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Abstract: Smart meters, intelligent devices used for managing energy consumption of consumers, are one of the inte-
gral components of the smart grid infrastructure. The smart metering infrastructure can facilitate a two-way
communications through the Internet to leverage home energy management and remote meter reading by the
service providers. As a consequence, the smart meters are extremely susceptible to various potential security
threats, such as data tampering, distributed denial of services (DDoS) attack and spoofing attacks. In this paper,
we put forward a scheme to detect anomalies in energy consumption data using real-world datasets. Thereby,
addressing data tampering attacks. We have adapted an unsupervised machine learning method to distinguish
the anomalous behaviour from the normal behaviour in energy consumption patterns of consumers. In addi-
tion, we have proposed a robust threshold mechanism for detecting abnormalities against noise, which has not
been used in smart grids before. Our proposed model shows an accuracy of 94.53% in detecting anomalous
patterns in energy consumption data. This accuracy surpasses the existing benchmark in anomaly detection in
energy consumption data using machine learning models (Huang and Xu, 2021).

1 INTRODUCTION

Smart meters, an integral part of the smart grid infras-
tructure, play a significant role in regulating the ad-
vanced metering infrastructure(AMI) systems (Hart,
2008). The AMI enables various services, such as
electronic billing, grid monitoring, grid operation and
demand response for both consumers and providers.
On the other hand, smart meters are deployed by
electricity providers and retailers to monitor fine-
grained energy consumption of households in real-
time(Sheikh et al., 2021). Consequently, they are
physically accessible and more prone to data tamper-
ing attacks. The demand for these smart meters is
increasing with every passing day and they are be-
ing widely deployed. However, Tellbach et al. (Tell-
bach and Li, 2018) showed that cyber-attacks on these
smart meters can incur huge financial losses. These
data are often communicated to the service providers
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over a secure channel (Erkin et al., 2013), and are re-
quired to monitor and manage the grid (Knirsch et al.,
2016).

The cyber attacks in the smart grid can be detri-
mental and can cause the electronic devices like smart
devices and/or generators malfunction. The well-
known attacks are false data injection, spoofing, de-
nial of services (DoS), man-in-the-middle, replay and
meter bypass attacks. We discuss the severity of these
attacks below.
False Data Injection Attack: The false data injection
attack is launched to inject fake data or payloads into
the smart meters or the advanced metering infrastruc-
ture (AMI), that modifies the power system data or
state of the smart meters. A number of incidents
of false data injection attacks have been launched
by customers in USA, Ireland, Virginia and Hong
Kong (Lo and Ansari, 2013).
Spoofing Attack: In this type of attack, a new system
element is added at one end that acts as a legitimate
body (Fan et al., 2015).
DoS Attack: The DoS attack is launched to flood
any computer or network system with overwhelming
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packets through different sources or geographical lo-
cations to overflow the system buffer, thereby shatter-
ing the system and leaving it inoperable (Wang et al.,
2017). In addition, a new attack called the puppet at-
tack on smart meters can cause DoS attacks in the me-
tering networks (Yi et al., 2016). Security weaknesses
of smart meters were discussed in the 2014 Black Hat
Europe conference, where Alberto and Javier stated
how an attacker can get access to the encryption keys
(for e.g. a master key) by exploiting the hardware of
the device (Illera and Vidal, 2014).

Attacks on smart grid seriously affect the entire
ecosystems, such as smart home activities, indus-
trial operations, hospital facilities, financial and gov-
ernment institutions. In 2014, an Australian util-
ity company was seriously affected by the DDoS at-
tack caused due to a misdirected command (Wueest,
2014). Also, the cyber-attacks on Ukrainian energy
companies in 20151 and 20162 caused power black-
outs in the region for several hours.
Contributions: The main contributors of this paper
are summarised as follows.

• In this paper, we have proposed a novel unsu-
pervised deep learning based Long Short Term
Memory-Denoising Autoencoder (LSTM-DAE)
model to detect anomalies in energy consumption
data of smart meters. As a result, we have ad-
dressed the issue of real-world anomaly detection.
This would help in detecting the energy theft by
customers, meter malfunctioning or third-party at-
tacks.

