
Work in Progress: Extending Virtual Prototypes of Microprocessor
Architectures with Accuracy Tracing

Johannes Kliemt a and Dietmar Fey b

1Chair of Computer Science 3 (Computer Architecture), Friedrich-Alexander Universitaet Erlangen-Nuernberg,

Martensstr. 3, Erlangen, Germany

Keywords: vHIL, Virtual Prototypes.

Abstract: Virtual Prototypes of microprocessor architectures (VPs) extensively support the software development pro-

cess with the ability to build virtual Hardware in the Loop (vHIL) test benches. A physical hardware is not

necessary since the VP is also a functional simulation model, although with reduced accuracy. The actual

deviation to the physical hardware in the time domain is mostly unspecified and dependent on the executed

application software. This leads to issues when used in the development of software with real time require-

ments. The authors propose a new way of determining this inaccuracy via a trace unit integrated into the VP.

Accuracy is now determined for each application software on the fly taking its individual paths through the

model and not by a unrelated general set of accuracy benchmarks. A more reliable statement on the later

temporal behavior on the physical hardware can therefore be given.

1 INTRODUCTION

Functional simulation models of different micropro-

cessors architectures called Virtual Prototypes (VPs)

are already actively used in science for many years

now. They recently became also popular for industrial

usage. Together with Synopsys, Infineon released the

third generation of their Aurix microcontroller fam-

ily as VP back in 2020 for their automotive Tire

1 and OEM customers (Simone Souza, 2020), two

years before physical chip examples became avail-

able. VPs can be used to realize so called virtual

Hardware in Loop test benches where in contrast

to normal HIL simulations also the actual hardware

sensing and controlling the plant model is simulated

(Reitz et al., 2020). Such a vHIL was developed by

the authors in cooperation with a widely known car

manufacturer for evaluating purposes with the second

generation Aurix microcontroller and an electric en-

gine as plant model. During the project, the question

on the accuracy of the used Aurix TC3xx VP and on

the reliability of its simulation results came up. Find-

ing an answer to this question was difficult, leading to

a new idea for approaching and handling inaccuracy

in VPs. This concept will be proposed in this position

a https://orcid.org/0009-0002-6515-4724
b https://orcid.org/0000-0002-6077-4732

paper.

2 OVERVIEW

A exemplary accuracy measurement on the TC39x

VP for motivation of the proposed idea will be pre-

sented in section 3, Afterwards, a short overview

of the standard modeling technique in VPs for sys-

tem buses is given in section 4 explaining a possible

source of the encountered inaccuracy. Consequences

for VP users and an idea for mitigation with automatic

inaccuracy tracing is described in section 5. A sum-

mary and a outlook on future work in section 6 con-

cludes the paper.

3 ACCURACY OF VPS

In general a VP is to 100% accurate, if its simulation

produces the exact same result as its counterpart, the

physical hardware. This includes the functional as-

pect e.g. an instruction of a compute core produces

the same result as well as the non functional aspect,

e.g. the result of the instruction is available at the

same point in time on both platforms.

Determining the total accuracy of a VP is a non

trivial and complicated task. Different parts of the VP

Kliemt, J. and Fey, D.
Work in Progress: Extending Virtual Prototypes of Microprocessor Architectures with Accuracy Tracing.
DOI: 10.5220/0012131800003546
In Proceedings of the 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2023), pages 409-416
ISBN: 978-989-758-668-2; ISSN: 2184-2841
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

409

might be modeled with different accuracy and simu-

lation speed goals in mind. These two goals are in-

versely correlated to each other. Usually the differ-

ent components are modeled by different developer

teams as well, increasing the chance for deviation in

the modeled accuracy. So it can occur that the most

frequently used computational units (on the TC3xx

architecture the TriCores) and their direct memory pe-

ripheral devices are simulated with near hardware ac-

curacy whereas other peripherals show significant in-

accuracies.

The achievable accuracy depends therefore on the

concrete software application running on the VP, with

its individual paths through the system. During the

work with the developed vHIL some serious time de-

viation at transactions over the Aurix TC39x’s central

SRI Bus in the VP had been observed in comparison

with the physical hardware. For a more precise and

qualified statement an accuracy benchmark of the SRI

Bus with usage of the Aurix Direct Memory Access

(DMA) module was deployed. This benchmark and

the evaluation of its results will be described in the

following section.

