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Abstract: The proliferation of phishing attacks pose substantial threats to global prosperity amidst the Fourth Indus-

trial Revolution. Given the burgeoning number of Internet users and devices, cyber criminals are harnessing

phishing toolkits and Phishing-as-a-Service (PhaaS) platforms to spawn numerous fraudulent websites. In

retaliation, assorted detection mechanisms, with anti-phishing blacklists acting as a primary line of defense

against phishing sites, have been proposed. Yet, adversaries have contrived cloaking techniques to dodge

this detection method. This study endeavors to unearth the shortcomings of prevailing blacklists and thereby

bolster the efficacy of detection strategies for Anti-Phishing Entities (APEs). This paper presents an exhaus-

tive analysis of innovative and practicable attacks on current anti-phishing blacklists, unmasking potential

weaknesses in these protection mechanisms hitherto unexplored in prior research. Additionally, we divulge

potential loopholes exploitable by attackers and appraise their effectiveness against popular browser blacklists.

1 INTRODUCTION

Phishing, a prevalent form of cybercrime lever-
aging social engineering, manipulates vic-
tims’ trust to purloin funds or sensitive data
(Pujara and Chaudhari, 2018). Recent years have
witnessed a threefold surge in the incidence of these
attacks (APWG, 2022). As projected by Cyber-
crime Magazine, the global cost of cybercrime is
set to reach $10.5 trillion by 2025 (Freeze, 2018),
manifesting cybercrime as a significant threat to
prosperity in the Fourth Industrial Revolution
(World Economic Forum, 2020). Perpetrators ex-
ecute phishing attacks via diverse channels such
as social media, email, and text messaging, often
deploying fraudulent websites mimicking legitimate
ones (Gupta et al., 2016). A striking escalation is
evident in the quantity of distinct phishing websites
identified—316,747 in December 2021, up from
a mere 60,926 in December 2017 (APWG, 2017;
APWG, 2022). This trend owes to the expanding
Internet user base and the proliferation of connected
devices, offering an appealing landscape for crim-
inal activity. Additionally, the advent of phishing

a https://orcid.org/0009-0007-4342-6676
b https://orcid.org/0000-0002-5748-155X

toolkits and PhaaS platforms enable the creation
of numerous phishing websites at a reduced cost,
requiring minimal coding expertise (Han et al., 2016;
Alabdan, 2020). Numerous approaches have been
developed to detect phishing websites, including
blacklist/whitelist-based, visual similarity-based,
heuristic-based, machine learning-based, and deep
learning-based detection (Al-Ahmadi et al., 2022).
These methods function independently or form part
of the mechanisms integrated into the anti-phishing
ecosystem, where browsers wield significant in-
fluence via blacklists—access control mechanisms
that issue warnings for identified phishing websites
(Bell and Komisarczuk, 2020). Various browsers
rely on distinct feed sources for their blacklists. For
instance, Safari, Google Chrome, and Firefox utilize
the Google Safe Browsing (GSB) blacklist, Edge
deploys Microsoft SmartScreen’s (MS SmartScreen)
blacklist, while other browsers may source blacklists
from a combination of APEs. Despite serving as
critical first-line defenses against phishing web-
sites (Oest et al., 2019), these blacklists operate as
Blackbox, employing security crawlers to automate
detection. However, the intrinsic divergence of this
detection method from normal user requests has
spurred the development of evasion techniques,
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allowing phishing websites to evade detection and
continue luring unsuspecting users. Consequently,
an analysis of the potential shortcomings in current
blacklists can enhance the effectiveness of APEs’
detection strategies and better shield users from
phishing attacks.

In this paper, we explore innovative and practi-
cal attacks against current anti-phishing blacklists to
shed light on and rectify potential weaknesses in ex-
isting protective mechanisms. We propose and scru-
tinize advanced cloaking techniques hitherto over-
looked, uncovering significant potential deficiencies
in APEs that may be exploited by attackers. The main
contributions of this paper include:

• Comprehensive investigation of current cloaking
techniques used by phishing websites, suggest-
ing potential improvements for APEs from an at-
tacker’s perspective.

