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Abstract: Advanced breast cancer includes locally advanced disease and metastatic breast cancer with distant metastasis 
in other organs like lung, liver, brain and bone. While it cannot be cured, its progression can be controlled by 
modern treatments including targeted therapies. However, these therapies as well as certain risk factors like 
advanced age can facilitate toxicities such as prolongation of the time interval between the start of the Q wave 
and the end of the T wave in patient’s electrocardiogram. This could lead to serious life-threatening issues 
like cardiac arrhythmia. In this paper we addressed the issue of individual, patient-level prediction of QT 
prolongation in advanced breast cancer patients treated with the CDK4/6-inhibitor ribociclib. By formulating 
the prediction task as a survival analysis problem, we were able to apply five conventional statistical and 
machine learning survival modelling algorithms to both clinical trial and real-world data in order to train and 
externally validate prediction models. Cox proportional hazards model regularized by elastic net reached 
external, cross-study validation performance (c-index based on inverse probability of censoring weights) of 
0.63 on the real-world data and 0.71 on the clinical trial data. The most important predictive factors included 
baseline electrocardiogram features and patient quality of life. 

1 INTRODUCTION 

Breast cancer is the most frequent female cancer 
worldwide (Arnold et al., 2022). In 2020, there have 
been more than 2.3 million new cases and 685,000 
deaths recorded, with the tendency to reach 3 million 
new cases and 1 million deaths in 2040 (Arnold et al., 
2022). If not diagnosed and treated early, it can spread 
to other organs like liver, lungs, brain and even bones. 
Although such advanced (also called metastatic) 
breast cancer is considered incurable, its progression 
and symptoms can be kept under control by 
treatments such as chemotherapy, radiotherapy, 
immunotherapy, hormone and targeted therapy. An 
important type of targeted therapy are Cyclin-
Dependent Kinase 4 and 6 (CDK4/6) inhibitors. 
These relatively new drugs block the activity of 
CDK4/6 kinases, which are crucial for growth and 
division of cancer cells. In this way, they can improve 
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Figure 1: Illustration of QT prolongation in patient’s 
electrocardiogram (Brody, 2016).  

survival of patients as well as their quality of life 
considerably (Lu Y.S. et al., 2022). However, some 
therapies are associated with potentially serious 
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toxicities including prolongation of the time interval 
between the start of the Q wave and the end of the T 
wave in patient’s electrocardiogram (ECG) (Ward et 
al., 2019), as illustrated in Figure 1 (Brody, 2016). An 
extended QT interval can lead to cardiac arrhythmia 
and in some cases to sudden cardiac death. QT 
prolongation is part of the toxicity assessment during 
every new medication approval process. Many drugs 
associated with a QT prolongation have been 
approved. During their application, QT intervals need 
to be closely monitored in treated patients. Clinically, 
it would be helpful to identify patients who have a 
higher or lower risk for a QT prolongation to possibly 
adapt the monitoring according to the risk. Individual 
risk assessments are based on well-known risk factors 
like age or history of cardiovascular diseases. To the 
best of our knowledge, there are currently no 
published survival modelling approaches to 
individual prediction of QT prolongation in advanced 
breast cancer with or without treatment with CDK4/6 
inhibitors.  

The contribution of this paper is three-fold. First, 
we present the results of our feasibility study on 
predicting QT prolongation in individual advanced 
breast cancer patients treated with one of the 
prominent CDK4/6 inhibitors ribociclib. Our target 
group are patients with the most prevalent subtype of 
advanced breast cancer, namely hormone receptor‒
positive / human epidermal growth factor receptor 2‒
negative (HR+/HER2-) advanced breast cancer. 
Since our data is only partially observable (outcomes 
available only in the course of the clinical studies), 
we formulated the QT prolongation prediction task as 
a survival analysis problem, which we addressed with 
survival modelling algorithms. Second, several linear 
and non-linear algorithms are evaluated and 
compared. Third, as we had access to both smaller, 
high-quality clinical trial data and larger, lower-
quality real-world data, we performed both internal 
(within study), nested cross-validation and external, 
cross-study validation, training models in one and 
validating in another study. This enabled gaining 
valuable, potentially generalizable insights in the 
utility of both data sources for training statistical and 
machine learning survival models to predict clinical 
events. 

2 RELATED WORK 

Survival modelling algorithms have been already 
applied to different medical prediction tasks (Spooner 
et al., 2020; Qiu et al., 2020) including prediction of 
breast cancer survival (Moncada-Torres et al., 2021). 

