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Abstract: Side-Channel Attacks are powerful attacks which can recover secret information in a cryptographic device
by analysing physical quantities such as power consumption. Masking is a common countermeasure to these
attacks which can be applied in software and hardware, and consists in splitting the secrets in several parts.
Masking schemes and their implementations are often not trivial, and require the use of automated tools to
check for their correctness. In this work, we propose a new practical tool named VerifMSI which extends
an existing verification tool called LeakageVerif targeting software schemes. Compared to LeakageVerif,
VerifMSI includes hardware constructs, namely gates and registers, what allows to take glitch propagation
into account. Moreover, it includes a new representation of the inputs, making it possible to verify three
existing security properties (Non-Interference, Strong Non-Interference, Probe Isolating Non-Interference) as
well as a newly defined one called Relaxed Non-Interference, compared to the unique Threshold Probing
Security verified in LeakageVerif. Finally, optimisations have been integrated in VerifMSI in order to
speed up the verification. We evaluate VerifMSI on a set of 9 benchmarks from the literature, focusing on the
hardware descriptions, and show that it performs well both in terms of accuracy and scalability.

1 INTRODUCTION

1.1 Context

Side-Channel Attacks (SCA) exploit the relation-
ship between physical quantities such as power con-
sumption, electromagnetic emissions, or timing in-
formation and secret data manipulated by crypto-
graphic implementations, in order to retrieve the se-
cret data. Since the first published differential power
attack (Kocher et al., 1999), many other such attacks
have proven to be very effective when the device
contains no specific countermeasure (Mangard et al.,
2008). With the advent of the Internet-of-Things,
many embedded devices now use cryptographic im-
plementations and are potential targets for these at-
tacks (smart cards, mobile phones, or RFID tags).
Protecting these devices against SCA has thus be-
come a significant concern.

a https://orcid.org/0000-0001-8848-8079

1.2 Background on Masking

Masking is a protection technique against SCA, with a
goal to remove the statistical dependency between in-
termediate computations and secret data manipulated
by the program (Trichina, 2003; Ishai et al., 2003).
The rationale behind masking is that intermediate
computations’ values are correlated to the power con-
sumption, therefore a masked program should have
no statistical dependency between the secret data and
the observable physical quantities. Masking can be
applied at any order, and masking at order d con-
sists in splitting each secret variable into n = d + 1
parts, called shares. The higher the order, the better
the security, as any recombination of up to d shares
should not allow to deduce any information on the
secret, and the recovery becomes exponentially hard
with the number of shares as each observation comes
with noise. The most practical and common way of
achieving masking for a secret x is the linear masking:
it consists in drawing d uniformly and independently
distributed variables and computing the nth share by
recombining x with the first d shares using the bit-
wise xor operation ⊕ in the boolean case. Splitting
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the secrets is not the main part however, as the origi-
nal program must then be transformed into a masked
equivalent, using shares only, and avoiding any re-
combination of the secret variables. While this is
quite straightforward for linear operations w.r.t. the
xor, the transformation is more complicated for the
non-linear parts of the program. When done manu-
ally, several security flaws may appear. Consequently,
a critical need for automatic masking verification has
emerged to check the correctness of masked imple-
mentations, both in hardware or software.

Masking is popular as masked implementations
can theoretically be proven secure, and several meth-
ods have been proposed for proving the security of
such implementations. They are all based on analyz-
ing the intermediate expressions manipulated by the
circuit or program and try to answer the question:
does the distribution of a specific subset of interme-
diate computation results depend on secret data? The
implementation is considered insecure if two differ-
ent secret values lead to two different distributions.
This requires enumerating all possible subsets of in-
ternal variables of the program and testing their in-
dependence from the secret. The sizes and the num-
ber of sets depend on the considered property. One
way of testing the independence of a given subset of
internal variables is to compute the actual distribu-
tion of the variables for each possible realization of
the secret inputs. In order to avoid this non-scalable
approach, recent works on masking verification use
symbolic computation (Ben El Ouahma et al., 2019;
Gao et al., 2019; Barthe et al., 2015; Barthe et al.,
2019; Meunier et al., 2023). Symbolic verification
methods can fail to conclude on some given expres-
sions. In this case, the set of expressions is consid-
ered to be “possibly leaking”. Using an enumerative
technique to determine the distribution type may help
to conclude in this case, but this workaround is lim-
ited to small expressions and variable sizes due to the
inherent non-scalability of distribution enumeration.
Consequently, verification methods must be as accu-
rate as possible to conclude for as many leakage-free
expressions as possible and give as few false positives
as possible.

