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Abstract: Antivirus developers are increasingly embracing machine learning as a key component of malware defense.
While machine learning achieves cutting-edge outcomes in many fields, it also has weaknesses that are ex-
ploited by several adversarial attack techniques. Many authors have presented both white-box and black-box
generators of adversarial malware examples capable of bypassing malware detectors with varying success.
We propose to combine contemporary generators in order to increase their potential. Combining different
generators can create more sophisticated adversarial examples that are more likely to evade anti-malware
tools. We demonstrated this technique on five well-known generators and recorded promising results. The
best-performing combination of AMG-random and MAB-Malware generators achieved an average evasion
rate of 15.9% against top-tier antivirus products. This represents an average improvement of more than 36%
and 627% over using only the AMG-random and MAB-Malware generators, respectively. The generator that
benefited the most from having another generator follow its procedure was the FGSM injection attack, which
improved the evasion rate on average between 91.97% and 1,304.73%, depending on the second generator
used. These results demonstrate that combining different generators can significantly improve their effective-
ness against leading antivirus programs.

1 INTRODUCTION

Malware is software performing malicious actions on
infected computers. As more and more of our lives
become digital, protecting our devices becomes in-
creasingly important. Cybersecurity professionals are
striving to improve the detection capabilities of their
antivirus (AV) products by inventing new defense
mechanisms (Gibert et al., 2020). Nonetheless, their
rivals are progressing at a comparable, if not faster,
pace, making malware detection a never-ending fight.

Leading AV programs use both static and dynamic
analysis. Static analysis techniques usually rely on
byte sequences (signatures) kept in a database. Sig-
natures accurately and quickly detect known harmful
files, but their fundamental drawback is their inca-
pability to classify zero-day or obfuscated malware.
Even minor changes to malware files may cause the
signature to change, thus rendering them undetectable
by static analysis. In contrast, dynamic analysis meth-
ods include behavior-based algorithms that search for
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patterns of behavior that can be used to discover un-
known and obfuscated malware samples, albeit at a
higher cost of executing malware in a safe environ-
ment (Aslan and Samet, 2020).

While traditional signature-based static analysis
cannot detect zero-day malware, incorporating ma-
chine learning (ML)-based malware detectors gives
encouraging results (Comar et al., 2013). However,
ML models are vulnerable to adversarial examples
(AEs), e.g., slightly changing a malicious file can
cause its feature vector to mimic some of the benign
files’ feature vectors (Papernot et al., 2016). As a re-
sult, malware detectors may make inaccurate predic-
tions.

We propose a novel adversarial attack strategy that
combines generators of adversarial malware exam-
ples. By combining different generators, we aim to
create more sophisticated AEs capable of bypassing
top-tier AV products. Our method works at the level
of samples, i.e., the output of a combination of gener-
ators is a functional malware binary.

For various reasons, we focus our work on attack-
ing static malware analysis. To begin, dynamic anal-
ysis requires running malware inside a secure envi-
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ronment and documenting its behavior, which is both
time-consuming and technically challenging. Next, to
our best knowledge, there is no successful implemen-
tation of AE generators targeting dynamic malware
analysis, which we could use in our method. Further-
more, malware authors can use sandbox evasion tech-
niques such as detecting that their malware is running
in a controlled environment and ceasing its dangerous
behavior (Erko, 2022; Yuceel, 2022). Finally, static
detection is typically the initial line of defense against
malicious threats, making it an essential component
of any anti-malware tool.

The Outline of the Paper.
• In Section 2, we establish the necessary back-

ground by briefly introducing adversarial machine
learning and Portable Executable file format.

• In Section 3, we summarize related work in the
field of generating adversarial malware examples.

• In Section 4, we define our method in detail.
From a step-by-step description of combining ad-
versarial malware generators to a comprehensive
overview of each AE generator we used.

• In Section 5, we introduce our experiment’s setup,
dataset, and routine used. Finally, we demonstrate
the achieved results.

• In Section 6, we summarize our contributions and
make recommendations for future research.

2 BACKGROUND

In this section, we briefly introduce the key concepts
for understanding this paper by describing adversarial
machine learning with respect to malware detection
and Portable Executable file format used on Windows
operating systems.

