at each fan-out gate, and a total number
of q internal gates.

Note that the running time of the algorithms in-
volved in these schemes is directly proportional with
the number of pairings compute. Therefore, we
will analyze only the decryption algorithms in these
schemes, since it is the only one where the number
of pairings computed depends on the access struc-
ture size. For the encryption and key generation al-
gorithms there are no pairings involved, and the setup
phase makes use only of a constant number of pair-
ings. In the decryption algorithm, for each share re-
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sulted after the secret sharing upon the access struc-
ture, we must compute a pairing. Therefore, it suffices
to count the number of shares. The concrete analysis
can be seen in Table 1.

The basic version of our system (Referred to as
“Ours-1”) can only support CAS-circuits. However, it
is the most efficient scheme available at the moment
for such access structures. With “Ours-2” we prove
that our node is useful in providing efficient secret
sharing for CAS-circuit without losing expressiveness
or efficiency compared to existing KP-ABE schemes.
Although “Ours-2” does not have better results in the
worst-case scenario than the other schemes, we show
in Section 4.3 that CAS-gates actually can improve the
existing ABE schemes for Boolean circuits in some
cases.

4.3 CAS-Nodes in Boolean Circuits

While generating decryption keys, one would prob-
ably construct a Boolean circuit according to its re-
quirements. Given such an already defined circuit, we
explain how it could be optimized using CAS-nodes.

Many sub-circuits can be expressed as CAS-nodes,
although at first sight they do not comply to the typical
CAS structure. The only requirements that we have
for a sub-circuit to be represented as a CAS-node are:

• An AND node Γ0 at the top of the sub-circuit

• Γ1 and Γ2 two children of Γ0 (Γ0 may also have
other children besides them)

• The set of children of Γ1 is a proper subset of chil-
dren of Γ2.
Such circuits can be expressed as CAS-nodes by

creating a virtual compartment of threshold 0 which
will contain all children of Γ2 which are not children
of Γ1. This can be seen as a CAS-node with two com-
partments: the virtual one and the one consisting of
children of Γ1.

For such a sub-circuit, the total number of shares
are reduced by: |Out(Γ2)|− |Out(Γ1)+1|. Note that
if this sub-circuit occurs somewhere at the top of a
large circuit, this reduction in the number of shares
propagates all over the circuit.

We provide such an example of a sub-circuit that
can be modeled as a CAS-node in Figure 3. We can
consider the children of the OR-node (Γ1) as the first
compartment. Node Z does not have a compartment
associated, therefore we will consider it to be in a vir-
tual compartment with threshold 0.

For the sub-circuit in Figure 3 (a) the best ap-
proach used until now in ABE system for secret shar-
ing over Boolean circuit access policy would result in
a total of 5 shares at the bottom (using the scheme

proposed by (Ţiplea and Drăgan, 2014)), while our
approach reduces the number of shares to 3.

We observe that sub-circuits which can be ex-
pressed as CAS-nodes (as the one Figure 3(a) ) are
quite common and may occur often in some larger
circuits.

4.3.1 Experimental Results

Because we could not estimate the benefit of us-
ing CAS-nodes in general Boolean circuits, we have
tested how much these nodes could reduce the de-
cryption key size in practice. Thus, we have gener-
ated various random Boolean circuits with different
parameters and then replaced as many sub-circuits as
we were able to, with CAS-nodes.

While analyzing a Boolean circuit in order to
replace sub-circuits with CAS-nodes, we can ob-
serve that some sub-circuits may overlap. There-
fore, we must choose only some (non-overlapping)
circuits to be replaced. However, the problem of op-
timally choosing which sub-circuits to use in such
cases seems difficult. In our implementation, we
have chosen randomly the sub-circuits that will be
replaced with CAS-nodes. The heuristic approaches
from (Ionita et al., 2023) could be adapted to the re-
placement process in order to obtain better results.

Our results can be seen in Table 2. The first
four columns represent parameters of generated ac-
cess structure: Number of nodes, number of edges,
number of leaf nodes and the height of the Boolean
circuit. The last column (denoted with “% Opti-
mized”) represents how much the total number of the
shares has been reduced. More exactly, it represents
p from the formula S1 · (1− p

100 ) = S2, where S1 de-
notes the number of share obtained with regular secret
sharing, and S2 represents the number of shares ob-
tained after various sub-circuits being replaced with
CAS-nodes. Note that the percent of the optimization
will also be approximately equal to the percentage of
optimization of the running time, because the running
time of the decryption algorithm is directly propor-
tional with the number of pairings, which are by far
the most expensive operations. Recall that for each
share we should compute one pairing in the decryp-
tion algorithm. The encryption and the key genera-
tion algorithms are fast, since they require no pairing
operations.

5 SECURITY

We provide the full construction of a KP-ABE system
using our share and recon procedures. We stress that
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Table 1: Worst case decryption key size.