1.3 Contributions

LeakageVerif (Meunier et al., 2023) is a verification
method implemented in an open-source tool, and pro-
vided as a python library. Compared to other tools,
it has a good scalability and accuracy, while being
easily adapted for different use cases (verification of
algorithms, assembly code, hardware modules). In
this work, we propose to extend LeakageVerif to

overcome some of the limitations of this tool. We
thus introduce VerifMSI for Verification of Masking
Schemes Implementations. We claim VerifMSI to
be a single tool including state-of-the-art techniques
gathering all common masking verification types. If
VerifMSI does not make a major breakthrough in
masking verification techniques, it encompasses a
wide range of use cases with optimized and scalable
algorithm implementations, making it a very practical
open tool for hardware and software masking verifi-
cation. Compared to LeakageVerif, VerifMSI makes
the following contributions:

• Addition of hardware circuits constructs (gates,
registers) allowing for circuits description, taking
into account glitches.

• Possibility to use shares for the masking scheme
description, allowing to choose between the clas-
sical description using secrets and masks, and the
share description. In the former, the program ex-
plicitly uses secrets and masks, e.g. a secret a
is replaced with expressions ma and ma ⊕ a. In
the latter, the shares are atomic inputs of the pro-
gram (e.g., a0, a1), what allows to verify spe-
cific security properties based on shares: Non-
Interference (NI), Strong Non-interference (SNI),
Probe-Isolating Non-Interference (PINI) and a
newly proposed Relaxed Non-Interference (RNI)
property which we introduce in this work.

• Higher order verifications of security properties, in-
cluding optimizations to reduce the number of tu-
ples of expressions to check.

VerifMSI is available as an open-source tool at the
following address:
https://github.com/quentin-meunier/VerifMSI.

The rest of the article is organised as follows:
section 2 presents some background on masking
verification and existing security properties; sec-
tion 3 presents our verification tool VerifMSI and
the different optimizations we designed; section 4
presents an experimental evaluation of VerifMSI on
9 benchmarks from the literature; section 5 compares
VerifMSI to other existing approaches; finally, sec-
tion 6 concludes.

2 SECURITY PROPERTIES

2.1 Existing Properties

Since the seminal work of (Ishai et al., 2003) which
introduced the first definition of a security property,
many other properties were proposed and used. We
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recall in the following the most important security no-
tions for hardware circuits.
Threshold Probing Security (TPS). The most com-
mon security property targeted with masking is
known as Threshold Probing Security, for a given
order t (Barthe et al., 2015). An implementation
achieves t-order threshold probing security if any tu-
ple of intermediate values of size t has a distribution
of values which is independent from all secret vari-
ables. This security property can reason either on se-
crets and masks, or on share-based expressions. In
the latter case, an expression using shares can be veri-
fied by replacing arbitrarily the shares with the corre-
sponding expressions using the secret and masks. The
general substitution algorithm is given in algorithm 1.
For example, considering two secrets a and b split in
two shares (a0, a1) and (b0, b1), the expression a0
⊕ a1 ⊕ b0 is 1-threshold probing secure since b0 can
be replaced with mb or b ⊕ mb. A replacement in this
context is the fact to replace a sub-expression bijec-
tive in a mask with the mask itself, which requires the
mask to not appear in the sub-expression (step 2 of
algorithm 1). In either case, the whole expression of
this example is masked with the mask mb, guarantee-
ing secret independence.
Non-Interference (NI). Another common security
property is known as t-order Non Interference, or t-
NI (Barthe et al., 2019). It is defined informally as
the following: an implementation is t-NI if all tuples
of t observations (corresponding to internal or output
values) have a distribution of values which depends
at most on t input shares, for each input. Since we
consider the distribution, this allows to make an ob-
servation independent from an input share by mask-
ing it. Algorithm 1 can also be used for verifying
NI with a modified stopping condition, but requires
a share description in the implementation. The previ-
ous example expression, a0 ⊕ a1 ⊕ b0 is not 1-NI,
as it contains two shares of the secret a.
Strong Non-Interference (SNI). Non-Interference
can be strengthened to achieve composition, by lim-
iting the number of authorized input shares in each
tuple to the number of probes in the tuple which cor-
respond to internal values (as opposed to output val-
ues) (Barthe et al., 2019).
Probe Isolating Non-Interference (PINI): is a com-
posable security notion introduced in (Cassiers and
Standaert, 2020), which is less restrictive than SNI: a
tuple must depend on at most k arbitrary input shares,
k being equal to the number of internal probes in the
tuple (like SNI), but can also depend on the input
shares with the same index as the output shares con-
tained in the tuple.