2.1 Adversarial Machine Learning

In recent years, we have seen an increase in the pop-
ularity of machine learning algorithms in a variety of
domains, such as advertisement recommendation, im-
age classification, and Go playing, where ML mod-
els achieve cutting-edge results (Marius, 2020; Sil-
ver et al., 2017). However, in other areas, such as
self-driving cars or disease diagnosis, both the general
public and researchers remain skeptical of these mod-
els’ decisions (Juravle et al., 2020; Edmonds, 2020).
One reason for skepticism about ML models is the
unexplainable nature of their decisions and the fol-
lowing possible fragility and bias of the ML model

(Gilpin et al., 2018). As a result, ML systems can be
vulnerable to minor changes exploited by adversar-
ial attacks (Goodfellow et al., 2015; Papernot et al.,
2016).

Adversarial machine learning is a branch of ma-
chine learning that focuses on enhancing ML sys-
tems’ resistance against adversarial attacks both from
the outside (evasion attacks) and from the inside (data
poisoning). An adversarial attack is a well-planned
activity designed to deceive the ML model. The vic-
tim model is also known as a target model, and the
attacker is referred to as an adversary. Nonetheless, in
contemporary literature, the terms attacker and adver-
sary are used interchangeably. The input responsible
for fooling the target model is called an adversarial
example.

In the malware detection domain, adversarial ma-
chine learning is usually used to force anti-malware
tools to misclassify malware as benign. An arms
race between adversaries and antivirus defenders has
evolved as a result of the expansion of machine
learning employed in malware detection (Ucci et al.,
2019). Malware adversarial learning focuses on how
malware can trick malware detection models and how
to develop malware detectors resistant to AEs.

An adversarial attack’s success is limited by the
amount of information accessible about the target sys-
tem (Huang et al., 2011). A white-box scenario oc-
curs when the attacker gets access to the target sys-
tem and may study its internal configuration or train-
ing datasets. A black-box scenario, on the other hand,
happens when the adversary has minimal knowledge
about the victim detector, usually only in the form of
the detector’s final prediction, e.g., malware/benign
label for each submitted sample. In between these two
extremes is a grey-box scenario, in which the attacker
has greater access to the system than in the black-box
scenario, however, only to certain aspects of it. For
instance, the attacker can access the model’s feature
space but not its training dataset. In the field of ad-
versarial malware generation, the black-box scenario
is the most practical, as the exact structure of the AV
is usually unknown to the adversary.

2.2 Portable Executable File Format

Portable Executable (PE) file format is widely used
on Windows operating systems. This format is
utilized by executable files (EXEs) or dynamically
linked libraries (DLLs) on 32-bit and 64-bit systems
and is structured as follows. The program begins
with the MS-DOS header and stub program, which
are now mostly obsolete and are only included for
backward compatibility. The e_magic (identifying
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the file as a MS-DOS executable) and e_lfanew (the
file offset of the Common Object File Format (COFF)
file header) fields are exceptions. Following is the
signature and the COFF file header, which contains
information such as the target machine and section ta-
ble size. The COFF file header is closely followed
by the optional header, which includes, among other
things, the necessary data directories. A section table
with corresponding section data completes the pro-
gram (Karl Bridge, 2019).

3 RELATED WORK

This section summarizes related publications that ad-
dress the development of adversarial malware at-
tacks. We begin by describing the works that lever-
age gradient-based techniques to exploit the back-
propagation algorithm, a widely used algorithm in
training deep neural networks, by computing the nec-
essary perturbations to mislead the target classifier
(Goodfellow et al., 2015; Papernot et al., 2016). Next,
we show studies employing reinforcement learning-
based attacks where reinforcement learning agent
equipped with a set of actions in the form of bi-
nary file manipulations attempts to find a sequence of
modifications leading to misclassification (Anderson
et al., 2018). Finally, we highlight a few publications
related to adversarial malware attacks that do not fall
into either of the two categories above.

3.1 Gradient-Based Attacks

In (Grosse et al., 2017), a gradient-based attack
against a self-made Android malware detector was
proposed. The necessary perturbation for the feature
vector containing features extracted from the Android
manifest file was calculated using the gradient descent
algorithm. The authors recorded an evasion rate of up
to 63% against their deep neural network classifier.

Many authors proposed gradient-based attacks
against the MalConv malware classifier (Raff et al.,
2017). For example, in (Kolosnjaji et al., 2018), the
authors perturbed the file’s overlay and achieved a
60% evasion rate while altering less than 1% of to-
tal bytes.