However, there haven’t been many studies in general 
aiming at assessing the risk of QT prolongation on 
individual, patient-level, especially those treated with 
CDK4/6 inhibitors. A retrospective study of large 
healthcare claims data (Ward et al., 2019) analysed 
risk factors for QT prolongation in HR+/HER2- 
metastatic breast cancer patients. These general risk 
factors include advanced age, congenital long QT 
syndrome, cardiovascular disease, electrolyte 
abnormalities and concomitant medication. The Heart 
Failure Association of the European Society of 
Cardiology jointly with the International Cardio-
Oncology Society has provided tools for baseline 
cardiovascular risk assessment in patients scheduled 
to receive cardiotoxic cancer drugs (Lyon et al., 
2020). Risk stratification into very high, high and 
medium risk based on several patient baseline 
characteristics has been proposed, however not for 
the CDK4/6 class of drugs.  

In (Tisdale et al., 2013) a relatively accurate 
statistical model (c-statistic 0.83, sensitivity / 
specificity 0.74 / 0.77) for quantification of the QT 
prolongation risk based on easily obtainable clinical 
variables have been proposed. The model was 
developed for and applicable to hospitalized patients 
only. A related QT prolongation alert system was 
developed and implemented at Mayo Clinic, aiming 
at identification of patients under high risk of 
mortality (Haugaa et al., 2013). This rule-based 
system was derived from the expert knowledge both 
for paediatric and adult patients and represented as a 
decision tree. A more comprehensive list of risk 
factors for QT prolongation (corrected for the heart 
rate) was included into the RISQ-PATH score 
(Vandael et al., 2017), which was validated in the 
Nexus hospital network in Belgium demonstrating 
sensitivity of 0.87 and specificity of 0.46 (Vandael et 
al., 2018). In (Fasching et al., 2022) the problem of 
predicting QT prolongation was treated as a binary 
classification task. The same data was used as in our 
work and the LASSO method was applied. In one 
dataset (RIBECCA study, Decker et al., 2021), the 
area under the receiver operating characteristic curve 
(AUROC) measured in cross-validation reached 0.67 
(weighted AUROC 0.77). However, no predictive 
signal was observed in the validation dataset 
(AUROC 0.49, weighted AUROC 0.49 in RIBANNA 
study, Lüftner et al., 2022). While accurate individual 
prediction of QT prolongation is difficult, 
understanding its underlaying mechanism remains 
even more challenging and might require further 
molecular genetic studies (Roden et al., 2016). This 
hypothesis is underlined in (Schwartz et al., 2016) by 
linking drug-induced and congenital QT 

Prediction of QT Prolongation in Advanced Breast Cancer Patients Using Survival Modelling Algorithms

165



 

 

prolongation, which could be explained by the 
growing genetic evidence in the future.  

3 DATA SELECTION AND 
PREPARATION 

3.1 Study Data 

In this work we used anonymized data from two 
studies: RIBECCA (Decker et al., 2021) clinical trial 
and RIBANNA (Lüftner et al., 2022) non-
interventional study (real-world data). RIBECCA 
was a national, multicentre single-arm, open-label 
phase 3b clinical trial investigating the efficacy and 
safety of treatment with ribociclib (a CDK4/6 
inhibitor) plus letrozole in patients with HR+/HER2- 
advanced (recurrent or metastatic) breast cancer. 
RIBANNA is a still ongoing non-interventional study 
evaluating the real-world efficacy and safety of first-
line ribociclib in combination with aromatase 
inhibitor/fulvestrant, endocrine monotherapy or 
chemotherapy. Description of the original data is 
given in the references for these studies. 

3.2 Data Selection 

3.2.1 Patient Selection 

This analysis included patients with available data at 
baseline, i.e., at the time point prior to treatment start. 
A total of 584 patients (including screening failures) 
from RIBECCA and 2316 from RIBANNA were 
considered for the analysis. Patients were filtered in 
the following hierarchical order: at first, patients who 
received at least one dose of study medication are 
selected, resulting in 502 and 2211 patients in 
RIBECCA and RIBANNA, respectively. Two 
patients with non-positive PR interval in ECG were 
removed from the RIBECCA data, leaving 500 
patients in the final RIBECCA cohort. In the next 
step, RIBANNA patients who were not treated with 
ribociclib were excluded, leaving 1858 patients in the 
analysis. Since RIBANNA contains real-world data 
with accordingly lower quality (due to the real-world 
treatment and less intense data monitoring as 
compared to clinical trial data), we carefully checked 
it for any unusual values. One patient with zero blood 
pressure (both systolic and diastolic), five patients 
with non-positive RR, PR or QRS intervals in ECG 
and 12 patients with negative number of days since 
primary diagnosis were excluded, resulting in 1840 
RIBANNA patients.  