• Also, time-series energy data can be appropriately
handled using sequential model like LSTM (Long
Short Term Memory). Since, our model is built
using LSTM and Auto-encoder, unlike other ex-
isting machine learning models used for anomaly
detection in energy data, it is most befitting.

• Our model achieves an accuracy of 94.53% and
false positive rate of 5.47%, thereby outperform-
ing the existing models in detecting anomalous
behaviour.

2 RELATED WORKS

In this section, we review some existing works (Nagi
et al., 2009; Nizar et al., 2008; Yip et al., 2017; Li
et al., 2020; Huang and Xu, 2021; Yip et al., 2018;

1https://ics-certus-cert.gov/alerts/IR-ALERT-H-16-0
56-01

2https://www.technologyreview.com/2016/12/22/5969
/ukraines-power-grid-gets-hacked-again-a-worrying-sig
n-for-infrastructure-attacks/

Cui et al., 2021) related to the detection of anoma-
lies in power consumption data of smart meters. They
specifically focused on grid’s electricity consumption
data.

Yi et.al (Yip et al., 2017) designed a linear regres-
sion based detection model for energy theft and de-
fective smart meter was used for detection of anoma-
lies. The anomalies are considered coefficients to the
power consumption values of users, sampled at dif-
ferent points of the day in the form of a matrix. How-
ever, the model shows numerical discrepancies when-
ever the rate of anomaly i.e. anomaly coefficient of
a particular user vary throughout the day. They had
used Irish Smart Energy trial dataset that was based
on half-hourly samples. They acquired anomaly co-
efficients through t-statistics and p-values using Mat-
lab’s fitlm function. Though they introduced categor-
ical values like off-peak and on-peak hours for coeffi-
cients of anomalies, it was not good enough to justify
situations since anomalies can vary throughout differ-
ent times. Also, the threshold set for anomaly coeffi-
cient to be anomaly rather than an outlier is not based
on a robust mechanism since technical errors (Yip
et al., 2018) or measurements errors from device can
likely create the noise. Additionally, they did not pro-
vided any numerical measurements on the model’s
performance. In (Yip et al., 2018), the discrepancy
in numerical value of their previously mentioned LP
model (Yip et al., 2017) was solved, by introducing
Linear Programming where varying anomaly coeffi-
cients were considered that made the model more re-
alistic. It further improved the threshold for anoma-
lies from 0 to 0.05 on the same dataset. However,
they still did not consider losses due to technical faults
such as cables, transmission lines and distribution sta-
tions. Therefore, we still cannot rely on the improved
threshold, which might not be reliable enough.

While, Li et.al (Li et al., 2020) proposed a
blockchain based detection method in conjunction
with unsupervised K-Nearest Neighbor(KNN) for
clustering into three categories like working class,
holiday class and outlier class. However, there is
a great uncertainty in the method of data collection
from sensors and smart meters deployed by them in
factories and homes. In addition, there was no justi-
fication for the selection of k−value in the KNN al-
gorithm. The concepts for relation between data us-
ing correlation coefficient and number of occurrences
of data points using Poisson’s distribution to address
anomalies was appropriately evaluated. They neither
provide a proper justification to distinguish anomalies
from data-points that are simply outliers, nor deploy
a robust mechanism against outliers and anomalies.
The picture of their stated analysis is rather vague and
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thereby makes the detection rates unreliable. More-
over, Huang et.al (Huang and Xu, 2021) used Stacked
Sparse Denoising Auto-encoder for detection of data
theft. The model is stated to be unsupervised with sin-
gle labels of honest customers obtained from the Elec-
tricity Consumption Fujian, China data-set. How-
ever, we deem it appropriate to state that it is semi-
supervised. The anomalies are obtained from the re-
construction error with a claimed optimal threshold.
The threshold is set through the ROC Curve. The
ROC curve in turn is dependent on the False positive
rate and this is acquired from the test set which is in-
appropriate (Merrill and Eskandarian, 2020) because
the threshold should have been determined from the
training set. Consequently, we need a robust mecha-
nism to determine thresholds and a better model for
real time classification.

It is clear that almost all of the existing works have
used either supervised or semi-supervised frame-
works for the detection of data theft . However, the
supervised and the semi-supervised machine learning
algorithms cannot provide a good solution for real-
world scenarios.