Further, the authors of (Kreuk et al., 2018) intro-
duced the injection of small chunks of bytes (payload)
into unused regions or at the end of the PE file, achiev-
ing a 99% evasion rate against MalConv while limit-
ing the payload size to less than 1,000 bytes.

Explanation techniques used on the MalConv de-
tector and subsequent attack perturbing obsolete parts
of the MS-DOS header were introduced in (Demetrio

et al., 2019), reaching an evasion rate of over 86%.
A complex approach that treats EXE binaries as

images was introduced in (Yang et al., 2021). The
authors computed the necessary perturbations in the
embedding space of a convolutional neural network-
based malware detector and later mapped them to cor-
responding sections of the original input binary. Their
attack decreased the accuracy of selected ML models
by up to 94%.

3.2 Reinforcement Learning-Based
Attacks

While gradient-based attacks were originally intended
for the computer vision domain, the use of reinforce-
ment learning agents is novel for the field of malicious
AEs. This approach was pioneered by Anderson et
al. in (Anderson et al., 2018), introducing the actor-
critic model capable of modifying raw binary files.
The authors recorded an evasion rate of 24% against
the gradient-boosted decision tree (GBDT) detector
trained on the EMBER dataset (Anderson and Roth,
2018).

Fang et al. proposed two models in (Fang et al.,
2020), a malware detector called DeepDetectNet and
an AE generator called RLAttackNet. In a black-box
setting, their generator, based on the deep Q-network
(DQN) algorithm, successfully evaded their classifier
in 19.13% of cases.

Song et al., the authors of the MAB-malware
framework (Song et al., 2022), employed a multi-
armed bandit (MAB) agent while targeting commer-
cial AVs, GBDT, and MalConv detectors. They
demonstrated bypassing detection from commercial
AVs with a high evasion rate of up to 48.3%. The
GBDT and MalConv detectors were successfully mis-
led 74.4% and 97.7% of times, respectively.

In (Kozák et al., 2022), the authors used the
DQN agent to generate adversarial malware exam-
ples. While targeting the GBDT and MalConv classi-
fiers, their adversarial malware generator recorded an
evasion rate of 68.64% and 13.32%, respectively. Fur-
ther, they were the first to introduce a reverse scenario
of generating adversarial benign examples and mis-
led the GBDT and MalConv detectors in 3.45% and
14.29% of cases, respectively. While creating mali-
cious AEs is more prevalent in current research, the
increase in false positives of AV products would ren-
der them ineffective.

3.3 Other Methods

To generate AEs, the authors of (Hu and Tan, 2017)
presented MalGan, a generative adversarial network
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Figure 1: Overview of our proposed method for generating adversarial examples via combining two generators.

(GAN). They used a deep neural network substitute
detector during training, i.e., the final target model
was not used during training. The authors’ results
show strong attack transferability across the substitute
and target models by recording a near-perfect evasion
rate. Their work, however, is situated only in a feature
space of extracted API calls, with no technique pro-
vided for transforming the adversarial feature vectors
back into real-world EXEs.

Ebrahimi et al. suggested a recurrent neural
network-based generative sequence-to-sequence lan-
guage model. The model generates benign bytes,
which are later appended to the end of malicious PE
binaries (Ebrahimi et al., 2020). Their proposed at-
tack successfully evaded detection by the MalConv
classifier on average in 73.24% of cases across differ-
ent malware families.

A genetic algorithm for generating adversarial
malware examples was presented in (Demetrio et al.,
2021). The AEs are constrained to maximize evasion
against the GBDT classifier while minimizing the re-
sulting file size. The authors achieved an evasion rate
of up to 57%.

4 PROPOSED METHOD

In this section, we introduce a novel approach to im-
prove current adversarial malware generators by com-
bining them. Our method combines two separate AE
generators and reuses non-evasive adversarial exam-
ples from the first generator as input to the second
generator with the goal of crafting sophisticated ma-
licious AEs capable of evading malware detectors.