• Proposition and exploration of novel cloaking
techniques aimed at detecting APEs. We conduct
preliminary experiments to understand APE re-
sponses to our techniques, thereby revealing sev-
eral uncovered flaws in popular APEs such as
GSB, MS SmartScreen, APWG, and ESET.

• Presentation of a scheme and design of a frame-
work, supplemented by an experiment evaluat-
ing our cloaking techniques against current anti-
phishing blacklists, highlighting potential threats
to Internet users.

2 RELATED WORKS

Understanding the prevalent cloaking techniques
against anti-phishing blacklists and potential strate-
gies, attackers might exploit to avoid APE detection
is crucial. Earlier studies have categorized the cloak-
ing techniques employed by phishing sites as: server-
side cloaking, client-side cloaking, and fingerprinting.
These schemes are implementation specific and sub-
divide these categories further into User Interaction,
Fingerprinting, and Bot behavior (Zhang et al., 2021).
In this paper, we focus on server-side and client-side
cloaking techniques, bot behavior, and fingerprinting
as client-side techniques encompass user interaction
techniques.

Server-side cloaking leverages attributes of HTTP
Requests such as Hostname, Referrer, User Agent,
Cookie, and client IP addresses. These attributes al-
low phishers to distinguish between requests from
known anti-phishing entities or security crawlers and
genuine user requests. Phishers utilize these attributes
to gain additional information about users, enabling

them to filter or redirect requests server-side to
evade detection (Oest et al., 2018; Oest et al., 2019;
Oest et al., 2020a).

Client-side cloaking entails JavaScript code to
verify user interaction where verification methods in-
clude sending pop-up alerts, tracking mouse behavior,
employing reCAPTCHA, or requiring session initi-
ation or apply obfuscation methods, thereby thwart-
ing static code analysis by APEs. Such methods
aid in filtering out APE detections and luring gen-
uine users (Maroofi et al., 2020; Oest et al., 2020b;
Zhang et al., 2021).

Bot behavior identification metrics encompass
timing and randomization (Zhang et al., 2021).
Phishers may delay the display of malicious content,
leveraging the fact that bots or human inspec-
tors may not stay on the page long enough for
the content to load. Similarly, discrepancies in
JavaScript execution times can indicate bot activity
(Acharya and Vadrevu, 2021). Randomization tech-
niques, like employing a random number generator to
determine content display, can further evade detection
by APEs (Zhang et al., 2021).

Basic fingerprinting techniques utilize HTTP re-
quests and JavaScript to extract parameters like
User Agent, Referrer, and Cookie, enabling phish-
ers to identify APEs. Advanced fingerprinting tech-
niques deploy web APIs such as Canvas and We-
bGL to collect unique client fingerprints. These
sophisticated methods facilitate more precise iden-
tification, enhancing phishers’ evasion capabilities
(Acharya and Vadrevu, 2021).

Our research identified two principal strategies
employed to elude detection by APEs: identifica-
tion of authentic human users and discernment of
APEs. In order to comprehend state-of-the-art cloak-
ing methodologies employed by contemporary phish-
ing sites, we examined multiple PhaaS providers’
sites to investigate their functionalities and poten-
tial evasion capabilities. Our observations revealed
the application of a new function, Virtual Ma-

chine Detection, which potentially aids in evasion.
Phishing sites use numerous features to detect vir-
tual machines, including CPU core count, memory
size, WebGL renderer and User Agent information,
Webdriver, the quantity of installed browser plugins,
and language information sourced from WebGL or
JavaScript. We questioned whether this information
could effectively identify APEs. Moreover, we delved
into potential browser and protocol level features that
could enable precise fingerprinting or assist in APE
identification. Recent privacy research highlighted
two significant tracking techniques: Cache-based

tracking and the use of Accept-CH headers in HTTP
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requests (Ali et al., 2023). We questioned if these
tracking techniques could offer additional avenues
for phishing sites to identify APEs. Subsequently,
we conducted experiments to assess their potential
in evading anti-phishing detection and evaluated the
efficacy of these innovative techniques against anti-
phishing blacklists.