3 PROPOSED HOST-BASED
INTRUSION DETECTION
SYSTEM

The Host-Based Intrusion Detection System (HIDS)
is used for detecting abnormalities in smart meter en-
ergy consumption data. These abnormalities could be
caused due to several reasons, such as energy theft,
measurement errors, technical errors and/or faulty
meters (Yip et al., 2017). The literature shows that
the majority of research works on anomaly detection
have been carried out using supervised models. The
practicality of such models is questionable as it is ex-
tremely difficult to get a substantial amount of labeled
anomalous samples in a real-world scenario. On the
other hand, the semi-supervised methods work a way
around the requirement of labeled anomalous sam-
ples by completely relying on readily available nor-
mal samples. Thus, they utilise data labeled as normal
to detect anomalies and examples that do not comply
with normal samples are simply flagged as anoma-
lies. However, semi-supervised approaches are sig-
nificantly susceptible to model over-fitting or under-
fitting which leads to poor model performance in
terms of recall and precision scores (Goldstein and
Uchida, 2016). This issue is daunting for all appli-
cations and specifically for grid data where we need
very low false positives and false negatives (Mitchell

and Chen, 2013). Since, the data may or may not
contain anomalous samples, a more pragmatic ap-
proach is to use unlabeled data samples. As a re-
sult, unsupervised learning approach can essentially
be adapted to achieve such goals (Merrill and Eskan-
darian, 2020). Thus, we envisage an unsupervised
model for anomaly detection, which is relevant to any
practical scenario. Our model is based on deep neural
networks using LSTM-AE.

3.1 Anomaly Detection Model

We present a LSTM-DAE model for anomaly detec-
tion in smart meter energy data. The model is inspired
by the capability of LSTMs to predict time-series data
and auto-encoders in extracting features and recon-
structing data as mentioned in (Huang and Xu, 2021).
To the best of our knowledge, this is the first work on
anomaly detection of smart meter power consumption
data using on LSTM-AE model, and significantly our
approach is novel as it introduces a denoising LSTM-
AE. The denoising element is introduced to remove
the noise from the data in order to develop a robust
auto-encoder.

Structure of LSTM-DAE: Here, we discuss the follow-
ing models: LSTM, auto-encoder and denoising auto-
encoders. We do this for the ease of understanding the
overall structure of the model used.

1. LSTM is a type of recurrent neural networks
model that was introduced to solve the vanishing
gradient problem in RNNs. The vanishing gradi-
ent problem occurred when some of the weights
ceased to change during the learning process. As
a result, preference given to the current informa-
tion would lead to forget of past events. There-
fore, the model cannot learn substantially in case
of relations recurring over a long period of time.
While, LSTMs were designed to control the en-
tire information flow within neurons, through a
gate that adds and deletes the information. Con-
sequently, the model can learn long-term as well
as short-term dependencies by controlling the pro-
cess of forgetting unlike RNN. However, it limits
the memory capacity in such a way that the out-
put gate infers the updated cell state. It is partic-
ularly suitable for multivariate or univariate time-
series data where it can be supervised or unsuper-
vised (i.e. the dataset can be with or without la-
bels) (Lindemann et al., 2021). Figure 1 shows a
typical structure of a cell in LSTM model.

2. Auto-encoders have been effective as unsuper-
vised model for removal of outliers since they
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Figure 1: LSTM cell as designed by Hochreiter and
Schmidhuber in 1997.

can reconstruct data efficiently with higher den-
sity. The neural network has two models called
an encoder and a decoder that are trained to-
gether. The encoder compresses the initial input,
thereby learning important features, while the de-
coder reconstructs the data from its compressed
state. Therefore, the whole model can learn highly
complicated data patterns (Merrill and Eskandar-
ian, 2020).

3. When these auto-encoders are fed with noisy
inputs to reconstruct actual outputs, they are
known as denoising auto-encoders (see Figure 2
). These are more robust against noise and help
prevent learning identity function as in general
auto-encoders i.e., reconstructing X from X̂ (in-
put) (Vincent et al., 2008). In this model, noise
is added to the input X such that it constructs a
clean output from the noisy samples i.e., X̂ (Vin-
cent et al., 2008). This corruption of inputs can be
done in several ways such as by replacing 30% of
the input values with zero, 50% of the inputs with
zero, (Huang and Xu, 2021) using random noise
or white Gaussian noise.