The overview of our proposed method is depicted
in Figure 1. Firstly, the first generator processes gen-
uine malware samples, creating evasive1 and f ailed1
(i.e., non-evasive) sets. The evasive1 examples are
left untouched as they have successfully bypassed the
given detector. The f ailed1 samples, on the other
hand, are passed as input to the second generator, and
two new sets, evasive2 and f ailed2, are produced.
The f ailed2 samples are the resulting non-evasive
samples that were unable to escape detection and the
evasive2 together with evasive1 form the set of suc-

cessful AEs crafted by combining two generators of
adversarial malware examples. The division of AEs
into evasive and f ailed groups is done by an indepen-
dent classifier that is not part of any of the generators.
In other words, when we attack a specific AV product
(playing the role of independent classifier), we first
send all generated AEs from the first generator to the
AV detector, thus obtaining the evasive1 and f ailed1
sets. Next, we process the f ailed1 files with the sec-
ond generator, and the resulting AEs are resubmitted
to the AV detector, resulting in evasive2 and f ailed2
sets. Note that the order of generators is essential, i.e.,
combining generators does not possess commutative
property.

We studied combinations of five distinct adversar-
ial generators which emit AEs targeted against Mal-
Conv (Raff et al., 2017) and EMBER GBDT (Ander-
son and Roth, 2018) classifiers. The EMBER GBDT
model is a gradient-boosted decision tree that clas-
sifies inputs based on 2,381 extracted features from
binary files. The binaries are parsed using the LIEF1

library, and the resulting extracted features include in-
formation from PE headers, imported functions, sec-
tion characteristics, byte histograms, and more. In
contrast, MalConv is a convolution network that con-
sumes directly raw bytes from binary executables
truncated to 2,000,000 bytes (2 MB). Both models
with pre-trained configurations are freely available on
GitHub2.

4.1 Generators of Adversarial Malware
Examples

For our work, we selected these five generators:
MAB-Malware3, AMG4 (trained and random ver-
sions), FGSM5 and Partial DOS5. The first three gen-
erators work in pure black-box settings, whereas the
latter two operate in a white-box manner. Despite the

1https://lief-project.github.io/
2https://github.com/endgameinc/malware evasion

competition
3https://github.com/bitsecurerlab/MAB-malware
4https://github.com/matouskozak/AMG
5https://github.com/pralab/secml malware
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fact that we used white-box generators of adversarial
malware, our proposed method is essentially a black-
box attack because we do not focus on any of the tar-
get classifiers used by individual AE generators but on
an independent classifier that is not part of our com-
bined model.

4.1.1 MAB-Malware

MAB-Malware is a generator of adversarial malicious
examples utilizing a reinforcement learning algorithm
called multi-armed bandit (Song et al., 2022). In con-
trast with other reinforcement learning-based adver-
sarial attacks, this algorithm works statelessly, mean-
ing that the order of manipulations applied to original
files is not considered. As a result, the algorithm op-
erates in only two states, non-evasive and evasive, i.e.,
failure and success. The process of creating AEs con-
sists of two main phases. Firstly, file modifications
are applied until the target detector (MalConv) classi-
fies the sample as benign or a count of 10 changes is
reached. Secondly, the action minimization procedure
removes unnecessary modifications, provided that the
example remains evasive. If, on the other hand, the
resulting example is not evasive, the application of
modifications can be repeated up to 60 times.

4.1.2 AMG

Adversarial malware generator (AMG) is a rein-
forcement learning-based generator for creating AEs
(Kozák, 2023). This generator can operate in two set-
tings. In the first variant, the generator uses the prox-
imal policy optimization (PPO) algorithm to choose
optimal actions based on the policy learned during
training. In the second case, a random agent is de-
ployed, i.e., no previous training is needed, and avail-
able actions are chosen at random. The possible ac-
tions are in the form of a predefined set of PE file
manipulations that the agents repeatedly use until the
evasion by the target classifier (EMBER GBDT) is ac-
complished or a maximum number of modifications,
50, is performed.

4.1.3 FGSM

Fast gradient sign method (FGSM) is a gradient-
based method for generating AEs introduced by
Goodfellow et al. (Goodfellow et al., 2015). A mod-
ified version for the domain of malware samples is
used where only a small chunk of bytes (payload) is
perturbed and later inserted or appended to the origi-
nal malware file (Kreuk et al., 2018). At first, the pay-
load is perturbed in the embedding space of the Mal-
Conv classifier and later mapped back to the original

binary. The perturbation of the payload is repeated
until it escapes detection of the target classifier and is
limited to a maximum of 100 times.

