Keywords:

Abstract:

Security for Distributed Machine Learning

Laurent Gomez', Tianchi Yu! and Patrick Duverger?
LSAP Security Research, SAP Labs France, Mougins, France
2City of Antibes, France

Machine Learning, Edge Computing, Intellectual Property, Data Privacy, Privacy Enhancing Technology,
Trusted Execution Environment.

With the adoption of IoT-like technologies, industrials aim to enhance the business value of their physical
assets and improve their operational efficiency. However, IoT devices alone tend to strain enterprise systems
with a sheer volume of unstructured and unfiltered data. To overcome this challenge, endowing (smart) devices
with Al-based capabilities can significantly enhance enterprise system capabilities. However, deploying Al-
based capabilities on potentially insecure edge hardware and platforms introduces new security risks, including
Al model theft, poisoning, and data leaks. This paradigm shift necessitates the protection of distributed Al
applications and data. In this paper, we propose a solution for safeguarding the Intellectual Property and data
privacy of ML-based software. We utilize hardware-assisted Privacy Enhancing Technologies, specifically
Trusted Execution Environments. We evaluate the effectiveness of our approach in the context of ML-based
motion detection in CCTV cameras. This work is part of a co-innovation project with the Smart City of

Antibes, France.

1 MOTIVATION

1.1 Context

The increasing interconnection of physical objects
has given rise to trends such as Industrial IoT, In-
dustry 4.0, and Edge Computing. These initiatives
aim to maximize business value and enhance opera-
tional efficiency by converging Information and Op-
erational Technology (IT/OT). However, IoT technol-
ogy alone lacks intelligence and floods centralized
Enterprise Systems with unstructured data. Combin-
ing [oT with Al-based capabilities enables distributed
decision-making, reducing latency and costs while
improving insights. This has numerous applications
in predictive maintenance, traffic management, and
production optimization. As IoT technologies are
adopted by Enterprise Systems, new security chal-
lenges arise. Deploying Al on potentially un-trusted
edge hardware and platforms exposes ML models’
confidentiality and data privacy to attacks.

1.2 Problem Statement

The Machine Learning Development Life-Cycle
(MLDLC) consists of three phases: Data Engineer-

838

Gomez, L., Yu, T. and Duverger, P.
Security for Distributed Machine Learning.
DOI: 10.5220/0012137700003555

ing, Al-based Software Engineering, and Al-based
Software Deployment and Execution. This paper fo-
cuses on security concerns at the Deployment and
Execution phase, specifically data privacy leaks and
model theft. Attacks such as membership inference,
property inference, or model update attacks put at risk
privacy of ML data, while model reconstruction and
model extraction attacks aim to steal AI models and
intellectual property. Edge computing further intensi-
fies these security challenges due to resource limita-
tions, platform diversity, and increases attack surface
on Enterprise Systems.

1.3 Our Approach

This paper proposes a solution for secure deploy-
ment and execution of Al-based software on edge
devices. We target Intellectual Property (IP) protec-
tion and data privacy by leveraging Trusted Execu-
tion Environments (TEEs). TEEs provide isolated
and secure execution environments - enclaves -, safe-
guarding code and memory against unauthorized ac-
cess or modification. Local and remote attestation
further validate the integrity of enclaves instantiated
on trusted platforms. The protocol involves deploy-
ing Al-based software in a secure enclave on an edge

In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 838-843

ISBN: 978-989-758-666-8; ISSN: 2184-7711

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

device by the model owner (MO). The query data
owner (QDO) executes the model using her query in-
put data. The encryption material for query data is
protected within the secure enclave and shared with
the Al-based software enclave for model evaluation.

1.4 Paper Organization

The remainder of this paper is organized as follows.
Section 2 explores the state of the art on security
for machine learning at the deployment and execu-
tion phase. Section 3 elaborates on our approach,
outlining the use of Trusted Execution Environments
(TEE). Section 4 evaluates our approach’s perfor-
mance and feasibility through a smart city scenario
for risk prevention in public spaces. We conclude and
discuss future research directions in Section 5.

2 STATE OF THE ART

Numerous approaches exist for securing ML models
and associated data during deployment and execution.
These approaches can be categorized as crypto-based
PETs and hardware-assisted PETs.