2.2 Relaxed Non-Interference

The problem with the NI property is that it ignores the
masking order when looking at the verification order.
Thus, an implementation comprising, among all its
expressions, a single one with 2 shares will not even
be considered secure at order 1, since for 1-NI, all
single expressions should contain at most 1 share oc-
currence (after masks replacement). This is true even
if all inputs are on 3, 4 or more shares, whereas in
this case, there cannot be a secret leakage by look-
ing at a single expression. We thus introduce Relaxed
Non-Interference (RNI) to solve this problem: infor-
mally, it states that for achieving t-order security, all
tuples of size t should not contain at least one of the
shares for every input (after masks replacement). This
definition also allows to remove an implicit condi-
tion of Non-Interference which is that all the inputs
are split using the same number of shares. As such,
we see RNI as an extension of the NI property when
the security order is different from the masking order.
This is for example the case in Threshold Implemen-
tations (Nikova et al., 2006) or the Generalized Mask-
ing Scheme (Reparaz et al., 2015).

More formally, we consider an implementation
comprising N inputs Ik, each input Ik being split into
dk + 1 shares Ik0 , ..., Ikdk

. Such an implementation is
RNI at order t if and only if any tuple of t observations
can be perfectly simulated using at most dk shares for
each input Ik (following the notion of perfect simula-
tion in (Belaïd et al., 2016)). For a hardware imple-
mentation, it is RNI with glitches if each observation
is replaced with the set of input variables it contains
in the same combinatorial logic set.

3 VerifMSI

3.1 Overview

VerifMSI is a verification method implementing the
substitution algorithm in a python library, seeking to
overcome some of the limitations of LeakageVerif. It
can thus be seen as an evolution of this tool. Com-
pared to the latter, VerifMSI first adds hardware cir-
cuit constructs, allowing to describe circuits with gate
and registers, and to take into account glitches in
the verification. Second, VerifMSI allows to sim-
ply switch between a share-based and a secrets and
masks based description, allowing to verify the NI,
SNI, PINI and the proposed RNI properties as well
as TPS. Third, VerifMSI implements optimizations in
order to reduce the number of probes in the circuit,

SECRYPT 2023 - 20th International Conference on Security and Cryptography

522



Algorithm 1: Substitution algorithm for verifying threshold probing security, from (Barthe et al., 2018).
procedure THRESHOLDPROBINGSECURITY(e)

Inputs: tuple of expressions V = (v1, ..., vn), flag simplified = 0, set of masks M = /0

Step 1: if a secret k is involved in the computation of at least one expression in V then go to Step 2.
Otherwise return True.
Step 2: while there exists a mask m /∈ M involved in the computation of an expression vi of V , then find
a sub-expression e in vi such that m → e + m is bijective and substitute m by e + m in all expressions.
Extend M with {m}.
If at least such a transformation occurred, go to Step 1. Otherwise go to Step 3.
Step 3: if simplified ̸= 0, then return False. Otherwise, mathematically simplify the expressions in V .
Then, set simplified to one and go back to Step 1.

allowing it to efficiently perform higher order verifi-
cations.