3 PRELIMINARIES

In our investigation, we introduce three novel tech-
niques and execute three sets of preliminary experi-
ments to comprehend the responses of APEs to our
methods. To evaluate this, we select security crawlers
like GSB and MS SmartScreen, which supply black-
list feeds to prevalent browsers including Chrome,
Safari, Firefox, and Edge, owing to their extensive
user base. We also incorporate two critical security
crawlers, APWG and ESET, given their importance in
the anti-phishing ecosystem. PhishTank is excluded
as it is no longer accepting registrations. The aim of
these preliminary experiments is to evaluate the feasi-
bility of using the proposed techniques to elude APE
detection, and expose the potential threats these secu-
rity crawlers present to APEs.

3.1 Virtual Machine Detection

3.1.1 Background

Virtual machine detection, frequently utilized by ran-
somware, trojans, and other malicious software to
differentiate user environments, is a growing con-
cern in the cybersecurity domain. Such software
discerns whether it’s operating within a virtual en-
vironment, thus allowing it to modify its behavior,
evade detection, and target real users. Phishing web-
sites now exploit this strategy, gathering environmen-
tal fingerprints to identify virtual machines. They
leverage Web APIs like WebGL and Canvas, as well
as JavaScript Objects, to collect visitor-specific data
such as screen rendering details and color depth. Dark
web PhaaS providers have reportedly integrated vir-
tual machine detection tools into their services, en-
abling them to filter genuine users. As indicated by
(Lin et al., 2022), numerous active phishing websites
are employing these techniques to harvest browser
fingerprint data—an increasingly prevalent practice.
This harvested data enables attackers to circumvent
Two Factor Authentication (2FA) and misuse stolen
credentials. Our initial experiment aimed to investi-
gate if techniques related to virtual machine detection
could assist phishers in distinguishing between nor-

mal user requests and security crawlers, thereby po-
tentially evading detection strategies of APEs.

3.1.2 Experimental Set Up

In our survey of existing browser-side virtual machine
detection techniques and prevalent user device infor-
mation, we selected features such as memory size,
CPU core count, screen color depth/width/height,
User-Agent headers, and WebGL-extracted data for
virtual machine detection and subsequent feature
dataset creation. Figure 1 presents an overview
of the design aspects in our experiment. Initially,
we integrated JavaScript code that gathered feature
information into our experimental website pages.
These sites were deployed on cloud servers and
classified into four groups. The URLs of each
group were then individually submitted to GSB, MS
SmartScreen, APWG, and ESET, which are four
prominent APEs, to prompt anti-phishing crawler re-
quests. The JavaScript code executed in APEs’ se-
curity crawler browsers or during manual inspection,
amassing pertinent data and returning it to the exper-
imental website servers to log features matching our
dataset. The backend of these sites processed the data
for storage in a database. Upon data collection com-
pletion, we analyzed these records and the additional
database-stored data to evaluate the feasibility of us-
ing browser-side virtual machine detection techniques
to evade detection from APEs.

Return selected Features

Security Crawlers/Bots 

visit the Webpage Save experimental Data

Selected Features

Screen Width

Screen Height

Memory Size

WebGL Info
……

Report URLs

Deploy Websites
Data Analysis

①

①

②

③

④

⑤

⑥

Figure 1: The Experiment Design of Virtual Machine De-
tection.

3.1.3 Observed Results

GSB. Our experiment reveals distinct differences be-
tween the characteristics of GSB’s crawler and those
of typical users, particularly in memory size, num-
ber of browser plugins installed, and screen dimen-
sions. These findings suggest that virtual machine
detection techniques could potentially bypass GSB’s
existing phishing detection mechanism. Analysis of
the crawler’s feature data sent to the server, upon re-
moving duplicates, showed few unique values in the
Renderer feature acquired through WebGL. Notably,
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we observed consistent Renderer information from
crawlers across geographically dispersed phishing
website servers. This concurs with previous findings
on utilizing WebGL to generate hidden images and
compute image hashes (Acharya and Vadrevu, 2021),
albeit our direct method of acquiring renderer infor-
mation via WebGL differs from their schemes.
MS SmartScreen. MS SmartScreen exhibited sim-
ilar traits to GSB, with clear differences in memory
size, screen dimensions, and WebGL-derived Ren-
derer features compared to typical user profiles.
APWG. Crawlers from APWG displayed signifi-
cant variations in screen dimensions, number of
browser plugins, and WebGL-obtained Renderer fea-
tures, compared to an ordinary user. After removing
duplicates, we noted a paucity of unique renderer in-
formation from APWG as well.
ESET. We observed substantial disparities in the
number of CPU cores, memory size, User-Agent
headers, number of browser plugins, and Renderer
features obtained via WebGL between ESET and or-
dinary users. ESET also demonstrated a less number
of unique renderer values.