2.1 Crypto-Based PETs
2.1.1 Fully Homomorphic Encryption (FHE)

FHE schemes (Brakerski et al., 2012; Fan and Ver-
cauteren, 2012) enable computations on encrypted
data without revealing the underlying data. Cryp-
toNets (Dowlin et al., 2016) was an early FHE-
based approach for Neural Network inference. How-
ever, FHE incurs high latency and resource overhead.
Recent advancements by Chabanne et al.(Chabanne
et al., 2017) and Juvekar et al.(Juvekar et al., 2018)
have improved performance and accuracy in cryp-
tographic schemes. While crypto-based PETs offer
strong security guarantees, they introduce resource
overhead and may require model modification and re-
training. Moreover, their computational expressive-
ness is limited.

2.2 Hardware-Assisted PETs

Trusted Execution Environments (TEE) like Intel
SGX, ARM TrustZone, and AWS Nitro provide se-
cure enclaves for isolated code execution. TEE-
based approaches have been proposed, such as
SLALOM (Tramer and Boneh, 2018) and CHE-
MIX (Gupta and Raskar, 2018). However, exist-
ing hardware-assisted PETs primarily focus on in-

Security for Distributed Machine Learning

put data privacy and do not address model protection.
Key management for encryption is also left open. In
summary, securing ML models at deployment and
execution involves a trade-off between security and
resource consumption. Crypto-based PETs provide
strong security but introduce major overhead, while
hardware-assisted PETs offer hardware-based secu-
rity with limitations in model protection.

3 SECURITY FOR DISTRIBUTED
MACHINE LEARNING

We present a solution to protect the Intellectual Prop-
erty (IP) of distributed Al-based software and en-
sure privacy of associated data. Our approach lever-
ages hardware-assisted Privacy Enhancing Technolo-
gies (PETs), specifically Trusted Execution Environ-
ments (TEEs). We extend the SLALOM approach in-
troduced in Section 2, enabling privacy of query input
data and secure inference within secure enclaves.

3.1 SLALOM Protocol Limitations

SLALOM uses a slicing technique” to divide the
neural network into smaller sub-networks for parallel
execution. Linear layers are delegated to a co-located
GPU, while non-linear layers are executed within the
TEE. However, SLALOM lacks means to safeguard
the IP of ML-based software, as model parameters are
transferred in plain text to untrusted co-located GPU
for acceleration.

3.2 Overall Protocol

Depicted in Figure 1, our protocol involves two ac-
tors: the ML model owner (MO) and the query data
owner (QDO). The Al-based software is sealed in a
secure enclave by the MO and securely shared with
the edge device TEE through remote attestation.

Prior to any Al-based model evaluation, QDO
self-generates encryption keys, embedded within a
key enclave, ans deployed along remote attestation on
the edge device. When the QDO queries the Al-based
software, their input data is encrypted using that self-
generated encryption key and sent to the evaluation
enclave. At model evaluation, the data is decrypted
within the secure evaluation enclave and processed
based on the MO-QDO agreement. The processing
result can be encrypted and sent to the MO, QDO, or
both, based on agreed access control policy.

Our protocol achieves the following objectives:

839

SECRYPT 2023 - 20th International Conference on Security and Cryptography

Model owner

Jowmo wlep }u‘dn‘o

e Co-Located GPU ----------
Eot?e Device Blatform

Figure 1: Overall Protocol.

» Al-Based Software IP Safeguarding: We de-
ploy the Al-based software on TEE to protect the
model’s IP and leverage co-located GPU acceler-
ation extending SLALOM protocol.

* Data Privacy: Input and output data of the Al-
based software are encrypted to ensure data pri-
vacy.

3.3 Distributed QDO Key Management

Our approach requires each QDO to encrypt their
data using their own cryptographic material. To en-
sure proper key management and control, we encap-
sulate the key material within dedicated secure en-
claves co-located with the Al-based software enclave.
The cryptographic material is securely deployed on
the edge device through local attestation between
the cryptographic material enclaves and the Al-based
software enclave.

3.4 Model and Query Data Protection

During the evaluation phase, we adopt the “slicing
network” technique, as described in SLALOM, to
split the execution of the Al-based software model.
Non-linear layers are processed within the enclave
on the CPU, while linear layers are delegated to a
co-located GPU. To ensure data privacy, we encrypt
the input of the linear layers using a pre-computed
pseudo-random stream. In SLALOM, only the data
inputs delegated to the GPU are encrypted, while the
model parameters (e.g., weights, bias) are sent in clear
text.