Figure 1 shows a code fragment of a VerifMSI
program for implementing a first order Domain Ori-
ented Masking (DOM) AND circuit (Groß et al.,
2017), and the associated circuit in Figure 2. Secrets
are declared on lines 1 and 2, while their sharing is
done on lines 6 and 7. The getRealShares function
returns a specified number of shares of a secret, which
are not equivalent to a secret and mask representa-
tion. Alternatively, one can use the getPseudoShares
function, which does a sharing using secret and masks
(typically (m0, k ⊕ m0) at order 1). The latter repre-
sentation is useful for verifying TPS. Line 3 declares
a 1-bit mask, while lines 10 to 14 create input gates
associated to the inputs. Lines 17-20 make all the
cross products between shares; note the gates are n-
ary and can take an arbitrary number of parameters.
Lines 23 to 30 implement the remaining gates and
registers: registers stop the propagation of glitches.
Indeed, without registers, a gate can leak all of its in-
put wires (cf. Figure 2). Finally, line 33 checks the
NI property on the outputs c0 and c1, at order order
(here order should be 1), with or without glitches ac-
cording to the withGlitches parameters.

3.2 Optimisations

In order to reduce the number of tuples verified, espe-
cially for higher orders, VerifMSI implements some
optimisations for hardware descriptions consisting in
removing some of the observations, which for the
most part are based on the optimisations made in (Be-
laïd et al., 2022). These optimisations are based on
the fact that we do not just verify expressions, but a
circuit, or gadget, allowing us to make additional as-
sumptions. For instance, it is always possible to ob-
serve single input shares, what allows us to remove
them when enumerating the tuples, by considering
partial tuples (Belaïd et al., 2022). The optimisations
implemented are the following:

• Removal of observations constituted of at most one
share per input and no random (optimisation v0).

1 a = symbol ( ’ a ’ , ’S ’ , 1 ) # 1− b i t
s e c r e t

2 b = symbol ( ’ b ’ , ’S ’ , 1 ) # 1− b i t
s e c r e t

3 z10 = symbol ( ’ z10 ’ , ’M’ , 1 ) # 1− b i t
mask

4

5 # Do t h e s h a r i n g f o r ’ a ’ and ’ b ’
6 a0 , a1 = g e t R e a l S h a r e s ( a , 2 )
7 b0 , b1 = g e t R e a l S h a r e s ( b , 2 )
8

9 # C re a t e i n p u t g a t e s
10 a0 = i n p u t G a t e ( a0 )
11 a1 = i n p u t G a t e ( a1 )
12 b0 = i n p u t G a t e ( b0 )
13 b1 = i n p u t G a t e ( b1 )
14 z10 = i n p u t G a t e ( z10 )
15

16 # Cross p r o d u c t s
17 a0b0 = andGate ( a0 , b0 )
18 a0b1 = andGate ( a0 , b1 )
19 a1b0 = andGate ( a1 , b0 )
20 a1b1 = andGate ( a1 , b1 )
21

22 # Remaining g a t e s and r e g i s t e r s
23 a1b0 = xorGa te ( a1b0 , z10 )
24 a1b0 = R e g i s t e r ( a1b0 )
25 a0b1 = xorGa te ( a0b1 , z10 )
26 a0b1 = R e g i s t e r ( a0b1 )
27 c0 = a0b0
28 c0 = xorGa te ( c0 , a0b1 )
29 c1 = a1b1
30 c1 = xorGa te ( c1 , a1b0 )
31

32 # Check t h e NI s e c u r i t y p r o p e r t y
33 c h e c k S e c u r i t y ( o r d e r , w i t h G l i t c h e s ,

’ n i ’ , c0 , c1 )

Figure 1: Example of VerifMSI program implementing a
first order DOM AND circuit.

• Removal of observations which are redundant with
some others (optimisation v1). An expression e0
is considered redundant and is omitted when there
exists an expression e1 such that:

• all the mask occurrences in e0 (resp. e1) are bi-
jective occurrences w.r.t. e0 (resp. e1);

• e0 and e1 have the same mask occurrences;
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a0

b0

b1

a1

z10

c0

c1

{b1}

{a1}

{b0}

{a0}

{a1,b1}

{a0,b0}

{a0,b1}

{a1,b0}

{a1,b0,z10}

{a0,b1,z10}

{a1.b0⊕z10}

{a0.b1⊕z10}

{a0.b1⊕z10,a1,b1}

{a1.b0⊕z10,a0,b0}

Figure 2: Order 1 DOM AND circuit from (Groß et al.,
2017), with the leakage associated to each wire when
glitches are considered.