ABE system Bolean Formulae CAS-circuit General Boolean circuits
Goyal et al. (Goyal et al., 2006) 1 n Unsupported Unsupported

Tiplea-Dragan (Ţiplea and Drăgan, 2014) n n j+n+ jr n j+n+ jr

Hu-Gao (Hu and Gao, 2017b) n n+ jr n+ jr

Ours-1 (CAS-circuit) n+q n+q Unsupported
Ours-2 (general circuit) n n+q n+ jr

1with access trees

y

ANDΓ0

ORΓ1 2/3Γ2

X

⟨α1
1,α

2
1⟩

Y

⟨α1
2,α

2
2⟩

Z

⟨α3⟩

(a) Secret sharing using (Ţiplea and Drăgan, 2014)

y
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1/2Γ1 0/1 2/3 Γ2

X

⟨α1
1,α

2
1⟩

Y

⟨α1
2,α

2
2⟩

Z

⟨α3⟩

(b) Transformation to CAS

y

ANDΓ′
0

CAS - node
t = 2,n = 3

t1 = 1,n1 = 2
t2 = 0,n2 = 1

P=gp

X

⟨α1⟩

Y

⟨α2⟩

Z

⟨α3⟩

(c) Our CAS-node

Figure 3: Replacing a sub-circuit with an equivalent CAS-node. Shares obtained in (Ţiplea and Drăgan, 2014) sharing
compared to our scheme.

Table 2: Key size.

Nodes Edges Leaves Height % Optimized
60 160 12 8 12.3%
50 100 12 7 10.24%
50 150 12 10 5.57%
70 200 12 10 21.20%
70 150 12 10 17.26%

these procedures could also be used in CP-ABE sys-
tems, such as (Bethencourt et al., 2007) or (Hu and
Gao, 2017a), to create more efficient CP-ABE sys-
tems for Boolean circuits.

Our scheme is secure in the selective model under
the decisional bilinear Diffie-Hellman assumption.

Proof. In our security demonstration we will make
use of some special procedures, which we will de-
scribe beforehand: PolySat CAS, PolyUnSat CAS
and f ake share CAS. Due to space limitations, we
describe these procedures in detail in the Appendix.

Suppose that there exists a polynomial-time ad-
versary A that has an advantage ε for our scheme in
the Selective-Set model. We build a simulator B that
can play the decisional BDH with advantage ε/2, as
follows:

Let G1 and GT be two groups, g a generator of G1

and e an efficient bilinear map, and the tuples (A =
ga,B= gb,C = gc,Z1 = gabc) and (A= ga,B= gb,C =
gc,Z0 = gz). The challanger flips a coin p ∈ 0,1 and
chosses Zp. The adversary has to guess Zp between
Z0 and Z1.

Init. The simulator B runs the algorithm A , which
chooses the set of attributes A for encryption.

Setup. B simulates Setup algorithm of ABE and
sets Y = e(A,B) = e(g,g)ab. Then, it generates ran-
dom ri and sets

Ti =

{
gr

i , if i ∈ A
(gb)ri , otherwise

Then, it outputs the public parameters as:

⟨p,G1,GT ,e,g,n,Y,Ti⟩

Phase 1. The adversary A is allowed to issue
queries for private keys for many access structures C j
,such that C j(A) = 0 for all j. B will use in this scope
a procedure called f ake share, which will simulate
theese queries for A .

The definition of f ake share(ga,C ) is the follow-
ing:
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1. Initially, all gates of C are unmarked;
2. Assign ga to the output wire of the circuit:

Out(C ) = ga

3. Choose an unmarked gate Γ with all output wires
defined, and then run the f ake share CAS al-
gorithm to obtain the values for child nodes
and the public values associated to the gate:
In(Γ),P(Γ) = f ake share CAS(Γ)

4. Repeat step 3 until all gates are marked.
5. Return ⟨S,PP⟩, where S(attr(Ψ)) = Out(Ψ) for

all terminal nodes Ψ.

B will run S,PP → f ake share(ga,C ) and com-
pute:

D(i) =

{
(gb)S(i)/ri if i ∈ A, i = attr(Ψ)

S(i)1/ri , otherwise

Then forward to A :

DK = ⟨D,PP⟩

From A’s point of view, the shares look as if they
were shared using the normal sharing procedure. By
using the reconstruct procedure with an approved set
of attributes, the recon procedure will return e(g,g)abc

if applied to V (i, j) = e(g,g)S(i, j)bc for i ∈ A.

Challenge. A selects two equal length messages m0
and m1. The challenger B flips a random coin b, and
encrypts mb under the set of attributes A and by using
Zp, p ∈ {0,1}.

E = ⟨A,Y = mb ·Zp,Cri = gric = T c
i ⟩

If p = 0, then Zp = e(g,g)abc and E is a valid en-
cryption for mb. Otherwise, Y is a random element
from GT .

Phase 2. Phase 1 is repeated.

Guess. The adversary A outputs a guess b′ of b. If
b′ = b, then B outputs p = 0. Otherwise, it outputs
p′ = 1

The advantage of B is:Phase 1 is repeated.