4.1.4 Partial DOS

Partial DOS is another gradient-based algorithm ca-
pable of creating adversarial malware examples. This
attack works by perturbing only bytes found in the
MS-DOS header except for the e_magic and the
e_lfanew fields (Demetrio et al., 2019). Same as
with the FGSM algorithm, the perturbation is iterated
until the AE bypasses the MalConv classifier and is
limited to a maximum number of 100 rounds.

5 EVALUATION

This section describes our setup used for experiments
and how we evaluated our proposed combination of
adversarial malware generators.

5.1 Setup

Dataset: In this paper, we used a dataset of PE mal-
ware binaries from the VirusShare6 online repository,
which we thank for access. Specifically, we used
2,000 samples from the VirusShare 00454 dataset
published on 01/02/2023.

Computer Setup: Experiments were carried out on
the NVIDIA DGX Station A100 server equipped with
a single AMD 7742 processor with 64 cores, 512 GB
of DDR4 system memory, and four NVIDIA A100
graphic cards with 40 GB of GPU memory. How-
ever, all experiments conducted in this work are repro-
ducible using a standard single multi-threaded CPU
computer with sufficient system memory (more than
22 GB recommended).

5.2 Experiments

To evaluate our hypothesis that combining adversar-
ial malware generators can significantly increase the
probability of a successful adversarial attack, we first
need to assess individual generators on some mal-
ware detectors. We picked the 10 best-rated antivirus
programs as ranked by AV-Comparatives in their an-
nual Summary Report from 2022 (AV-Comparatives,
2023). Note that we only list nine antivirus prod-
ucts in the following results because two selected AVs
from the same company returned identical results.

6https://virusshare.com/
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Further, we anonymize the names of chosen AVs to
minimize possible misuse of this work.

The main metric used to evaluate malicious AEs is
an evasion rate. This metric represents the ratio of ad-
versarial malware examples incorrectly classified as
benign to the total number of files tested and is com-
puted as follows:

evasion rate =
misclassi f ied

total
·100% (1)

where total is the total amount of files submitted to
the malware detector after discarding harmful files
that were already mispredicted in their genuine form,
i.e., before adversarial modification.

5.2.1 Baseline

Firstly, we used the 2,000 malware samples men-
tioned earlier to generate AEs from all five tested
generators of adversarial malware: MAB-Malware,
AMG (PPO and random agents), FGSM, and Partial
DOS. For generating AEs, we used the default config-
urations of each generator as specified by the respec-
tive authors. Next, we tested these AEs against pub-
licly available versions of the above-mentioned top
antivirus programs hosted on the VirusTotal7 website.
Note that the AEs were generated against the corre-
sponding target classifiers as described in Section 4
and not against these AV programs.

We present the baseline results in Table 1, which
contains evasion rates for all AVs. Surprisingly, the
random AMG agent outperformed other specialized
AE generators, even its trained compatriot AMG with
the PPO algorithm. The highest evasion rate of
34.48% was recorded by the random AMG algorithm
against the AV-6 detector, which performed the worst
among the tested AVs. On the other hand, AV-1 was
the hardest to mislead, with no more than 2.15% of
AEs by random AMG able to bypass its detection
mechanisms.

5.2.2 Combination of Generators

In the following experiment, we created all conceiv-
able pairs of all five generators, yielding 25 sets
each of 2,000 adversarial malware examples. As de-
scribed in Figure 1, each set contains subsets evasive1,
evasive2, and f ailed2. The distribution of samples
between the three subgroups depends on AV being
tested. We submitted the generated AEs to all selected
antivirus programs for further evaluation.

In Figures 2 and 3, we can see the results of this
testing for the AV-1 and AV-6 detectors, the detectors

7https://www.virustotal.com/
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Figure 2: Evasion rates of combined AE generators against
AV-1.
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Figure 3: Evasion rates of combined AE generators against
AV-6.

that performed best and worst in the baseline experi-
ment, respectively. The first generator (vertical axis)
was used for each of the 2,000 samples and produced
AEs, from which the non-evasive AEs were used as
input to the second generator (horizontal axis). The
principal diagonal elements display repeated use of
the same generator, i.e., the first and second genera-
tors are the same. If we compared the diagonal re-
sults with the previous testing listed in Table 1, we
can conclude that repeated use of the same genera-
tor leads to only marginal improvements (e.g., AMG-
random’s improvements 2.15 → 2.20 on AV-1 and
34.48 → 36.26 on AV-6).