3.2.2 Variable Selection 

The anonymized RIBECCA and RIBANNA data 
included about 420 variables, out of which the 
majority are not relevant for our modelling task, e.g. 
many absolute dates and placeholders for safety and 
tumour control variables. Based on the domain 
knowledge, 72 potentially relevant variables were 
selected, which were recorded in both studies. This 
criterion was a prerequisite for performing external, 
cross-study validation. These variables (all recorded 
at baseline) served as input data to prediction models, 
and they are grouped as follows: 
 Demographic characteristics including age and 

body-mass index 
 Vital signs including ECG features (like PR, 

QT and QRS interval), systolic and diastolic 
blood pressure, heart rate 

 Diagnosis and cancer severity features like 
days since primary diagnosis, histological 
grade, metastasis location 

 Medical history including vomiting, 
pneumonia, fatigue 

 Prior therapy including most recent prior 
therapy, surgery, radiotherapy 

 Hormone receptor status  
 Eastern Cooperative Oncology Group (ECOG) 

patient’s performance status scale and patient 
reported outcomes including different EORTC 
(European Organisation for Research and 
Treatment of Cancer) quality of life 
questionnaires  

The target variable was QT prolongation. It was 
recorded in both studies as a binary event indicator 
(QT prolongation has happened or not) together with 
the event absolute date. Rather than trying to predict 
the target at a single time point or within a specified 
time horizon, we formulated the prediction task as a 
survival analysis problem. As its name says, survival 
analysis traditionally aims at predicting the time to 
death and it originates from clinical research. The 
target is typically censored, meaning that it is only 
observed within an observation period. In the context 
of clinical studies, a clinical event can be observed 
typically only during study and it either happens or 
not. It remains unknown if and when the event has 
happened after the study has ended or the patient has 
dropped out (discontinued from the study for 
whatever reason). We translated the QT prolongation 
prediction problem into the survival analysis problem 
by (1) computing the time to QT prolongation from 
the event date and the baseline date for patients who 
experienced it, and (2) computing the time of 
censoring for patients who didn’t experience it. In the 
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implementation, the target variable was a structured 
array of (event, event_time) pairs, where event is a 
binary QT prolongation indicator and event_time is a 
time of event if QT prolongation has happened or time 
of last contact with the patient if it didn’t. As common 
for survival analysis problems, the target was 
imbalanced. QT prolongation was recorded in 37 
(7.4%) RIBECCA patients and 61 (3.3%) RIBANNA 
patients with median observation times of 42 and 27 
days, respectively. Corresponding Kaplan-Meier 
curves, which illustrate the estimated event-free 
probability as a function of time, are given in Figures 
2 and 3. 

 
Figure 2: Kaplan-Meier curve for QT prolongation in 
RIBECCA. 

 
Figure 3: Kaplan-Meier curve for QT prolongation in 
RIBANNA. 

 

3.3 Data Preparation for Modelling 

All data preparation steps described in this section 
were performed in an unsupervised manner, i.e. the 
target variable was not considered. After patient and 
initial variable selection based on domain knowledge 
was performed, the proportion of missing values was 
checked. In total, 4.6% and 24.5% of values in the 
baseline, input data were missing in RIBECCA and 
RIBANNA, respectively, confirming the expected 
considerably higher completeness of clinical trial data 
comparing to real-world data. Variables containing 
more than 50% of missing values in either study were 
removed from both studies. This affected only four 
variables. In the next step, it was checked for highly 
correlated, redundant numerical variables using 
Pearson correlation coefficient. Absolute value of 
correlation coefficient higher than 0.8 was observed 
only between body-mass index and patient weight. As 
in (Decker et al., 2021) both weight and height were 
removed and body-mass index was kept. Further, low 
frequency levels (<1%) of binary variables were 
investigated and 17 (constant or almost constant) 
variables were removed. The redundancy of 
categorical variables was checked using Cramer’s V 
coefficient. Two variables with Cramer’s V 
association with other variables higher than 0.8 were 
removed. The final prepared data included 32 
numerical and 15 categorical variables. The summary 
statistics for demographic and some diagnosis, vital 
parameters and patient reported outcomes in the 
prepared data used for modelling are given in Tables 
1 and 2 for RIBECCA and RIBANNA, respectively. 