3.1 Accuracy Benchmark Setup

The benchmark consists of a series of DMA transfers

between two Data Scratch-Pad RAMs (DSPRs) with

an increasing number of individual moves per DMA

transfer (1 to 64). A move is composed of reading

one 64-Bit data word (SRI Bus data width) from the

first DSPR and writing it to the second one. This test

case is not detached from real world applications as

its functional aspect can be found in use cases like

fetching ADC conversion results or piplined data pro-

cessing with multiple TriCores. Figure 1 depicts the

control and data flow of the benchmark setup, which

was implemented with a simple C program. The cor-

responding binary was then executed both on the VP

and on the physical hardware.

Figure 1: SRI Bus accuracy benchmark setup.

The DMA module was used as it has less hard-

ware features possible affecting the measurement of

the actual bus transfer times. One could also use one

of the TriCores for transferring data between the two

memories in this benchmark, but their internal archi-

tecture (Load-Store pipeline and Store Buffers) will

hinder a reproducible and precise measurement.

Time was measured via the built-in performance

counters in the TriCore orchestrating the DMA op-

eration. This is the simplest but still precise time

measuring method, requiring no additional external

adaption effort neither to the VP nor to the physical

hardware. A time stamp from the clock counter regis-

ter was read immediately after initiating a DMA SW

request and at the beginning of the Interrupt Service

Routine (ISR) following the completed DMA trans-

fer, measuring therefore the number of elapsed clock

cycles during the DMA operation. The TriCore is

idling via Nop instructions during this time. For nar-

rowing down the measurement result as close as pos-

sible to the actual bus transactions, a second measure-

ment was done, triggering the DMA ISR manually by

SW. Subtracting this time from the first measurement

results in the active time of DMA Move Engine as

the only measurement overhead over the actual SRI

Bus transfer times. A more accurate way of measur-

ing the actual bus transfers on the physical hardware

is not possible without special and costly (off-chip)

trace devices.

The measurement for each DMA transfer was ex-

ecuted 100 times and rounded to the next integer to

avoid any disturbance introduced by the instruction

cache of the TriCore executing the measurement.

The Aurix TC3xx VP can be configured before

simulation start regarding the simulated accuracy. To

avoid any inaccuracy in the VP due to temporal de-

coupling between the TriCore (with its clock counter)

and the DMA module, the quantum size was set to

one clock cycle. The quantum size defines how long

different components of the VP can run ahead of each

other in simulation time before resynchronizing with

the rest of the system. This optimization sacrifices

accuracy for simulation speed and would distort the

accuracy measurement. Setting it to one clock cycle

for the TriCore results in an immediate reaction on the

DMA interrupt as the physical hardware does.

There might still some inaccuracy in the actual im-

plementation of the TriCore performance counters in

the VP, delivering a wrong number of elapsed clock

cycles in the measurement. To encounter that, the

measurement setup from above was repeated using

now a more complex and elaborate way for determin-

ing the timestamp values. The actual point in real time

at the two time stamps had to be detected. For the VP,

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

410

this becomes a trivial task by attaching callback func-

tions to the relevant events. They report the current

point in simulated time when their events were trig-

gered. These are the start of the actual write to the

DMA modules control register initiating a SW trig-

gered DMA transfer and the TriCore program counter

register changing to the first address of the DMA ISR.

On the physical hardware one has to use the On-

Chip Debug System (OCDS) module of the TC39x

architecture with its (in relationship to the VP) limited

tracing capabilities. For avoiding a high cost Lauter-

bach tracer hardware, the free of charge Infineon

Multi-Core Debug Solution (MCDS) Trace Viewer

software was used for capturing the relevant time in-

formation. The time of occurrence of the mentioned

events from above are stored to a special trace mem-

ory inside the Aurix TC39x chip. Its size is limited,

so the complete measurement run had to be divided

into several steps.

For all measurements, the Synopsys TC39xB

v2.4.0 VDK was used as VP and a Infineon

KIT A2G TC397 5V TRB BD-Step Starter Kit for

its physical counter part. The clock of the TriCore ex-

ecuting the benchmark was configured on both plat-

forms to 300 MHz as well as the clock for the SRI

Bus. The DMA module runs internally with its maxi-

mum available clock frequency of 100 MHz.

3.2 Measurement Results

Figure 2 shows the total measured time in clock cy-

cles for each DMA transfer on the VP (blue bars) and

on the physical hardware (orange bars) for different

number of moves per DMA transfer.

Figure 2: Measured time per DMA transfer on VP and phys-
ical hardware.

For a better view on the actual deviation, figure

3 plots the times per individual move for each DMA

transfer. The numbers are the results of dividing the

total numbers of clock cycles per DMA transfer from

figure 2 by the number of actual DMA moves marked

on the x-axis.