In our proposed approach, we guarantee privacy
of model parameters by enhance SLALOM algorithm

840

as follows:

1: Linear Layer Evaluation:

2: ul =rl1xW (TEE; pre-computed)
u2 = rl1 xr2 (TEE; pre-computed)
u3 =r2*x (TEE)

X=x+4r1;W =W +r2 (TEE)

v =x*W (GPU)

y=9—ul —u2 —u3 (TEE)
assert Freivalds(y,x,W) (TEE)

: Non-Linear Layer Evaluation:

x = Fuon—tinear(y)

In this enhanced algorithm, for linear layer eval-
uation, both the model parameters W and the input
data x are encrypted within the TEE (lines 1-5), with
r1 and r2 pseudo-random streams. The evaluation of
linear layers is then delegated to the GPU with the
encrypted inputs (line 6). The resulting output is de-

crypted within the TEE (line 7).

While this approach ensures model and data pri-
vacy during the delegation of linear layers, it intro-
duces additional overhead due to the decryption pro-
cess within the Al-based software enclave. The im-
pact of this overhead is evaluated in Section 4.

YR EW

—_

3.5 Query Output Access Control

The Al-based software evaluates the access control
policy on evaluation outcome, as agreed between the
QDO and MO. The overhead introduced by AES-256
encryption is negligible, as it is performed only once
per model evaluation.

4 EVALUATION

In this section, we discuss the evaluation of a demon-
stration implementing our approach to a smart city
use case for risk prevention in public spaces. We elab-
orate more on our technical architecture and perfor-
mance evaluation of this demonstrator.

4.1 Risk Prevention in Public Spaces

We assess the performance and feasibility of embed-
ding Al-based motion detection within a CCTV cam-
era in the city of Antibes for risk prevention in public
spaces. The encrypted video stream is processed lo-
cally on the camera. Motion detection classification
(e.g., jumping, falling, cycling) triggers automated
alerts to public safety and security forces. Our aim
is to optimize the use of Public Safety & Security re-
sources and maximize the value of existing CCTV
systems. Following the previously introduced ter-
minology on Model Owner and Query Data Owner,
we consider the ML-based motion detection software
provider as the MO and the smart city as the QDO
(e.g video stream owner).

4.2 ST-GCN-Based Motion Detection

Motion detection is crucial for analyzing human ac-
tivities and identifying incidents in hazardous ar-
eas. In our demonstrator, we employ a Spatial-
Temporal Graph Convolutional Network (ST-GCN)
(Yan et al., 2018). ST-GCN combines Graph Con-
volutional Networks (GCNs) and Temporal Convolu-
tional Networks (TCNs) to enhance motion detection
precision. Notable ST-GCN models include ASGCN
(Shi et al., 2019), and ST-TR (Plizzari et al., 2021).

4.3 Overall Protocol

In Figure 3, motion detection process is broken down
into two main steps: (i) extraction of human skeletons
as graph of joints, (i) ST-GCN-based human motion
detection (e.g., standing, sitting, walking).

4.3.1 Graph-Based Skeleton Extraction

As implemented by (Yan et al., 2018), we em-
ploy OpenPose (Cao et al., 2019) to extract graph-
based skeletons from video streams. OpenPose is
a real-time multi-person keypoint detection library
that combines pose estimation and image processing
techniques for estimating 2D poses of multiple indi-
viduals in an image. The keypoints represent joints
and body parts (e.g., head, elbows, hips, or knees),

Security for Distributed Machine Learning

and OpenPose generates a graph-based representa-
tion of these interconnected keypoints through post-
processing. We perform graph-based skeleton detec-
tion using OpenPose outside of the TEE due to the
complexity of implementation and dependencies on
third-party libraries, which deter code migration into
enclaves.

4.3.2 ST-GCN Implementation

Our evaluation is made on the deployment of the
ST-GCN model within an enclave on Jetson Xavier
AGX (NVIDIA, 2019). The ST-GCN model com-
prises Convolution Layers and an average pooling
layer. GCN performs Spatial Graph Convolution by
taking feature maps and a normalized weighted adja-
cency matrix as inputs. It multiplies the feature maps
with the adjacency matrix to process the data in each
frame. TCN operates like typical CNNs, extracting
features. The Residual Networks’ output is bitwise
added to the result of GCN+TCN, addressing gradient
issues, preserving inference accuracy, and preventing
network degradation. Figure 2 illustrates the ST-GCN
model architecture.