Figure 2: The proposed Denoising Auto-encoder where
noise is added to the real inputs before feeding it to the
model.

4 EXPERIMENTAL EVALUATION

In this section, we report the experimental findings
in detecting anomalies using smart meter energy con-
sumption data. We have envisaged an unsupervised
deep learning-enabled IDS to distinguish between
normal and anomalous behaviours in energy con-
sumption patterns of households.

4.1 Metrics

We define few metrics to evaluate the performance of
our proposed model in detecting anomalies. It is im-
portant to understand these metrics before we delve
further into the experiment section, since it describes
the way in which we have used them.
Mean Squared Error: The Mean Squared Error
(MSE) is the square of the difference between the ac-
tual and predicted values for all n samples. This can
be represented as follows where, the actual or ground
truth is denoted as X and the predicted value is de-
noted as X̂

MSE =
1
n

n

∑
i=1

(X − X̂)2 (1)

Model Loss: It is a scalar value that indicates how
closethe predictions of the model are as compared to
the actual labels. If the loss is low (ideally 0), the
predictions are considered to be perfect, and close to
0 are good predictions; on the contrary, if it is closer
to 1, the predictions are bad.
Threshold: It is the numerical range beyond or below
which the anomalies are flagged.
False Positive (FP): The number of samples that are
non-anomalies while they are flagged as anomalies.
False Negative (FP): The number of samples that are
anomalies, but are flagged as non-anomalies.
True Positive (TP): The numbers that state how many
are samples are correctly predicted as non-anomalies.
True Negative (TN): It states how many samples are
correctly predicted as anomalies.
Accuracy: Accuracy is the percentage of correct pre-
diction of non-anomalies from the samples. It can be
represented as follows.

Accuracy = (T P+T N)/(T P+T N+FP+FN) (2)

4.2 Configuring Threshold

There are several methods for calculating the thresh-
old, such as the use of ROC curve (Huang and
Xu, 2021), 90 − 95% on the training data (Givnan
et al., 2022), mean and standard deviation method3

3https://github.com/tensorflow/docs/
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and kentucky’s method (Zhou et al., 2021). Though
the threshold is very much dependent on a dataset,
and each method might provide different results, we
should choose a very robust threshold that would
overcome the noise due to some outliers, such as mea-
surement errors and technical errors. Therefore, we
preferred Kentucky’s method over the rest as it is a
robust mechanism as stated in (Zhou et al., 2021).
The threshold is calculated based on the training data,
where we assume that the training data is not anoma-
lous. The threshold is evaluated using Q1, Q2 and
IQR metrics. Q1 is the first quartile which means
that it is the value under which 25% of data points
are found when they are arranged in increasing order.
Q3 is the third quartile which thereby, the value under
which 75% of data points are found when arranged in
increasing order. IQR is the inter-quartile range where

IQR = Q3−Q1 (3)
The formula for calculating the upper and lower
thresholds respectively are as follows.

lowerrange = Q1−1.5∗ IQR (4)

upperrange = Q3+1.5∗ IQR (5)

4.3 Datasets and Experiments

We use two different datasets for the experimenta-
tions and analyses as mentioned below: Our emperi-
cal evaluations are based on two different energy con-
sumption datasets summarised in Table 1.

The UCI Power Consumption dataset extracted
from traditional meters was chosen to consider a di-
verse range of parameters, such as current, voltage
and sub-meter data in addition to power consump-
tion. Significantly, the dataset was unlabelled resem-
bling any real-world dataset. However, we were un-
able to validate the performance of the model due
to lack of a ground-truth. Therefore, we later used
Irish power consumption dataset that consists of half-
hourly smart meter data from honest customers only
i.e. non-anomaly labels. We did not feed labels to our
model but utilised the labels to calculate the various
performance metrics including accuracy, false posi-
tives and false negatives.