3.2 Cache-based Mechanism

3.2.1 Background

Web cache mechanisms aim to alleviate server re-
quest loads, diminish bandwidth utilization, and en-
hance system performance. Prominent web caching
technologies encompass database cache, CDN cache,
DNS cache, proxy server cache, and browser cache.
The latter involves a browser storing resources ob-
tained from HTTP requests locally, enabling direct
access to webpages via cache during subsequent vis-
its and precluding repeated server requests. Typically,
browser caching strategies, implemented via HTTP
header settings, consist of local cache and negoti-
ated cache. The former relies on resource expiration
time parameters (i.e., "expires" and "cache-control"),
while the latter hinges on resource modification status
(i.e., "last-modified," "If-modified-since," "Etag," and
"If-None-Match"). Both strategies result in client-
side, rather than server-side, resource loading. Essen-
tially, when a browser accesses a resource, if the lo-
cal cache matches, cached content is used; otherwise,
a server request verifies a negotiated cache match.
Consequently, we suggested a technique to deter-
mine identity based on security crawler access behav-
ior, and conducted preliminary experiments to assess
whether APEs demonstrate cache behavior consis-
tent with regular browser users when visiting phishing
websites.

3.2.2 Experimental Set UP

For this experiment, we constructed a webpage (route:
/index) that incorporated an image (route: /img.jpg),
with the image’s HTTP response header featuring a
Cache-Control header (max-age=86400), mandating
a 24-hour browser cache. To enforce this caching be-
havior, we designed a redirection that compelled mul-
tiple visits to our webpage. Clients were redirected
to the index page, with varying parameters conveyed
in the URL via the HTML Meta tag, and redirection
was capped at three instances. Consequently, under
default cache strategies employed by Chrome, Fire-
fox, Edge, and Safari, clients would initiate the fol-
lowing request sequence: /index->/img.jpg (Cached)-

>/index?A->/index?B->/index?C, where, A, B, and C
represent query strings in the URL.

Our experimental websites were deployed on a
cloud server and the URLs were categorized into four
groups, each submitted separately to the four major
APEs: GSB, MS SmartScreen, APWG, and ESET.
The backend of these websites recorded each request
for /index and /img.jpg. During post data collec-
tions, we analyzed requests with URL query strings
named NULL, A, B, and C, along with /img.jpg re-
quests, treating them as one group. By assessing the
number of /img.jpg requests within this group, we
could gauge the likelihood of using a browser caching
mechanism to evade detection from APEs.

Importantly, we observed during our experiment
that some APEs tended to shift IPs upon redirec-
tion, hindering our ability to trace redirections and
tally accesses initiated by a single security crawler.
We thus updated our method with a unique design
(Figure 2) to track specific security crawler requests
using a sequence RequestGroupID: [RandomID-1,

RandomID-2, ..., RandomID-N]. Initially, the first Re-
questGroupID and associated RandomID are gener-
ated and the server responds with the RandomID,
which is subsequently used as the URL’s query string
for the next redirection. Each client visit to the in-
dex page generates a new RandomID related to the
RequestGroupID until the preset redirection limit is
reached. The initial RandomID is used as the URL pa-
rameter for all subsequent image requests, enabling us
to count the number of image file requests containing
the same RandomID under the same RequestGroupID
in the URL.