However, if the second generator differs from the
first, we have seen significant improvements, as doc-
umented in Table 2. The relative minimal, maximal,
and average values were calculated with respect to
baseline values for each generator and AV product
listed in Table 1. The term “relative” refers to the
percentage increase and was calculated as follows:

relative =
combined −baseline

baseline
·100% (2)

where combined denotes the evasion rate of combined
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Table 1: Evasion rates of individual AE generators against selected AVs.

AV-1 AV-2 AV-3 AV-4 AV-5 AV-6 AV-7 AV-8 AV-9

MAB-Malware 1.18 1.16 2.9 1.29 1.21 7.1 0.96 2.82 1.06
AMG-PPO 0.41 2.75 2.41 2.84 1.79 3.96 2.39 1.9 3.69
AMG-random 2.15 11.74 12.88 9.86 9.22 34.48 9.37 3.54 11.87
FGSM 0.26 0.16 1.23 0.32 0.21 1.93 0.21 1.69 0.11
Partial-DOS 0.36 1.43 0.64 6.6 0.95 7.91 0.59 2.67 1.64

average 0.87 3.45 4.01 4.18 2.68 11.08 2.7 2.52 3.67

generators and baseline represents the evasion rate of
a single generator. Note that the absolute and relative
extremes were not necessarily recorded by the same
combination of AE generators.

For the AV-1 detector, the highest absolute eva-
sion rate of 3.48% was recorded by the random AMG
agent followed by the Partial DOS manipulations.
The relative increase in evasion rates ranged from
2.38% (AMG-random → AMG-PPO) to 356.91%
(Partial-DOS → MAB-Malware). Overall, AV-1 re-
mained the most difficult antivirus to circumvent,
with only 1.31% of AEs becoming evasive on aver-
age. Similarly, the AV-6 antivirus continued to be the
easiest to mislead, with up to 44.8% of AEs generated
by the combo of AMG-random followed by MAB-
Malware being evasive. Across all combinations, an
average evasion rate for the AV-6 detector was slightly
below 17%.

Even though our proposed attack struggled to gen-
erate successful AEs against the AV-1 detector, com-
bining generators of adversarial malware examples,
in this case, increased the success rate by more than
102% on average compared to separate generators.
The highest average evasion rate increase of almost
700% was reported against AV-9, with a massive in-
crease of 8,650% recorded after extending the FGSM
manipulations by the random AMG agent.
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Figure 4: Evasion rates of combined AE generators aver-
aged over all tested AVs.

The average results against all tested AV programs

can be found in Figure 4. The results clearly show
that the random AMG agent combined with any other
generator outperformed all other combinations. Nev-
ertheless, it should be mentioned that solid results
were also achieved by some generator combinations
where MAB-Malware or a trained AMG PPO agent
was used. Overall, the most promising combination
was the random AMG agent extended by the MAB-
Malware generator, yielding an average evasion rate
of 15.9% against top AV products. When compared to
the sole use of the AMG-random and MAB-Malware
generators, this represents an average improvement of
more than 36% and 627%, respectively.
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Figure 5: The relative increase in evasion rates from a single
AE generator to the combined pair averaged over all tested
AVs.

The average percentage improvements from using
only the first generator to the combined pair against
all AVs are shown in Figure 5. These results show
that the FGSM injection attack benefits the most from
extending its process of creating AEs by a different
generator, e.g., by the random AMG agent, which led
to an average improvement of over 1,304%.

6 CONCLUSIONS

We proposed a novel method combining generators of
adversarial malware examples to create more effec-
tive AEs. In total, we worked with five distinct AE
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Table 2: Absolute and relative evasion rate statistics recorded by combined AE generators when the first generator differs
from the second one.

absolute min absolute avg absolute max relative min relative avg relative max

AV-1 0.31 1.31 3.48 2.38 102.75 356.91
AV-2 0.21 5.56 17.83 0.9 487.72 5,600.0
AV-3 0.7 5.69 15.46 0.0 163.67 1,382.54
AV-4 1.82 8.45 15.86 2.72 477.17 3,516.67
AV-5 0.26 3.95 13.59 0.0 239.09 2,650.0
AV-6 2.18 16.92 44.8 2.21 180.15 1,678.95
AV-7 0.32 3.76 11.12 2.27 238.07 1,125.0
AV-8 1.9 3.88 11.24 2.9 71.78 492.5
AV-9 0.16 5.77 17.95 0.0 696.02 8,650.0

generators, representing both black-box and white-
box approaches. We evaluated this hypothesis on top-
ranked antivirus programs and a set of 2,000 malware
samples. Our proposed method is easy to implement
and can significantly increase the evasion rate com-
pared to those achieved by single generators.