The asymptotic approach in both curves suggests

Figure 3: Measured time per DMA move on VP and physi-
cal Hardware.

that there is is still a overhead in the measurement due

to the initial internal setup time of the DMA module

for each new transfer. This overhead becomes more

and more negligible with increasing number of DMA

moves. Therefore the two curves lead to the actual

DMA data transfer times over the SRI Bus. It can

be seen, that each DMA move consisting of one read

an one write transaction over the SRI Bus takes 15

clock cycles on the physical hardware and 40 on the

VP resulting in an overestimation of the VP by 166%.

The actual internal DMA setup time can be deter-

mined from the measurement results as well. Table

1 shows exemplary the actual measured clock cycles

depicted in figure 2 for DMA transfers from 1 to 5

moves per transfer.

Table 1: Measured number of clock cycles for DMA trans-
fers with different number of moves.

moves 1 2 3 4 5

vp 42 82 122 162 202

hw 24 39 54 69 84

Subtracting 2 respectively 9 clock cycles and di-

viding by the number of moves per DMA transfer

leads exactly to the 40 and respectively 15 clock cy-

cles the curves in figure 3 approach. The internal

DMA setup time for each new transfer is therefore 9

clock cycles on the physical hardware. The VP mod-

els it with only 2 clock cycles underestimating the ac-

tual time by 77%.

3.3 Measurement Validation

Figure 4 plots the result of the same measurement

setup from section 3.2 done utilizing now realtime

time stamp values provided by the MCDS tracing

module for the physical hardware and the elapsed

simulated time for the VP. For better comparability,

the measured times per move in each DMA transfer

depicted on the y-axis have already been converted to

clock cycles (through division by the clock period of
10
3

ns).

Work in Progress: Extending Virtual Prototypes of Microprocessor Architectures with Accuracy Tracing

411

Figure 4: Measured time per DMA move on VP and physi-
cal hardware with MCDS tracing.

The time of one DMA move over the SRI Bus

approaches 15 clock cycles in the physical hardware

(orange curve) and 40 clock cycles in the VP (blue

curve). These are the exact same number of clock cy-

cles determined with the first measurement method.

This less complicated time measurement method of

counting the number of elapsed clock cycles on the

TriCore and its results are therfore validated.

3.4 Actual Bus Transfer Times

The results from the last two sections do not reflect the

individual data transfer times on the SRI Bus. They

also include the additional operation time of the DMA

model initiating the bus transfers and caching the read

data from the source memory before it is written via a

second SRI Bus transfer to the target memory. Due to

the high insight offered by the VP, the actual starting

and stopping times of the modeled bus transactions

are available. Read access is modeled with 30 ns and

the write access with 37 ns adding up to 67 ns SRI

Bus time for one DMA move.

This times cannot be determined by measurement

in the physical hardware. The measured time for one

complete DMA data move extracted from the MCDS

trace generated in section 3.3 varies between 40 ns

and 55 ns. This is in the best case still 12 ns less

than the actual bus time modeled in the VP. An in-

sufficient timing model of the SRI Bus in the TC39x

VP is therefore confirmed a second time. The exact

source of this inaccuracy is indeterminable, since the

Synopsys TC39xB v2.4.0 VDK is closed source.

Documentation of the VP shows that the Transac-

tion Level Modeling (TLM 2.0) standard was used for

modeling of all system buses. An overview over this

modeling technique with its achievable accuracy will

be given in the next section. Additionally, a possible

explanation for the measured inaccuracy on the SRI

Bus model of the TC39x VP will be provided.

4 TLM BUS MODELING

With the TLM bus modeling technique, all address,

data and control signal lines of a bus are abstracted

away through function calls between the models of

the bus masters and slaves. Addresses and data are

packed into a so called generic payload object and

only a pointer to that object is transmitted as C++

function argument between bus participants. A sec-

ond argument provides information to the current

phase of the transaction. The TLM 2.0 language ref-

erence manual ((OSCI), 2009) describes two coding

styles, namely ”Loosely Timed” (LT) and ”Approx-

imately Timed” (AT) weakly related to different ac-

curacy levels. AT is generally considered more accu-

rate than LT, but the concrete accuracy difference is

neither defined nor enforced. This also holds for the

assignment of both approaches to a specific accuracy

level in the interval from cycle accurate to untimed.