4.4 Hardware Setup

We implement our prototype on an NVIDIA Jetson
AGX Xavier platform (NVIDIA, 2019). This edge
device is equipped with an ARM-based TEE, based
on TrustZone Technology. TEE functionalities for
enclave generation & execution, local and remote
attestation are abstracted through the software ab-
straction layer Trusty (Android Open Source Project,
2019). Trusty is part of the Android Open Source
Project (AOSP). Hardware-wise, Jetson Xavier AGX
is equipped with 64 GPU tensor cores, 8§ CPU tensor
cores. With 32 GB of RAM, this device can allocate
up to 128 MB of RAM to Trusty, for secure enclave
development. This limits the processing capabilities
within enclaves. Further technical specifications can
be found here (NVIDIA, 2019).

4.5 Technical Architecture
4.5.1 Distributed QDO Key Management

To ensure query data confidentiality and privacy, each
Query Data Owner (QDO) encrypts their data sym-
metrically using self-generated AES-128 keys, em-
bedded in a key enclave. Remote attestation, with
RSA-2048 encryption, is used for key enclave deploy-
ment on the edge device (step 2 in Figure 1). AES-128
keys are hard-coded in the key enclaves for simplicity

841

SECRYPT 2023 - 20th International Conference on Security and Cryptography

Spa'tio\[‘remporal Graph Convolutional

Classification

2D o«}ap‘tivg
average Pool?nﬁ,

Video Stream

671‘0\91«%9\33:} Skele‘ton

Tetson Xavier 46|

Figure 2: Architecture.

in our experiment. Key enclaves guarantee key con-
fidentiality and integrity. The evaluation enclave de-
crypts QDO inputs (step 3 in Figure 1) by extracting
cryptographic materials from key enclaves. Local at-
testation, based on RSA-2048, enables key exchange
between key and model evaluation enclaves.

Communication overhead from key exchange is
minimal, occurring once per ML model evaluation.
It is insignificant compared to encryption and com-
munication iterations between the evaluation enclave
and the GPU.

4.5.2 Protection of AI-Based Software
Intellectual Property

Figure 1 depicts the secure deployment and evaluation
of the ST-GCN model within an enclave for model
integrity and confidentiality on the edge device. In
step 4, we use the “slicing network™ technique to ac-
celerate model evaluation with the co-located GPU.
Linear layers (convolutional layers) are executed on
the co-located GPU for hardware acceleration, while
non-linear layers (RELU, Batch Normalization, and
Average Pooling) are executed in the Al-based Soft-
ware Enclave.

To protect the privacy and confidentiality of model
parameters and input data, we employ a pseudo-
random stream encryption technique. It encrypts
delegated data and parameters using random data
streams generated uniformly, with element-wise ad-
dition to the plaintext. Using a secure enclave and
co-located GPUs for data privacy and IP protection
increases communication overhead between the en-
clave and GPU, impacting performance due to addi-

842

tional encryption and decryption cycles and random
data generation.

4.5.3 Query Output Fairness Access

In our use case, the model evaluation outcome is lim-
ited to the city and intended for police forces and pub-
lic safety services. We encrypt the outcome using an
AES-128 encryption key owned by the city of An-
tibes, embedded within the evaluation enclave. The
impact on prototype performance is minimal, occur-
ring only once.

4.6 Results

We assess the performance of our demonstrator in
terms of processing time, communication cost, and
model accuracy to evaluate the feasibility of our ap-
proach in a real use case. We evaluate our pro-
totype dynamically, without pre-computed optimiza-
tions. All random number generation and matrix op-
erations are performed at run-time.

4.6.1 Processing Overhead

Excluding OpenPose execution, we measure the pro-
cessing overhead of graph-based skeleton evaluation
using the ST-GCN model. Specifically, we focus on
GPU-based linear layer execution, TEE-based non-
linear layer execution, enclave-GPU communication,
and encryption/decryption rounds. Our TEE-based
implementation adds 28.7 seconds to the evaluation
time, compared to the original ST-GCN model’s 0.8
to 1.2 seconds for a 10-second video stream. The

breakdown of processing time is as follows: 2% for
linear layer execution, 55% for non-linear layer ex-
ecution, 15% for communication, and 20% for data
encryption/decryption. The lack of GPU acceleration
for executing non-linear layers within the secure en-
clave contributes to over half of the processing over-
head.