4.3.1 Experiments on UCI Dataset

We train LSTM-AE and LSTM-DAE to compare the
loss and reconstruction error for the same dataset. At
first, we train the LSTM-AE for five epochs and it
produces satisfactory loss value (loss value is 0.05).
This is done for both training and validation set. The
model is found to be a good fit since the plot of train-
ing set loss against validation seem to be converging

towards the last few epochs. The loss values are sub-
stantially low indicating that the model is performing
well in terms of learning.

Then, we train our model on the same dataset
using noisy data. After training for 12 epochs, we
observe satisfactory low loss value in the last few
epochs. Thereby, indicating that the original data is
recovered well from the noised input. Further, we use
our LSTM-DAE model. The number of samples con-
sidered is 10,000 and that constitutes nearly 1 month
of data. The model loss shows that it is considerably
low i.e.,0.06, at only 12 epochs even with noisy in-
put. Therefore, this illustrates a good learning capac-
ity and efficient model performance.

The MSEs after noised inputs added to the training
set acquired from Paris Power Consumption data, are
in Figure 3.

Figure 3 shows the train MSEs on noisy inputs
to the model using Paris power consumption dataset.
The MSEs are low thereby, indicating that the model
is predicting very well. After the reconstruction er-
ror is calculated from test set, we check if that error
is beyond a selected threshold for the anomaly score.
Further, the sample would be flagged as an anomaly if
the error is beyond the threshold, otherwise the con-
sumption pattern will be considered as normal.
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Figure 3: MSEs from the noisy input of Train set on Power
Consumption Data-set.

Finding Anomalies. The test set for UCI dataset is
predicted and the MSEs i.e., MSE per sample is cal-
culated from the deviations of the actual test set.

Though, these MSEs in the test set are relatively
higher than those in train set, they are still visibly low
as shown in the y-axis of Figure 4. We tried to re-
construct the error through Keras’ predict function in
python. These errors are checked against the thresh-
old. Thereby, the errors found below the lower and
above the upper threshold limit are marked as anoma-
lies. We find that out of 399 samples in the test set, 23
are flagged as anomalies. However, we are unaware,
if the anomalies are correctly classified since the data-
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Table 1: Dataset description.

Dataset Period of Consumption Number of samples Data Location
UCI Energy Consumption Dataset4 December 2006 - November 2010 2075259 Paris, France

Irish Contracted Power Dataset5 January 2009-June 2010 157992996 Ireland

0 50 100 150 200 250 300 350 400
Number of samples

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Te
st

 M
SE

Figure 4: MSEs from the Test set on UCI Energy Dataset.

set is unlabeled.

4.3.2 Experiments on Irish Power Data-Set

Similar to the previous dataset, we calculate the loss
for this dataset too using LSTM-DAE. The loss is
found to be as low as 0.025 in this case, within just
14 epochs, thereby, yielding model consistency on
low loss value and establishing the model as a good
learner. Here, we have chosen 180 meters out of 6444.
The data points involved with these 180 meters are
3,863,725. Therefore, we have performed our experi-
ments on substantial amount of data rather than small
to medium scale data and obtained satisfactory results
on the learning capacity.

We trained with considerably less data than the
test set. The training set was based on 16.67% of the
total data used from the dataset for training and test-
ing. This is so because, we just wanted to validate
the model performance in terms of reconstructing the
loss and minimal error with relatively lesser data. Our
model is trained using the first 30 meters ranging be-
tween 1000 and 1030 i.e. 7,00,000 samples, while our
test data comprises of 150 meters i.e. 3,163,725 data
points.

We plot the MSEs from training data for Irish
Power Data-set(see figure 5). We find that the MSEs
are relatively low as well.
Identifying Anomalies. We acquire the test MSEs
and anomaly scores for Irish Power Data-set samples
having only healthy data. Our model is still essen-
tially unsupervised since we train without these la-
bels. However, we are able to use the labels for com-
parison after finding the anomalies. But, before ac-
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Figure 5: MSEs from the noisy input of Train set on Irish
Power Consumption Data-set.

quiring the MSEs, we divide the entire test set hav-
ing huge number of samples into chunks since we can
achieve better visualisation with lesser data points.
The MSEs for samples from meters ranging between
1031 and 1060 are low i.e. mostly within the range of
3.