Adv(B) =Pr[p′ = p]− 1
2
= Pr[p′ = p|p = 0] ·Pr[p = 0]+

+Pr[p′ = p|p = 1] ·Pr[p = 1]− 1
2

Both Pr[p = 0] = 1
2 and Pr[p = 1] = 1

2
Next, we analyze the two cases:

• If p = 0, then A sees a valid encryption of the ci-
phertext, thus its advantage is Pr[p′ = p|p = 0] =
1
2 + ε.

• If p = 1, then the ciphertext offers no information
to A about the original message, thus in this case
Pr[p′ = p|p = 1] = 1

2 .

Putting all toghether we obtain:

Adv(B) = Pr[p′ = p|p = 0] ·Pr[p = 0]+

+Pr[p′ = p|p = 1] ·Pr[p = 1]− 1
2
=

=
1
2

(
1
2
+

1
2
+ ε

)
− 1

2
=

=
1
2

ε

5.1 CAS-node Public Parameter

Note that the public parameter of the CAS-nodes does
not provide additional security in any way. However,
it is needed in our security proof. We believe that this
parameter is not necessary, but we do not know how
to prove the security of our scheme without it.

6 CONCLUSIONS

The CAS-node adds a significant improvement to
ABE systems for Boolean circuits from bilinear maps,
extending the class of practically efficient access
structures to a new sub-class of Boolean circuits, the
CAS-circuit. Previous constructions of ABE schemes
((Goyal et al., 2006; Ţiplea and Drăgan, 2014)), when
adapted to CAS-circuits, are considerably less effi-
cient than our version. This new access structure
proves to be a proper extension of the Boolean formu-
lae, lowering the gap between efficient ABE schemes
with limited expressiveness (such as (Goyal et al.,
2006)) and the expressive ones with high computa-
tional demands (such as (Hu and Gao, 2017a; Ţiplea
and Drăgan, 2014)). Our construction is secure in
the Selective Set Model under the bilinear decisional
Diffie-Hellman Assumption.

Also, as we can see in our practical analysis,
the CAS-node can be used to optimize pre-defined
circuits, by offering a more efficient secret sharing
method. This could be only a first step towards con-
structing more expressive and efficient ABE systems.
Finding other structures with efficient secret sharing
techniques may further enlarge the class of practically
efficient access structures. A new possible direction
could be in finding such access structures and con-
structing ABE systems for them. This could, in the
end, could lead us to an efficient ABE construction
for Boolean circuits.
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APPENDIX

Procedures Used in Security
Demonstration:

PolySat CAS(y1, ti,ki,β) receives as input a value yi ∈
Zp and integers ti and ki representing threshold and
number of component of some compartment in a
CAS-node. β= β1, . . .βT represent the additional val-
ues, common in all compartments to be used as poly-
nomial coefficients. Knowing y, we simply construct
a polynomial q′ of grade ti −1 by randomly choosing
its coefficients with yi as free term. Then construct
the polynomial q(x) = q′(x)+β1xti + . . .+β

ti+T−1
T .

For every satisfied child j set q( j) as the value
associated to that wire, and for every unsatisfied wire
j set the value gq( j).

PolyUnSat CAS(yi, ti,ki,β
′): We stress that this func-

tion will receive the β coefficients in G1: β′ =
⟨gβ1 ,gβ2 , . . .gβT ⟩

• Let ℓ be the number of satisfied input wires, and
the wires: j1, j2, ..., jℓ, ℓ < ti

• Choose randomly x j1 ,x j2 , ...x jℓ and assign them to
the satisfied input wires

• Choose randomly ℓ′ = ti − ℓ − 1 more values
x jℓ+1 . . .xti−1 to completely define the polynomial
q, such that q(i) = xi.

• Then, the coefficients ai of this polynomial can be
computed in G1:

gyi ·gai.1 j ·. . .·gai.ti−1 jti−1
·gβ1 jti ·. . .·gβT jT+ti−1

= gq( j)

• Evaluate this polynomial in some points to obtain
the rest of the values. Since β′ contains values
from G1 we can only compute the G1 value of the
evaluation of q in some point, but this is enough,
since these values will be passed anyway to unsat-
isfied wires.

f ake share CAS(Γ): We consider that Γ is a CAS-
gate with k compartments with general threshold t,
and each one of the compartments has ki elements and
threshold ti, where i ∈ 1,k:

• Set T = t−t1−t2− . . .−tk the difference between
the general and the sum of partial thresholds.

• if the gate Γ is satisfied, then simply return
share CAS(Out(Γ)). (the secret sharing tech-
nique used in our scheme).

• if the gate Γ is not satisfied, then Out(Γ) = gy is a
value from G1.

Generate y1,y2, . . .yk and compute P(Γ) from G1
such that:

P(Γ) ·g∑
k
j=1 y j = Out(Γ).

Then randomly generate parameters β1, . . .βT
from Zp, and for each compartment i choose val-
ues for its input wires Ini. j(Γ), j ∈ 1,n1, by us-
ing PolySat CAS, or PolyUnsat CAS, depending
if the respective compartement is satisfied or not.
We say that a compartment i is satisfied if its num-
ber of satisfied input wires is strictly greater than
the threshold of the compartment.

• Return In(Γ) and public gate parameter P(Γ).
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