Cycle accurate (CA) means the VP is as accu-

rate as its Register Transfer Level model. On this

level of abstraction, the architecture is described in

form of logic between register (hence Register Trans-

fer Level) operating on system clock cycles as time

base. Such a RTL model is also the starting point

for chip manufacturer developing physical hardware.

The aptness of TLM 2.0 for cycle accurate bus mod-

els achieving a speedup of at least one order of magni-

tude over RTL models was shown by (Günzel, 2011).

To do so, the rules for the AT coding style had do

be modified and extended. Only the relevant cycles

corresponding to a phase transition in the modeled on

chip bus protocol from the RTL model are then sim-

ulated, abstracting away from for a pure functional

simulation unnecessary clock cycles. Those are wait-

ing cycles for address or data lines becoming valid

or for the master or slave becoming ready, which can

not be skipped inside a RTL model. An example for

a 2 beat write burst in a pseudo AXI protocol is de-

picted in figure 6 where the relevant clock cycles from

the corresponding RTL simulation in figure 5 are not

simulated. The (A)W WALID signals indicate a valid

write address or data when high, the (A)W READY

the time, when the slave is ready for a new address or

new data. The address and data lanes of the bus are

not shown here.

In clock cycle 5 neither the master nor the slave

is ready for the transmission of the second burst beat,

in cycle 6 and 7 the data to be transferred is not valid

yet. The doted vertical lines in figure 6 mark the cy-

cles with relevant phase transitions (control signals

becoming high). They are simulated by executing

a function call transmitting the relevant information

from the master to slave on the bus (fw()) and vice

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

412

Figure 5: Burst write over pseudo AXI Bus - RTL model.

versa (bw()). At the transmission of the second data

beat in clock cycle 8, the slave is already ready for the

transmission (signal W READY is high) so no back-

wards call is necessary.

Figure 6: Burst write over pseudo AXI Bus - TLM CA
model.

The TLM 2.0 AT coding style defines two basic

phases, one for address and one for the data exchange

and a corresponding set of rules. Although it is possi-

ble to define additional phases, a repetition of a phase

is not supported. The alternative of defining num-

bered burst beat phases increases simulation overhead

and is only possible for bus protocols with a prede-

fined number of burst beats (Günzel, 2011). There-

fore the multiple data transmissions inside a burst

transfer have to be modeled with one data phase only

approximating any delay between each data beat. Fig-

ure 7 locates this source of inaccuracy with a question

mark.

In clock cycle 3 at the start of the data phase, the

bus master has to anticipate how many clock cycles

his data for the second write beat will not be valid in

the future. Only the clock cycles marked with a ver-

tical dotted line are simulated via forward (fw()) and

backward (bw()) function calls analogous to the TLM

cycle accurate case. Note that the backward function

call at clock cycle 8 in figure 7 finishing the data phase

can also occur a few clock cycles fewer or later due

Figure 7: Burst write over pseudo AXI Bus - TLM AT
model.

to the above described inaccuracy. If the data valid

delay is already known at clock cycle 3, the TLM AT

model can be indeed cycle accurate, too. The in sec-

tion 3 measured inaccuracy on SRI Bus transactions

inside Aurix TC39x VP comes very likely from badly

modeled address and data phases with the TLM AT

coding style.

With the TLM 2.0 LT coding style the abstrac-

tion increases one step, leaving only one phase for the

whole bus transaction. This increases the possibili-

ties for inaccuracy once again due to additional ab-

straction from the address phase. Figure 8 depicts the

example transaction from above modeled in the LT

style.

Figure 8: Burst write over pseudo AXI Bus - TLM LT
model.

It consists of only one blocking transport (bt())

function call from the master to the slave starting at

the first dotted vertical line and returning at the sec-

ond one. Note that also here the return of the function

call modeling the whole bus write transfer can occur

fewer or later due to the time abstraction of the LT

coding style.

Work in Progress: Extending Virtual Prototypes of Microprocessor Architectures with Accuracy Tracing

413

5 HANDLING INACCURACY IN

VPS

As described in (Synopsys, 2013) VPs are not a re-

placement for actual HIL testing but provide aid in

the different stages of the V-cycle SW development

model. With this in mind, one might argue, that a

time inaccuracy of a few clock cycle as exemplary

measured in section 3.2 does not make a VP func-

tional incorrect and unusable for SW with real time

requirements. However, for those SW applications

timeliness of tasks is an additional functional property

defining correctness. This rises the question, whether

inaccuracy due to abstraction in the modeling makes

VPs still usable here. In case of just the pure func-

tional aspect of the individual task inside the software

the answer is a definite yes. Realizing event chains

with different hardware and software modules (e.g.