In figure 6, it is seen that the samples for meters
between 1061 and 1090 are mostly within the range of
3.5 and very few are beyond 8.The meters ranging be-
tween 1091 and 1120 too shows errors mostly within
3.5 and 4, while few are beyond 10. Similarly, meters
between 1121 and 1150 have most of the errors in low
range i.e. within 4. The last chunk for errors between
1151 and 1180 are around the range of 2 and very few
are beyond 10.
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Figure 6: MSEs from the Test set obtained from Irish Power
Consumption Data-set for meter samples 1061 to 1090.
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Therefore, with the MSEs ranging between 2 and
10, we conclude that the model performance stands
out with relatively very less data for training in com-
parison to the testing set.

We obtained the anomaly score from training er-
rors based on the fixed threshold for Irish Data-set.
The lower and upper ranges of the threshold are -
0.24896152299660124 and 1.3530767084315753 re-
spectively. We find that 2,951,974 half-hourly data
points from among 150 meters are marked to be non-
anomalous.

Figure 7: Anomalies from meter samples ranging between
1061 and 1090.

We find that out of 3,871,203 data points, 211,751
points were marked as anomalies. Thereby, indicating
the false-positives to be at 5.47%. The True Negatives
i.e. non-anomalies, stand at 94.53%. As a result, the
accuracy of the model or detection rate is 94.53% with
low data considered for training.
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Figure 8: Confusion matrix for performance metrics based
on Irish Power Consumption Data-set.

4.4 Comparison and Discussion

A range of machine learning(ml) models like Stacked
Sparse Denoising Autoencoder (SSDAE), RDBN
which is a combination of Restricted Boltzmann ma-

chines (RBMs) and deep belief networks (DBNs),
Principal Component Analysis (PCA) and Support
Vector Machines (SVM), that have been used for
identifying data theft attacks in smart meters(Huang
and Xu, 2021). SSDAE is a set of stacked autoen-
coders with some suppressed hidden layers, noisy in-
put and clean output. RDBN allows pre-training of
a deep belief network using ideas from ’contrastive
divergence’ and adjusting the network for classifica-
tion through backpropagation algorithm. PCA uses
unsupervised ml model based on correlation to carry
out applications such as exploratory data analysis, di-
mensionality reduction and data denoising. SVMs are
supervised ml model for tasks like regression, outlier
detection and classification where a line or hyperplane
is created to separate data into classes. Our model
LSTM-DAE is compared to other models based on
two performance metrics i.e. accuracy and false pos-
itive rate. Here, we have made comparison with the
above mentioned models. We find out that our model
has a higher accuracy level and lower FPR than the
other models as shown in Table 2, thereby outper-
forming others.

Table 2: Performance of various models on detection of
anomalies in Energy consumption.

Model Accuracy FPR
LSTMDAE (Our Work) 0.9453 0.0547

SSDAE 0.9174 0.0719
RDBN 0.8701 0.1362
PCA 0.8582 0.1793
SVM 0.8176 0.1607

Our model LSTMDAE performs better than the
ones listed in the table. This gives an indication that
the model can be utilised for detecting anomalies and
prove to be a good detector for smart meters.

5 CONCLUSION AND FUTURE
DIRECTIONS

To conclude, we develop a robust unsupervised deep
learning model to find out cohort anomalies in the
power consumption data. We have considered every
possible parameter to make sure that we secure our
model against noise and flag the actual abnormalities.
The model is reliably suitable for a real world sce-
nario because of its unsupervised nature and it’s short
inference time. Also, it performs well with compar-
atively very less training (16.67%) and more testing

4https://archive.ics.uci.edu/ml/datasets/
5https://www.ucd.ie/issda/data/
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data. It surpasses the available model in accuracy
and false positive rate. Additionally, we consider the
time series data factor through LSTM, unlike other
proposed models. Therefore, it is a first of its kind
for anomaly detection of smart meter data, keeping in
mind their resource constrained nature. In the near
future, we would focus more on the causes of anoma-
lies like anomalies due to faulty meter and anomalies
caused by theft using LSTM-DAE. Thereby, specifi-
cally focusing on anomaly due to attacks and not due
to meter faults.
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