Table 1: Baseline characteristics of RIBECCA patients. 

Variable Count non-
missing values Mean (std) 

Age (years) 500 63.8 (11.6)
Body-mass index 

(kg/m2) 498 26.5 (4.9) 

Days since primary 
diagnosis 428 2234.7 

(2373.2)
ECG QT interval 

(ms) 497 384.5 (32.9) 

ECG QRS interval 
(ms) 493 87.7 (17.9) 

ECG PR interval 
(ms) 467 156.1 (25.6) 

ECG heart rate 
(beats per minute) 497 74.56 (12.1) 

EORTC physical 
functioning revised 

[0,100]
472 26.9 (23.5) 

EORTC breast 
symptoms [0,100] 464 13.9 (19.1) 
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Table 2: Baseline characteristics of RIBANNA patients. 

Variable Count non-
missing values Mean(std) 

Age (years) 1840 64.3 (11.6)
Body-mass index 

(kg/m2) 1695 27.1 (5.7) 

Days since primary 
diagnosis 1835 2171.2 

(2667.7)
ECG QT interval 

(ms) 1179 385.6 (33.9) 

ECG QRS interval 
(ms) 1152 88.9 (15.9) 

ECG PR interval 
(ms) 1045 156.1 (29.5) 

ECG heart rate 
(beats per minute) 1233 77.5 (13.5) 

EORTC physical 
functioning revised 

[0,100] 
1407 35.5 (26.5) 

EORTC breast 
symptoms [0,100] 1358 17.3 (21.2) 

4 METHODOLOGY 

4.1 Survival Modelling Algorithms 

In this study we applied and compared five survival 
modelling algorithms: well-known statistical Cox 
proportional hazards model (CPH), Cox proportional 
hazards model regularized by elastic net (CPHNet), 
gradient boosting survival model (GBS), random 
survival forest (RSF) and fast survival support vector 
machines (SSVM). A guide and references to these 
algorithms can be found in the documentation of the 
scikit-survival Python package (Pölsterl, 2020), 
which we used in our study. 

CPH is a type of regression model commonly used 
in survival analysis to (1) estimate the risk of an event 
over time and (2) identify predictive factors. It models 
the hazard function assuming that input variables 
(covariates) can affect the risk (i.e. hazard) 
proportionally, i.e. the effect magnitude is time-
invariant. In other words, the initial difference in risk 
of event for two patients remains constant over time. 
Despite this restrictive assumption, CPH became a 
very popular model due to its simplicity and 
understandable output. Its major drawbacks however 
are inability to perform in high-dimensional problems 
with non-linear or interaction effects and correlated 
features. Similarly to linear or logistic regression, the 
latter issue can be mitigated by implementing and 
optimizing the L2 shrinkage parameter in its loss 
function. 

CPHNet is an extension of CPH which 
implements elastic net regularization that makes a 
trade-off between L1 and L2 shrinkage. This 
improves the numerical stability of the algorithm, 
making it applicable to highly dimensional and 
correlated problem settings. The issues with 
modelling interactions and non-linearities remain the 
same as in CPH. Survival machine learning 
algorithms are developed to mitigate these issues. 

GBS works similarly like the conventional 
gradient boosting algorithm. It sequentially builds 
multiple base learners (commonly regression trees), 
which perform slightly better than random guessing. 
These are called weak learners. Each weak learner 
reduces the bias error by focusing on previously 
inaccurately predicted learning examples (in our case 
patients). In this way, the performance of the whole 
additive model is boosted. The algorithm is trained in 
a greedy manner, i.e. previously trained trees are 
never revised and adjusted. Commonly optimized 
hyperparameters are depth of base regression trees 
and learning rate, which controls the contribution of 
each tree to the overall prediction. The only 
difference of GBS to its conventional counterpart is 
introduction of the partial likelihood function of CPH 
in its loss function, enabling it to model survival 
functions. 

RSF is a survival machine learning counterpart of 
the conventional random forest algorithm, well-
known for its ability to reduce variance error. It trains 
multiple decision trees on subsets of learning 
examples and variables in parallel. The overall 
prediction is obtained by aggregating trees’ outputs. 
Analogue to GBS, the distinctive characteristic of 
RSF comparing to conventional random forest is the 
tree splitting criterion. Different splitting criteria have 
been proposed to split tree nodes in branches with 
different event times. One of the most popular criteria 
is the log-rank test that was used in our study as well. 
Hyperparameters of RSF that are typically tuned are 
number of trees and max tree depth. 