3.2.3 Observed Results

GSB. Our experiment revealed that GSB’s anti-
phishing crawlers exhibit distinct behaviours when
accessing static website resources compared to reg-
ular user browsers, initiating new requests for re-
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Figure 2: The Experiment Design of Cache-based Mecha-
nism.

sources that should have been cached. Hence, cache
mechanisms might effectively identify GSB crawlers
and could potentially bypass the current GSB phish-
ing detection process.
MS SmartScreen. The experiment data suggest that
MS SmartScreen crawlers’ behaviour towards cached
resources is identical to that of regular users, imply-
ing cache mechanisms cannot identify these crawlers.
APWG. In this experiment, APWG demon-
strated adherence to cache policies on some occa-
sions—requesting /img.jpg only once upon the ini-
tial visit and not on subsequent redirected requests.
However, instances of non-adherence—requesting
/img.jpg multiple times within the same request
set—were also observed. APWG’s anti-phishing
crawlers exhibited varied behaviours, leading to the
discovery of some issues:

• In some of APWG’s request data, we found that
APWG’s anti-phishing crawlers could not effec-
tively execute all redirect requests, sometimes
failing to execute the third redirect, either only re-
questing the /index page without parameters, or
only executing the /index?A page after the first
redirect, or at most requesting the /index?B page
after the second redirect, which is also signifi-
cantly different from the behavior of normal users.

• APWG’s crawlers invariably disregarded page re-
fresh delay times set in HTML, executing all redi-
rects to the /index page and /img.jpg requests far
quicker than the specified refresh time.

ESET. Similar to APWG, ESET showed partial com-
pliance with browser cache policies during the exper-
iment. Notably, the behaviours of their anti-phishing
crawlers also exposed the same issues as APWG:

• In all of ESET’s request data, we found that
ESET’s anti-phishing crawlers could not effec-
tively execute all redirect requests, these anti-
phishing crawlers always failed to execute the
third redirect, either only requesting the /index
page without parameters, or only executing the
/index?A page after the first redirect, or at most re-
questing the /index?B page after the second redi-

rect, which is also significantly different from the
behavior of normal users.

• Like APWG’s crawlers, ESET’s ignored HTML-
set page refresh delays, executing all possible
redirect /index page and /img.jpg requests much
faster than the allotted refresh time.

Therefore, we postulate that cache mechanisms
can partially identify anti-phishing crawlers from
APWG and ESET. This experiment also unveiled ad-
ditional abnormal behaviours by APWG and ESET
when visiting phishing websites, potentially ex-
ploitable alongside cache mechanisms.

3.3 Client Hints in HTTP Header

3.3.1 Background

The use of Client Hints in the HTTP header, akin
to browser cache, is a technique employed to opti-
mize performance and enhance user experience. This
method allows clients to actively convey certain char-
acteristics to the server, such as device type, operating
system, and network information. Consequently, the
server can deliver personalized content based on these
characteristics, fostering improved browsing experi-
ences. Upon a user’s webpage visit, the server can
issue an Accept-CH request to the browser, soliciting
Client Hints. The client reciprocates by returning the
requested data in the HTTP header. Notwithstanding
the fact that Accept-CH lacks universal browser com-
patibility, it is supported by major desktop browsers,
including Chrome, Edge, and Opera. Interestingly, re-
cent cybersecurity and privacy research suggests po-
tential user tracking via this vector (Ali et al., 2023).
Thus, we conducted a preliminary experiment to as-
certain whether the Client Hints returned by security
crawlers differ from those of regular users, thereby
exploring the feasibility of identifying APEs using
Client Hints.

3.3.2 Experimental Set Up

Figure 3 depicts the design of this experiment,
wherein we crafted a single-page website featuring
an image. When /index was accessed from a reg-
ular user’s browser, it would automatically solicit
/img.jpg. The response returned encompassed the
Accept-CH directive, incorporating all hints that the
server sought. Desktop browsers compatible with
Accept-CH appended some or all of the listed client
hint headers in subsequent requests. We launched
these websites on a cloud server, categorizing the
URLs into four groups for submission to the four key
APEs: GSB, MS SmartScreen, APWG, and ESET.
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The backend of these websites logged all acquired
data, including HTTP headers. Following data col-
lection, we scrutinized the HTTP headers in requests
related to the Client Hints we outlined in Accept-CH
and contrasted these with data from real user browsers
supporting Client Hints. This facilitated an assess-
ment of the potential for utilizing Client Hints in re-
quest headers to evade detection by security crawlers.