Table 1: Breakdown of observations removal in VerifMSI
for the ISW AND implementation, for N-share inputs. The
first column gives the expression forms which can be re-
moved for one of the presented simplifications, the second
column gives the number of occurences, and the following
columns which simplification rule allows to remove the cor-
responding expressions.

Expression form # Occ. v0 v1
ai, bi 2N ✓

ai.b j N2 ✓

zi, j N(N - 1) / 2 ✓

ai.b j ⊕ zi, j N(N - 1) / 2 ✓

a0.b j ⊕ a j.b0 ⊕ z0, j N - 1 ✓

a0.b0 ⊕ z0,1 1 ✓

# Removable Obs. 2N(N + 1)
# Total Obs. 2N + N2 + 5N(N - 1)/2
# Remaining Obs. N(3N - 5)/2

• All the input shares appearing in e0 also appear
in e1.

Table 1 details the effects of these optimisations
in terms of number of removed observations, taking
as example the ISW AND.

We can notice that the number of removable ob-
servations thanks to both optimisations is significant,
and even crucial, as for example with a 7-share inputs
ISW AND circuit, it allows to go from 168 interme-
diate values to 56. Asymptotically, the reduction still
allows to remove 57% of the probes.

Finally, we can notice that when glitches are con-
sidered, the number of probes to keep for enumera-
tion is largely reduced, as the probes corresponding
to wires which are not preceding a register can be ig-
nored: the leakage associated with them will be part
of the leakage associated with the output of the next
gate.

3.3 Improving the Mask Choice for
Replacements

While running through the process of benchmarking,
we encountered a few false positives in the verifica-
tion of one benchmark (ISW AND), i.e. a poten-
tial leakage was reported by VerifMSI while there
was actually none. After investigation, it appeared
that in these cases, the sequence of mask selections
for replacement led to the impossibility to conclude,
whereas another sequence of choices would allow it.

Going into the details, we noticed two distinct
problems. First, the algorithm in Figure 1 allows a
mask to be taken only once, in order to guarantee ter-
mination. Yet, we encountered some cases in which
taking an already taken mask is necessary in order to
conclude. This can happen when the mask originally
has several occurrences, and after some replacements
and simplifications, only has a single occurrence. In
order to take this into account while still guarantee-
ing termination, we authorize a mask to be taken sev-
eral times only if it has a single occurrence. Since the
expression necessarily decreases in size during a re-
placement using a mask having a single occurrence,
this can happen only a finite number of times.

The second false positive problem we noticed hap-
pened when selecting for a replacement a mask being
itself an element of the tuple. However, when remov-
ing entirely the possibility to select such masks for re-
placements, other failures were reported. Therefore,
we modified the mask selection algorithm to make
it possible to select such masks for replacement, but
with the lowest priority. Using this heuristic, no false
positives due to mask selection arose in any bench-
mark.

4 EXPERIMENTAL EVALUATION

We perform an evaluation of VerifMSI on several
benchmarks from the literature. We focus the eval-
uation on hardware circuits as the software im-
plementations descriptions are similar to those of
LeakageVerif. The experiments comprise the follow-
ing programs:

• ISW AND: The logical AND masking
scheme (Ishai et al., 2003)

• ISW AND refresh: A combination of the ISW
AND with a circular refresh on one of the in-
put (De Cnudde et al., 2016)

• DOM AND: The Domain Oriented Masking im-
plementation of the AND gate (Groß et al., 2017),
resistant to glitches;
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• Refresh N log N: The N log N refresh scheme (Bat-
tistello et al., 2016);

• NI Mult and SNI Mult: The NI and SNI multipli-
cation schemes (Bordes and Karpman, 2021);

• PINI Mult: The PINI multiplication scheme (Wang
et al., 2023);

• GMS AND: Two implementations of the AND
gate using the Generalized Masking Scheme, de-
scribed in the article, using respectively 3 and 5
shares (Reparaz et al., 2015);

• TI AND: The balanced Threshold Implementation
of the AND gate (Nikova et al., 2006).