4.6.2 Communication Cost

The slicing technique” necessitates frequent commu-
nication between the secure enclave and GPU. When
the model evaluation enclave delegates linear layer
processing to the GPU, the layer parameters and in-
put data must be transferred to the GPU. After pro-
cessing, the GPU-based application sends the output
back to the evaluation enclave. Communication be-
tween the enclaves and GPU is limited to a maximum
payload size of 4 pages or 4KB. Considering that the
average size of a linear layer is 3.375 MB, delegating
a single linear layer leads to around 863 communi-
cation rounds between the TEE and GPU. This high
number of communication rounds highlights the po-
tential overhead of the ’slicing technique”.

4.6.3 Accuracy Loss

We evaluate motion detection accuracy by comparing
the top-5 predicted labels and mean losses of our im-
plementation to the original model. Our implementa-
tion achieves a 98% match with the top-5 predictions,
demonstrating similar accuracy to the original model.
Additionally, we assess the mean loss of our imple-
mentation compared to the original model. We ob-
serve an average accuracy loss of 5% resulting from
approximating the use of 2-digit floating points to re-
duce communication rounds between the TEE and
GPU.

S CONCLUSION

In this paper, we propose a solution to protect Al
based software’s Intellectual Property and preserve
data privacy. We evaluate our approach in a real-
world scenario of risk prevention in public spaces,
embedding ML-based motion detection within CCTV
cameras. Despite increased processing time, our ap-
proach demonstrates feasibility without significant
accuracy loss. We also identify potential optimiza-
tion on communication rounds between the secure en-
clave and the GPU, such as pre-computation of ran-
dom stream generation. As future work, we plan to
extend our approach to cloud confidential computing,
addressing security threats in edge device TEE and

Security for Distributed Machine Learning

improving processing time. Initial experiments in this
direction show promising results.

REFERENCES

Android Open Source Project (2019). Trusty.
”source.android.com/docs/security/features/trusty”.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2012).
Fully homomorphic encryption without bootstrap-
ping. In 3rd Innovations in Theoretical Computer Sci-
ence Conference.

Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., and
Sheikh, Y. A. (2019). Openpose: Realtime multi-
person 2d pose estimation using part affinity fields.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Chabanne, H., de Wargny, A., Milgram, J., Morel, C., and
Prouff, E. (2017). Privacy-preserving classification
on deep neural network. JACR Cryptol. ePrint Arch.,
page 35.

Dowlin, N., Gilad-Ba, R., Laine, K., Lauter, K., Naehrig,
M., and Wernsing, J. (2016). Cryptonets: Applying
neural networks to encrypted data with high through-
put and accuracy. In ICML’16: Proceedings of the
33rd International Conference on International Con-
ference on Machine Learning.

Fan, J. and Vercauteren, F. (2012). Somewhat practical fully
homomorphic encryption. IACR Cryptology ePrint
Archive.

Gupta, O. and Raskar, R. (2018). Distributed learning of
deep neural network over multiple agents. Journal of
Network and Computer Applications, 116:1-8.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
(2018). Gazelle: A low latency framework for secure
neural network inference. In 27th USENIX Security
Symposium.

NVIDIA (2019). Jetson XAVIER AGX.
https://www.nvidia.com/fr-fr/autonomous-
machines/embedded-systems/jetson-agx-xavier/”.

Plizzari, C., Cannici, M., and Matteucci, M. (2021). Spatial
temporal transformer network for skeleton-based ac-
tion recognition. In Pattern Recognition. ICPR Inter-
national Workshops and Challenges, pages 694-701,
Cham. Springer International Publishing.

Shi, L., Zhang, Y., Cheng, J., and Lu, H. (2019). Skeleton-
based action recognition with directed graph neural
networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Tramer, F. and Boneh, D. (2018). Slalom: Fast, verifiable
and private execution of neural networks in trusted
hardware.

Yan, S., Xiong, Y., and Lin, D. (2018). Spatial temporal
graph convolutional networks for skeleton-based ac-
tion recognition. In Proceedings of the Thirty-Second
Annual Conference on Innovative Applications of
Artificial Intelligence, AAAT18/IAAT’18/EAATI’18.
AAAI Press.

843