APEs

 

Experimental 

Website

/index 

responds with Accept-CH

and loads img.jpg

/indexAccept-CH:sec-ch-ua-platform,downlink...

/img.jpg

Report URLs
Deploy Websites Data Analysis

Save experimental Data

Analyze HTTP Headers 

GET /img.jpg HTTP/1.1

Host: exmaple.com

......

Sec-Ch-Ua-Platform: "Windows"

Downlink: 9.8

......

①
②

③④

⑤

⑥

⑦

Figure 3: The Experiment Design of Client Hints.

3.3.3 Observed Results

GSB. Our experiment reveals that GSB’s anti-
phishing crawlers fully support Accept-CH in relation
to browser type and version. However, these crawlers
inconsistently adhere to the Accept-CH directive, of-
ten neglecting to incorporate all specified Client Hints
in subsequent requests. A noticeable omission is all
User Agent Client Hints (UA-CH) beginning with
Sec-CH-UA. This discrepancy results in a near 50%
reduction in Client Hints in the HTTP request headers
compared to normal users under identical Accept-CH
specifications. This significant difference suggests
that Client Hints could serve as an effective identi-
fier for GSB, potentially offering a method to bypass
current phishing detection mechanisms.
MS SmartScreen. The performance of MS
SmartScreen’s anti-phishing crawlers closely mirrors
that of normal users in terms of Client Hints’ content
and items in HTTP request headers. Consequently, it
is not possible to distinguish MS SmartScreen based
solely on Client Hints.
APWG. A majority of APWG’s anti-phishing
crawlers support Client Hints, with a mere 2% of re-
quests originating from unsupported browsers. The
compliance of these crawlers with Accept-CH closely
aligns with that of GSB, primarily ignoring UA-CH
headers beginning with Sec-CH-UA. Interestingly, a
subset of APWG’s crawlers return NULL values for
these headers, differing from typical user behavior.
This information suggests that Client Hints can serve
as an effective identifier for APWG, potentially offer-
ing a method to bypass its current phishing detection
mechanisms.

ESET. Our study of ESET reveals a diverse array of
clients with varying degrees of Client Hints support.
Approximately 10% of these clients exhibit behav-
ior consistent with typical users in their adherence to
Accept-CH. The remaining majority display behavior
similar to GSB or APWG, either ignoring Sec-CH-
UA starting UA-CH headers or returning NULL val-
ues. This suggests that Client Hints can be effectively
used to identify ESET crawlers, providing a poten-
tial method to bypass their existing phishing detection
mechanisms.

3.4 Summary

Upon conducting preliminary investigations into Vir-
tual Machine Detection, Cache-based Mechanisms,
and the use of Client Hints from HTTP requests, we
posit that these methods offer innovative avenues for
APE identification and evasion, to varying degrees.
This analysis also uncovers the potential vulnerabili-
ties these four APEs might encounter. Here, we enu-
merate the primary risks:

• GSB crawlers clearly indicate virtualization tech-
nology usage. Through the use of Web APIs and
JavaScript code, potential attackers may identify
specific browser and device features, thereby dis-
tinguishing GSB crawlers and evading GSB de-
tection. The range of Renderers obtained via We-
bGL for GSB crawlers is significantly limited,
permitting attackers to acquire this information,
construct a feature dataset, and subsequently iden-
tify GSB crawlers. Lastly, GSB crawlers do not
adhere to browser caching policies and do not
fully adhere to the Accept-CH directive of Client
Hints when visiting websites. These distinctive
behaviors could be exploited by attackers to filter
GSB requests and dodge detection.

• MS SmartScreen crawlers display user-like be-
havior when visiting phishing websites, posing
challenges for identification and evasion through
the cache-based mechanism or Client Hints. De-
spite this, MS SmartScreen does reveal limita-
tions in handling virtualization feature detection
and Renderer diversity. These shortcomings pro-
vide potential avenues for detection evasion.