ADC input sampling → DMA data transfer → Core

calculating new PWM width→ PWM module output)

will definitely profit from the numerous advantages a

VP offers. The actual challenge here is getting the

overall timing of an event chain and the timing be-

tween its different components right. Typically there

is a periodic deadline, where new output values have

to be available for the whole real time system to work

on properly.

In the best case, all modeled components inside

a VP have a positive time inaccuracy compared to

the physical hardware, giving tasks a greater slack on

their deadlines on the latter one. However, if this pos-

itive time inaccuracy is to great, SW developers might

encounter tasks not holding their deadlines only in

the VP. This will result in unnecessary changes to the

overall software design. In the exact opposite case

the designed SW systems performs correct on the VP,

but produces timing issues on the physical hardware.

These issues cannot be detected and located insde the

VP and require expensive testing and debugging on

the physical hardware.

All these problem cases could be dealt with at

least to a certain amount of confidence if the total

inaccuracy inside the VP is known and always pos-

itive (task runtimes on VP not faster than on physical

hardware). This is in most times not possible, since

accuracy of VPs is usually determined by running a

(high) number of benchmarks comparing there execu-

tion time between the VP and the corresponding phys-

ical hardware. An examples is the Embench Bench-

mark Suit 1 that was used by (Herdt et al., 2020) to

evaluate the accuracy of their VP modeling the SiFive

HiFive1 architecture. Each benchmark was deployed

1https://www.embench.org/

on the VP and then compared to the execution time

on the open source RTL model of the corresponding

SiFive HiFive1 board. The reported accuracy varies

depending on the actual benchmark from -10.9% to

13.5% clock cycles (Herdt et al., 2020).

A second example is the GVSoC VP

(Bruschi et al., 2021) which acts as a VP for the

whole PULP processor platform 2. The achieved

average accuracy of 10% is acceptable for a VP

designed for Design Space Exploration. However,

accuracy was evaluated only with one complex test-

case (MobileNet V1 convolutional neural network).

A general reliable statement on the VPs accuracy

with this evaluation approach is not possible. As al-

ready mentioned in section 3, the accuracy highly

depends on the paths that are individually followed

through the whole system by an application software.

For reliable approximations by the VP on the physi-

cal hardware, this accuracy comparison has to be re-

peated for each individual software application. Even

worse, this comparison is necessary after each major

change of the software in its development process.

To counter this problem the authors propose a

modified approach for determining (in-) accuracy in

VPs in the next section.

5.1 Proposed Solution

The key idea is to automatically determine the indi-

vidually encountered inaccuracy and report it to the

user of the VP. All time deviations in each modeled

component have to be determined by the VP devel-

oper and than included in its source code for trac-

ing. Costly accuracy benchmarks done by every VP

user for its individual SW application can therefore be

completely avoided.

For buses, this trace adds up the inaccuracy for

each executed transaction over all involved bus com-

ponents (e.g. arbiter) between master and slave. All

sources of inaccuracy have to be located and quanti-

fied at least in well defined intervals. For the localiza-

tion of possible inaccuracy in bus modeling via TLM,

a short overview was already given in section 4. The

challenging part is the quantification of the modeling

error. There are two kinds of sources for these errors,

namely static and a dynamic ones.

Static errors occur independently of any dynamic

events on the bus peripherals. An example is a archi-

tectural constraint in the master that introduce a static

number of wait cycles, before the data for a new burst

beat can be outputted on the bus. A modeling error

does not need any tracing here, since a refinement of

2https://pulp-platform.org/

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

414

the TLM model is trivial and comes with no simula-

tion overhead. The master computes the number of

burst beats multiplied by the static delay time and no-

tifies the slave with the forward call (e.g see clock

cycle 3 in figure 7). The slave can account for that

delay by delaying his backward call accordingly. If a

refinement is not possible (e.g. due to a closed source

VP) tracing the resulting static inaccuracy for a bus

transfer is a suitable alternative. However, if at the

begin of the data phase the data delay is not known

yet for each burst beat, inaccuracy will occur in the

TLM transaction. To reflect that dynamically caused

inaccuracy in the proposed trace methodology, it logs

the minimum and maximum possible delays for that

transaction. These delays have to be (analytically) de-

termined once for each master and each slave attached

to the bus. Doing that for a specific VP as proof of

concept will be up to future work.