SSVM is an adaption of the conventional support 
vector machine algorithm to model censored time to 
event data. SSVM also employs a kernel function to 
map input variable space into high-dimensional 
feature space, where a hyperplane is fitted to 
maximize the margin between examples (i.e. patients) 
with dissimilar times to event. In our study we used 
an efficient implementation of SSVM, testing 
different kernel functions. Like in linear CPH and 
CPHNet models, regularization strength 
hyperparameter is typically optimized in SSVM as 
well. 
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4.2 Performance Metrics 

The standard performance metric for survival models 
is the concordance index, also called Harrell’s c-
index or c-statistic. It quantifies how well the model 
orders patients by their survival times (or times to 
event), i.e. it estimates the probability that a patient 
with higher predicted risk score is the one who 
survives shorter, for each random pair of patients. 
Analogue to the area under the receiver operating 
characteristic curve in binary classification tasks, a c-
index of 0.5 indicates random guessing, while c-index 
of 1 indicates perfect ordering of patients. 

As shown in (Uno et al., 2011), c-index expresses 
inflated, overly optimistic performance in problems 
with increasing amount of censoring. The percentage 
of censored examples is higher than 90% in both 
RIBECCA and RIBANNA data, as stated in section 
3.2.2. Therefore, we decided to use a version of c-
index based on Inverse Probability of Censoring 
Weights (IPCW). IPCW assigns higher weights to 
examples that are more likely to be observed, making 
the estimate unbiased for this population. IPCW-
based c-index is then computed like a regular c-index, 
taking IPCW weights into account.  

4.3 Machine Learning Optimization 
and Validation Pipeline 

The machine learning pipeline included different 
transformers for numerical and categorical variables. 
Missing values in numerical variables were imputed 
using iterative imputer based on Bayesian ridge 
regression model (Bishop, 2006). Each variable with 
missing values was modelled as a function of other 
variables. For categorical variables, missing values 
were imputed using simple imputer based on most 
frequent value followed by dummy encoding (also 
called one hot encoding), which created one binary 
variable for each category. The machine learning 
pipeline finally included a survival modelling 
algorithm. Hyperparameters of included algorithms 
were optimized in a grid search procedure using a 2-
fold cross-validation. The overview of optimized 
hyperparameters is given for each algorithm in Table 
3. To objectively assess model performance in the 
internal validation (i.e. separately within RIBECCA 
and RIBANNA) and avoid data leakage while 
optimizing hyperparameters, another, outer 3-fold 
cross-validation was implemented. This procedure 
resulted in 3x2-fold nested cross validation (Cawley 
et al., 2010). In the external, cross-study validation, 
the outer cross-validation is excluded. All data  
    

Table 3: Optimized hyperparameters for each algorithm. 

Algorithm Hyperparameters

CPH Regularization strength 
alpha 

CPHNet Elastic net ratio between 
L1 and L2 shrinkage 

GBS Learning rate 
Max. tree depth

RSF Number of trees
Max. tree depth

SSVM 

Regularization strength 
alpha 

Kernel function (linear, 
polynomial, radial basis 

function) 

from one study was used for model training with 
hyperparameter optimization and the model trained 
with the best values of hyperparameters was applied 
to another study. 

4.4 Model Inspection 

To enable model inspection and asses the importance 
of included variables for the model performance, we 
applied permutation feature importance method 
(Breiman, 2001). This model-agnostic method 
estimates how much the performance decreases when 
a feature is randomly shuffled, i.e. not available in the 
analysis. Feature importance is assessed only for the 
best model in external, cross-study validation for both 
studies. 

5 RESULTS 

5.1 Model Performance 

As described in section 4.3, we performed internal, 
nested cross-validation within each study as well as 
external, cross-study validation. The performance 
scores (IPCW-based c-index) of the former are shown 
in Table 4 for each model. Moderate performance is 
demonstrated by most models.  

Table 4: Performance score (IPCW-based c-index) in 
internal, nested cross-validation shown as mean (std). 

Model RIBECCA RIBANNA
CPH 0.66 (0.04) 0.66 (0.00)

CPHNet 0.68 (0.05) 0.67 (0.02)
GBS 0.64 (0.09) 0.56 (0.07)
RSF 0.64 (0.07) 0.52 (0.10)

SSVM 0.51 (0.02) 0.65 (0.02)
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Table 5: Performance score (IPCW-based c-index) in 
external, cross-study validation. 