• APWG crawlers emulate real-user behaviors
when accessing phishing websites, including par-
tial adherence to browser cache behaviors. This
similarity confers a degree of resistance to cache-
based mechanisms. However, APWG’s defense
against virtual machine detection and the use
of Client Hints is inadequate. Additionally, its
handling of web page redirection and delayed
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page refresh diverges from typical user behav-
ior. These disparities allow attackers to identify
APWG crawlers and evade detection by employ-
ing multiple redirects or delayed webpage load-
ing.

• ESET has a more obvious use of virtualization
technology, with similar resilience as APWG in
virtual machine detection techniques and use of
Client Hints in HTTP requests. It also has incon-
sistent behaviors in resource consumption activi-
ties (redirection and delayed page refresh) com-
pared to the behavior of real user. Attackers can
exploit these flaws to evade detection from ESET.

Table 1 presents a comparative analysis of the
effectiveness of three potential cloaking techniques
against APEs. To further evaluate these methods
against anti-phishing blacklists and to assess their po-
tential risks to Internet users, we have designed an
additional experiment to observe the real blacklisting
behavior of mainstream browsers against these tech-
niques.

Table 1: The comparison of effectiveness of potential cloaks
against APEs

GSB MS SmartScreen APWG ESET

Virtual Machine Detection
√ √ √ √

Cache-based Mechanism √ × √ √

Client Hints √ × √ √

APEs

Potential Cloaks

� -> More effective � -> Less effective × -> Not effective

1. Configure the Phishing

Website Per Experiment

2. Deploy the Phishing

Websites on the Cloud

3. Configure Domains for

Phishing Websites

4. Report the URLs of

Phishing Websites to APEs

5. Monitor Blacklisting on

our designed Platform

6. Disable the Websites &

Analyze the Data

Figure 4: The overview process of the experiment.

4 PROPOSED SCHEME

Figure 4 offers an overview of our experimental pro-
cedure. Initially, we developed corresponding simu-
lated phishing websites incorporating the aforemen-
tioned techniques. 20 such websites including three
experimental groups and one control were deployed
on the cloud, featuring independent domain names
and unique random paths to circumvent any effects
of unrelated internet scanning or accidental crawling.
Given that no primary browsers publicly acknowl-
edge the use of APWG and ESET for their blacklist

data, we focused on GSB and MS SmartScreen whose
blacklists extend to dominant browsers such as Safari,
Chrome, Firefox, and Edge. This allowed our results
to reflect the broad impact of cloaking techniques on
internet users.

Subsequently, we scrutinized the blacklisting be-
havior on Windows desktop browsers and macOS
platforms over a 72-hour period. In line with past
research citing an average phishing website lifespan
of around 21 hours (Oest et al., 2020a), we deemed
this timeframe sufficient. Post monitoring, we dis-
continued these simulated websites and analysed the
obtained data.

To automate our process, we engineered a sys-
tem that chiefly embraces a BS/CS hybrid architec-
ture, featuring five modules: Control Node, Monitor-
ing Node, Task Manager, Cloud Server Manager, and
Visualized Management Platform (illustrated in Fig-
ure 5). This system enables automated deployment of
simulated phishing websites, scheduled monitoring of
blacklisting behavior, and data visualization. Operat-
ing in a distributed fashion, it offers scalability, flexi-
bility, and automated data and resource adjustment.

OCR Module

Cloud Server

 

Monitoring Node

Windows/MacOSChrome/Saf

ri/FireFox/Edge

Task

APEs

Database

Task Manager  

Visualized Management Platform

Task

Management

Cloud Server

Management

Data

Visualization
Log

Control Node

Node control

Open Friefox...

Screenshot...

Close Firefox...

http://

Screenshot

Simulated Phishing Websites

Data Analysis

Cloud Server Manager

Figure 5: The modules and workflow of proposed system.

5 EXPERIMENT SETUP

We conducted an experiment encompassing three ex-
perimental and one control group to evaluate the ef-
ficacy of three potential cloaking techniques against
anti-phishing blacklists: virtual machine detection,
the cache-based mechanism, and the application of
Client Hints in HTTP headers. Each experimental
group utilized one technique to simulate five identi-
cal phishing websites.