Firstly, we measured the baseline readings of AEs
generated by individual generators. The most suc-
cessful AE generator was the random AMG agent
with an evasion rate from 2.14% up to 34.48%, de-
pending on the attacked antivirus.

Next, we tested all possible pairs of individual
generators on the same set of malware files and AV
detectors. The results show that combining genera-
tors of adversarial malware increases the evasion rate
significantly. For example, the random AMG agent
extended by the MAB-Malware generator improved
its evasion rate from 34.48% against AV-6 to 44.8%
against the same antivirus. This combination, AMG-
random followed by MAB-Malware, proved to be the
most successful among all tested combinations by
achieving an average evasion rate of 15.9% against
leading AV products. On the other hand, the FGSM
injection attack showed that substantial improvements
could be made even for less-performing AE gener-
ators. Combined with different generators, this ad-
versarial attack method saw massive improvements in
evasion rate ranging from 91.97% up to 1,304.73%.

Based on our findings, we can conclude that the
combination of AE generators improves the probabil-
ity of bypassing anti-malware tools compared to sin-
gle generators and shows that even top antivirus prod-
ucts are vulnerable to these attacks.

In the future, we would like to examine more in-
depth if combining AE generators influences the re-
sulting behavior of crafted AEs. In this work, we did
not verify the functionality of resulting AEs but in-
stead relied on the fact that the authors of AE gener-
ators create well-designed models. Thus connecting
two AE generators should lead to functioning AEs.

However, many authors of AE generators validate the
preservation of original functionality only theoreti-
cally, but empirical results show that it is not sufficient
(Kozák, 2023).

Currently, our proposed method is only effective
against static analysis detectors because it incorpo-
rates generators that only modify static analysis fea-
tures. A challenging future research area would be
to develop a reliable generator of AEs capable of by-
passing dynamic analysis methods that could later be
incorporated into our method. In addition, integrat-
ing more than two generators of AEs could lead to
even higher evasion rate benefits, but further research
is needed in this area.
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tion of adversarial malware and benign examples us-
ing reinforcement learning. In Cybersecurity for Arti-
ficial Intelligence, pages 3–25. Springer.

Kozák, M. (2023). Application of reinforcement learning to
creating adversarial malware samples. Master’s the-
sis, Czech Technical University in Prague, Faculty of
Information Technology.

Kreuk, F., Barak, A., Aviv-Reuven, S., Baruch, M., Pinkas,
B., and Keshet, J. (2018). Deceiving end-to-end deep
learning malware detectors using adversarial exam-
ples. arXiv preprint arXiv:1802.04528.

Marius, H. (2020). Overview: State-of-the-art machine
learning algorithms per discipline and per task.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,
Z. B., and Swami, A. (2016). The limitations of deep
learning in adversarial settings. In 2016 IEEE Euro-
pean symposium on security and privacy (EuroS&P),
pages 372–387. IEEE.

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro,
B., and Nicholas, C. (2017). Malware detection by
eating a whole exe. CoRR.

Silver, D., Schrittwieser, J., Simonyan, K., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton,
A., Antonoglou, I., et al. (2017). Mastering the
game of go without human knowledge. Nature,
550(7676):354–359.

Song, W., Li, X., Afroz, S., Garg, D., Kuznetsov, D., and
Yin, H. (2022). Mab-malware: a reinforcement learn-
ing framework for blackbox generation of adversarial
malware. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Secu-
rity, pages 990–1003, New York, NY, USA. Associa-
tion for Computing Machinery.

Ucci, D., Aniello, L., and Baldoni, R. (2019). Survey of ma-
chine learning techniques for malware analysis. Com-
puters & Security, 81:123–147.

Yang, C., Xu, J., Liang, S., Wu, Y., Wen, Y., Zhang, B., and
Meng, D. (2021). Deepmal: maliciousness-preserving
adversarial instruction learning against static malware
detection. Cybersecurity, 4(1):1–14.

Yuceel, H. C. (2022). Virtualization/sandbox evasion - how
attackers avoid malware analysis.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

786