For better explanation of the proposed accuracy

tracing methodology, a minimal hypothetical exam-

ple hardware is depicted in figure 9. It consists of a

compute core (Core 0), that is connected to two mem-

ories (Memory 0 and Memory 1) via a common bus.

Let the access time for Memory 0 be constant 3 clock

cycles for a read operation and 5 clock cycles for a

write operation. Both access types have been some-

how modeled with a 2 clock cycle TLM transaction

in the corresponding VP, see dotted arrow in figure

9. The same was done with the TLM modeled ac-

cesses to Memory 1, this time with 5 and respectively

6 clock cycles. Its physical counterpart has a dynamic

access time for read operations between 3 and 7 clock

cycles and for write operations between 5 and 9 clock

cycles.

Figure 9: Minimal hypothetical example hardware for ac-
curacy tracing of TLM modeled buses.

Consider now a load operation from Memory 0 by

Core 0, that is followed by a store operation to Mem-

ory 1. This will take 3 + 5 to 9 clock cycles on the

physical hardware. The TLM transactions inside the

VP approximate it by 2 and 6 clock cycles. Deploy-

ing a time measurement in the VP results in a time

of 8 clock cycles for the whole load store sequence.

However, this measurement result contains a hidden

inaccuracy of 1 to 4 clock cycles. To get hold of this,

the accuracy trace can be consulted. It logged for the

TLM read transaction a deviation of 1 clock cycle

and for the write transaction a minimal deviation of

-1 clock cycle and a maximal deviation of 3 (see red

ovals in figure 9). With this additional information,

the actual execution time of the load store sequence

on the physical hardware can now be determined in

at least a certain time interval by measurements in the

VP. A software developer, that uses latter one for time

performance evaluation, has therefore now a more re-

liable decision base for making changes to his code.

6 SUMMARY & FUTURE WORK

This position paper proposed the so far not yet imple-

mented idea of VPs, tracing the their individual inac-

curacy as an additional simulation output. The idea

was motivated via an exemplary accuracy measure-

ment done on a industrial grade VP of the Infineon

TC39x microcontroller family. A short overview of

the bus modeling technique with TLM 2.0 and its

achievable accuracy was given, narrowing down the

most likely reason for the detected deviations. The

last section of this paper described shortly the con-

sequences for VP users and a way for mitigation by

introducing the idea of VPs reporting the individually

encountered overall inaccuracy to its user.

Future work will be the actual implementation

of the proposed idea, expanding this concept from

bus modeling also to the other important compo-

nents inside a VP. Examples are central compute units

with their piplined instruction execution and caches,

requiring additional modeling techniques with their

specific sources of inaccuracy.

REFERENCES

Bruschi, N., Haugou, G., Tagliavini, G., Conti, F., Benini,
L., and Rossi, D. (2021). Gvsoc: A highly config-
urable, fast and accurate full-platform simulator for
risc-v based iot processors. In 2021 IEEE 39th In-
ternational Conference on Computer Design (ICCD),
pages 409–416.

Günzel, R. (2011). Taktgenaue Bus-Simulation mit der
Transaction-Level-Modellierung. PhD thesis.

Herdt, V., Große, D., and Drechsler, R. (2020). Fast and
accurate performance evaluation for risc-v using vir-
tual prototypes. In 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 618–
621.

Work in Progress: Extending Virtual Prototypes of Microprocessor Architectures with Accuracy Tracing

415

(OSCI), O. S. I. (2009). Osci tlm-2.0 language refer-
ence manual. https://www.accellera.org/images/
downloads/standards/systemc/TLM 2 0 LRM.pdf.
accessed 04.04.2023.

Reitz, J., Gugenheimer, A., and Roßmann, J. (2020). Virtual
hardware in the loop: Hybrid simulation of dynamic
systems with a virtualization platform. In 2020 Winter
Simulation Conference (WSC), pages 1027–1038.

Simone Souza, Synopsys, I. (2020). Synopsys ex-
pands portfolio of automotive vdks with support
for infineon’s aurix tc4xx 32-bit microcontroller
family. https://news.synopsys.com/2020-10-27-
Synopsys-Expands-Portfolio-of-Automotive-VDKs-
with-Support-for-Infineons-AURIX-TC4xx-32-bit-
Microcontroller-Family. accessed 04.04.2023.

Synopsys (2013). Virtual hardware “in-the-loop”: Earlier
testing for automotive applications. https://www.

synopsys.com/cgi-bin/proto/pdfdla/docsdl/virtual
hardware wp.pdf?file=virtual hardware wp.pdf.
accessed 30.03.2023.

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

416