Experiment A – Baseline: The websites in Exper-
iment A imitated Facebook’s login page without any
cloaking techniques. This group served as a blacklist-
ing effectiveness baseline in comparison to the other
groups that utilized cloaking techniques.

Experiment B – Virtual Machine Detection: This
experiment’s websites used virtual machine detec-
tion techniques. Leveraging the limited diversity of
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the WebGL Renderer noted in the preliminary ex-
periment, we processed previously collected WebGL
Renderer data to compile a feature dataset. These
features, along with other detection features from
the dataset, were integrated into the phishing web-
site using the GoFrame framework. The backend re-
ceived various data from crawlers through frontend
JavaScript code and compared these features with the
dataset. Requests initially landing on a benign page
were classified based on their match with the dataset,
and accordingly, directed to either a benign or phish-
ing webpage.

Experiment C – Cache-based Mechanism: This
group’s websites employed a Cache-based Mecha-
nism. Based on crawler behavior observed in the pre-
liminary experiment, we implemented two redirects
on the websites with an image on the page. Similar
to the preliminary experiment method, we identified
requests initiated by the same crawler and logged the
image request frequency on the backend. After an ini-
tial landing on a benign webpage, the image request
count determined the subsequent redirection, either to
a benign or phishing webpage.

Experiment D – Utilization of Client Hints: Based
on preliminary experiment data, we developed a set
of rules for Client Hints in HTTP headers and im-
plemented them in the backend of all Experiment D
websites. Clients initially accessed a benign landing
page, receiving a server response with Accept-CH,
specifying required client hints for the HTTP headers.
If no match was found with our rules set, the client
was redirected to a phishing webpage. Conversely, a
match identified the client as a security crawler, redi-
recting it to a benign webpage to avoid detection.

6 RESULT AND ANALYSIS

For 72 hours, our monitoring platform observed six
desktop browsers, each accessing five URLs per ex-
periment, culminating in a total of 30 monitored
URLs per experiment. Figure 6 reveals that all phish-
ing websites from Experiment A were blacklisted
within 12 hours by Chrome and Firefox on Windows,
and by Chrome, Firefox, and Safari on macOS. In
contrast, three websites from Experiment A remained
unblacklisted by Edge on Windows at the end of our
observation period. Remarkably, the simulated phish-
ing websites in Experiments B and D, employing vir-
tual machine detection techniques and HTTP Client
Hints headers respectively, evaded blacklisting by all
browsers throughout the experiment. As depicted in
Figure 7, only three websites from Experiment C, uti-
lizing a cache-based mechanism, were blacklisted by

Edge on Windows after 7 to 7.5 hours; all others re-
mained unblacklisted.

Figure 6: Number of blacklisted websites in all browsers of
test over the submission time.

Figure 7: Number of blacklisted websites in all browsers of
Cache-based Mechanism over the submission time.

Our findings suggest that both virtual machine
detection techniques and the use of Client Hints
in HTTP headers can effectively evade detection
from GSB and MS SmartScreen crawlers, thereby
avoiding blacklisting and potentially exposing Inter-
net users to risk. Similarly, the cache-based mech-
anism demonstrated substantial evasion capabilities
against GSB crawlers and to a lesser extent against
MS SmartScreen, posing potential risks to users.

7 CONCLUSION

Anti-phishing blacklists constitute a critical mecha-
nism for safeguarding Internet users from phishing
websites and are extensively integrated into a multi-
tude of browsers. This paper explores contemporary
cloaking techniques deployed by phishing websites,
shedding light on vulnerabilities and potential hazards
inherent in current anti-phishing blacklists. We pro-
pose three novel cloaking strategies that have adeptly
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circumvented detection from mainstream APEs and
assess their efficacy using a bespoke framework. This
paper also underlines potential strategies for bypass-
ing APE detection. Future studies could further delve
into these avenues, investigating real-world applica-
tion of these cloaking techniques or conducting large-
scale evaluations of these methodologies.
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