All benchmarks were run on a single core on a
server with an Intel CPU Xeon E5-2637v2@3.5GHz,
under the CentOS 9 operating system. For all bench-
marks, we set a timeout to 6 hours, and a memory
limit to 110 GB (which was never reached).

Table 2 presents the verification results of the dif-
ferent circuits we implemented. All of these circuits
implementations are provided along with the code of
VerifMSI. Only the configurations for which the ver-
ified property was known to be true were run, and
only the configurations which did not exceed the 6
hours timeout are presented in the table. The verifi-
cation order is set to the designed security order: this
is always the number of shares minus one, except for
GMS AND with 3 shares (order 1), GMS AND with
5 shares (order 2) and TI AND (order 1).

From the results in table 2, we can make the fol-
lowing observations: VerifMSI can verify all the pre-
selected hardware masking schemes, up to a certain
order (between 5 and 7 shares). We notice that the
verification of the TPS property scales significantly
less than the other properties, due to the fact that the
optimisation targeting the reduction in the number of
probes do not apply with a representation using se-
crets and masks.

We also notice that the GMS AND and TI AND
circuits can only be verified with TPS and RNI, as the
order of security is not equal to the number of shares
minus one – they typically contain tuples of size 1
depending on several input shares. This underlines
the interest of the RNI property, which is the only
property based on shares adapted to the verification
of such masking schemes.

Finally, we can see that there are a few false
positives on PINI mult with five shares or more.
Analysing them in more details reveals that the tuple
does not contain anymore mask, and that the problem
occurs because VerifMSI is not able to factorize an
expression and make some products disappear.

5 RELATED WORKS

A certain number of tools target the verification of se-
curity properties in masked software or hardware im-
plementations.
LeakageVerif. LeakageVerif (Meunier et al., 2023)
is a flexible and open-source verification tool achiev-
ing good accuracy and scalability, provided as a
python library. LeakageVerif can verify implementa-
tions at different abstraction levels (algorithmic, code,
assembly, circuit), but can only verify threshold prob-
ing security on a description using secrets and masks.
Moreover, it cannot take glitches into account in hard-
ware descriptions. The fact that the tool is provided
as a python library allows to have simulable descrip-
tions, and to support all python’s control mechanisms.
MaskVerif. maskVerif (Barthe et al., 2019) is a tool
written in OCaml designed for the verification of cir-
cuits. The strength of maskVerif is its ability to scale
well with higher orders. However, it is not very well
adapted for software masking schemes implementa-
tions, as it lacks support for arithmetic operations, ar-
bitrary size variables and bit concatenation and ex-
traction operations. Finally, maskVerif does not per-
mit to express a non-linear control flow, allowing only
for function calls.
IronMask. IronMask (Belaïd et al., 2022) is an open-
source tool designed for the verification of masked
hardware implementations. The tool has an excellent
scalability due to its optimized writing in C, and can
verify many security properties. On the downside,
it is not able to verify TPS, and is limited to certain
types of implementations in which the masks must be
linearly added to given shares.
SILVER. SILVER (Knichel et al., 2020) is a tool able
to verify common security properties on hardware de-
scriptions. It takes as input either a Verilog imple-
mentation or an instruction list and checks the TPS,
NI, SNI and PINI notions with or without glitches, as
well as the uniformity of some output sharing. The
tool suffers however from a limited scalability.

If VerifMSI is not the fastest of these tools for
most hardware implementations and configurations at
high orders, it is the only tool which can verify all
common security properties, using both share-based
and secrets and masks descriptions, for both hardware
and software masking schemes, and having the bene-
fits of using all of the python constructs.
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Table 2: Verification times and number of tuples verified with VerifMSI, for higher order hardware masking schemes from
the literature. Column #Sh. indicates the number of shares, and Time the verification time. w/ g. means “with glitches”,
and values between parenthesis indicate the number of tuples for which the verification failed (false positives).