Model 

Training on 
RIBECCA, 

validation on 
RIBANNA 

Training on 
RIBANNA, 
validation on 
RIBECCA

CPH 0.64 0.64
CPHNet 0.63 0.71

GBS 0.57 0.79
RSF 0.59 0.88

SSVM 0.58 0.60

Linear regularized CPHNet models reached the 
highest score in both RIBECCA and RIBANNA 
(0.68 and 0.67, respectively). The performance scores 
in the external, cross-study validation are given in 
Table 5. CPHNet showed relatively stable 
performance. When trained on RIBECCA and tested 
on RIBANNA, CPHNet reached the validation score 
of 0.63. However, when trained on RIBANNA, it 
reached notably higher validation score of 0.71 on 
RIBECCA. GBS, RSF and SSVM also performed 
better when trained on larger real-world RIBANNA 
data and validated on smaller high quality, RIBECCA 
trial data.  

5.2 Predictive Factors 

We were also interested in identifying the most 
predictive factors of QT prolongation. For this 
purpose, we applied the permutation feature 
importance method described in section 4.4 to the 
CPHNet model, which demonstrated the most 
consistent performance across all validations. Figure 
4 shows the top five features (all at baseline) of the 
CPHNet model trained on RIBANNA and validated 
on RIBECCA. The strongest predictor is the QT 
interval in patient’s ECG at baseline. Other important 
predictors include days since primary diagnosis, age, 
and scores from two quality of life questionnaires. 
Similarly, feature importance was also computed in 
RIBANNA validation set, after training CPHNet on 
RIBECCA (Figure 5). Baseline QT interval in ECG 
again showed to be the most important predictive 
factor, followed by heart rate, physical functioning 
score, days since primary diagnosis and QRS interval 
in patient’s ECG. Interestingly, vital signs (ECG 
features) as well as patient quality of life (EORTC 
features) dominate the top five features in both 
evaluations. It should be noted that permutation 
feature importance was based on models with limited 
performance (especially when trained on RIBECCA 
and validated on RIBANNA) and therefore should be 
interpreted with care. 

 
Figure 4: Feature importance for model trained on 
RIBANNA and validated on RIBECCA. 

 
Figure 5: Feature importance for model trained on 
RIBECCA and validated on RIBANNA. 

6 CONCLUSION AND FUTURE 
WORK 

In this paper we presented the feasibility of predicting 
QT prolongation in HR+/HER2- advanced breast 
cancer patients treated with CDK4/6 inhibitor 
ribociclib using survival modelling algorithms. We 
trained and compared the performance of five 
statistical and machine learning algorithms for 
survival analysis, observing that Cox proportional 
hazards model regularized by elastic net (CPHNet) 
demonstrated the most consistent performance, 
mostly higher than the performance of the well-
known statistical Cox proportional hazards model 
(CPH). Models trained on the clinical trial data 
(RIBECCA) showed moderate performance when 
validated on the real-world data (RIBANNA). This is 
most likely due to lower real-world data quality 
(many more missing values which needed to be 
imputed during testing) and higher data variety, 
which is not properly captured by models trained on 
small trial data only. In addition, since ranges of 
numerical variables in RIBANNA are larger than in 
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RIBECCA, models were sometimes extrapolating 
when validated on RIBECCA, contributing to the 
performance loss. On the other hand, once trained on 
larger, real-world RIBANNA data, models were 
performing relatively well on high quality trial data 
(IPCW-based c-index of the best model was 0.88, see 
Table 5).  

In addition to performance comparison, the most 
predictive factors were identified in both studies, 
when used for external validation. Whilst based on 
imperfect models and thus interpreted cautiously, the 
strongest predictors mostly include baseline ECG 
variables (like QT interval) and EORTC patient 
quality of life scores, in addition to days since 
primary diagnosis and age. None of the cancer 
severity features, prior therapies or hormone status 
appeared among the top five predictive factors for QT 
prolongation. 

 Based on these results, we strongly believe that 
the presented methodology would be useful in a wide 
range of tasks aiming at prediction of clinical events 
and their times. In the future, we plan to tackle 
modelling of further tumour control and safety 
outcomes like progression-free survival or different 
toxicities in cancer patients. Furthermore, we aim to 
incorporate explainable AI approaches like SHAP 
(Lundberg et al., 2017) to enable deeper insights into 
predictive factors and explain predictions for 
individual patients.  
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