Gadget #Sh. Property Time # Tuples

Refresh
N log
N

5

TPS 9s 23751
NI 2s 7546
SNI 2s 7546
RNI 2s 7546
PINI 2s 7546

6

TPS 7m23s 850668
NI 1m58s 284273
SNI 1m58s 284273
RNI 1m58s 284273
PINI 118s 284273

7

TPS 3h50m31 20358520
NI 47m16s 5358577
SNI 48m30s 5358577
RNI 47m17s 5358577
PINI 47m53s 5358577

ISW
AND
refresh

3

TPS <1s 741
NI <1s 325
SNI <1s 325
RNI <1s 325
PINI <1s 325

4

TPS 27s 45760
NI 5s 17343
SNI 6s 17343
RNI 5s 17343
PINI 5s 17343

5

TPS 1h1m 3921225
NI 10m54s 1356201
SNI 12m3s 1356201
RNI 10m49s 1356201
PINI 10m46s 1356201

DOM
AND

5

TPS 45m36s 4780230
NI 25s 59535
SNI 26s 59535
RNI 25s 59535
PINI 26s 59535
TPS w/ g. 15s 12650
NI w/ g. 8s 12650
RNI w/ g. 9s 12650
PINI w/ g. 9s 12650

6

NI 35m19s 3505050
SNI 36m18s 3505050
RNI 35m42s 3505050
PINI 38m1s 3505050
TPS w/ g. 11m35s 376992
NI w/ g. 6m11s 376992
RNI w/ g. 6m11s 376992
PINI w/ g. 6m23s 376992

7
NI w/ g. 5h13m 13983816
RNI w/ g. 5h11m 13983816
PINI w/ g. 5h15m 13983816

Gadget #Sh. Property Time # Tuples

ISW
AND

4

TPS 12s 24804
NI <1s 469
SNI <1s 469
RNI <1s 469
PINI <1s 469

5

TPS 25m15s 2024785
NI 8s 15275
SNI 8s 15275
RNI 8s 15275
PINI 8s 15275

6

NI 8m31s 667927
SNI 9m4s 667927
RNI 8m41s 667927
PINI 8m36s 667927

PINI
Multi-
plica-
tion

4

TPS 13s 24804
NI <1s 469
RNI <1s 469
PINI <1s 469

5

TPS 26m36s 2024785 (98)
NI 7s 15275 (1)
RNI 7s 15275 (1)
PINI 7s 15275 (1)

6
NI 7m24s 667927 (77)
RNI 7m20s 667927 (79)
PINI 7m29s 667927 (79)

NI
Multi-
plica-
tion

5

TPS 10m21s 916895
NI <1s 385
RNI <1s 385
PINI <1s 385

6
NI 36 55454
RNI 36s 55454
PINI 37s 55454

7
NI 28m19s 2007327
RNI 28m34s 2007327
PINI 28m52s 2007327

SNI
Multi-
plica-
tion

5

TPS 26m18s 2024785
NI 7s 15275
SNI 8s 15275
RNI 7s 15275
PINI 8s 15275

6

NI 1m59s 174436
SNI 2m7s 174436
RNI 2m1s 174436
PINI 2m2s 174436

GMS
AND

3 TPS <1s 30
RNI <1s 9

5 TPS 1s 3570
RNI <1s 630

TI
AND

4 TPS <1s 34
RNI <1s 4

SECRYPT 2023 - 20th International Conference on Security and Cryptography

526



6 CONCLUSION AND FUTURE
WORK

We presented VerifMSI, a practical tool implemented
as a python library for verifying masking schemes im-
plementations. It extends the existing LeakageVerif
tool with constructs targeting hardware implementa-
tions, and enriches it with the verification of four se-
curity properties (NI, SNI, RNI, PINI). The experi-
ments presented in the article, focusing on 9 hardware
schemes, show that VerifMSI is able to successfully
verify many implementations from the literature, for
masking orders of up to 7 shares.

Future work includes enriching the software side
of VerifMSI with support for Galois Field operations,
as well as implementing less common security prop-
erties, and in particular the ones defined in the random
probing model. We also plan to write the core of Ver-
ifMSI in a compiled language to reduce the cost of
enumeration.
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