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Abstract: Design Science Research (DSR) enjoys increasing popularity in the field of information systems due to its
practical relevance and focus on design. A study from 2012 shows that DSR publications in general have a
weak rigor in connection with the selection and use of research methods. At the same time, there has also
been a recent increase in Data Science publications based on the paradigm of DSR. Therefore, this study
analyzes the rigor and the specific characteristics of the application of DSR based on 62 publications from
this field. Major deficits are observed in a large part of the sample regarding the rigorous documentation of
the scientific process as well as the selection and citation of adequate research methods. Overall 77.4% of
the analyzed publications were therefore characterized as weak in regard to their rigor. One explanation is the
novel combination of DSR and Data Science together with the speed at which new findings are obtained and
published.

1 INTRODUCTION

As a result of the digital transformation, Data Science
has developed into a trending topic that has recently
become important and is discussed in both, theory
and practice (Jordan and Mitchell, 2015). Due to the
increasing volume of available data and the easy ap-
plicability of machine learning algorithms in various
areas, this technology is key to the digital transfor-
mation of a company. This leads to major productiv-
ity increases through automation (Goes, 2014; Abbasi
et al., 2016). Moreover, researchers emphasize the fo-
cus on IT artifacts and their analysis, which is partic-
ularly relevant for business and society (Benbasat and
Zmud, 2003; Saar-Tsechansky, 2015; Abdel-Karim
et al., 2021).

Considering the research focus of information sys-
tems in the field of Data Science Research, it is not
surprising that numerous publications in this context
select Design Science Research (DSR) as their re-
search paradigm. DSR has become an established re-
search paradigm in the field of information systems in
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general and gained in popularity (Alturki et al., 2012).
A major cornerstone for this development was laid by
the authors Hevner et al. (2004), in which they po-
sition DSR as an alternative to traditional behavioral
science research (Samuel-Ojo et al., 2010; Gregor and
Hevner, 2013; Pascal and Renaud, 2020). The nu-
merous parallels to Data Science research lead Saar-
Tsechansky (2015) to conclude that the guidelines de-
fined by Hevner et al. (2004) for conducting DSR re-
search also apply to publications in the field of Data
Science Research. However, due to the novelty of
DSR in the field of Data Science Research and the in-
terdisciplinary nature of this research area, there are
potential ambiguities in adapting the guidelines de-
fined by Hevner et al. (2004). For instance, the guide-
lines refer to practical relevance. Further, Elragal and
Klischewski (2017) argue that Data Science publi-
cations often lack such practical relevance. Instead
of relevant problems usually use cases with a large
number of existing datasets are preferred. The rigor-
ousness of these Big Data datasets is questioned by
researchers as well, due to the unclear rigorous col-
lection of data as well as unknown hypotheses be-
hind (Elragal and Klischewski, 2017). In addition,
Big Data creates new needs in terms of evaluating ar-
tifacts and demonstrating knowledge gain and prob-
lem solving (Elragal and Haddara, 2019).
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Consequently, it is important to pay attention
to both the practical applicability and the scientific
grounding of the Data Science publications. Even be-
fore the multitude of ambiguities presented in con-
nection with Data Science, Arnott and Pervan (2012)
identified in a study that two-thirds of the publica-
tions show weak rigor in connection with the selec-
tion and use of research methods. It is currently un-
known whether, and if so, how, Data Science publi-
cations rigorously apply DSR to meet the demands of
a scientific community and the guidelines of Hevner
et al. (2004). Therefore, the following research ques-
tion (RQ) arises:

RQ: How is the rigor of DSR addressed in Data
Science research?

The aim of this literature review is to analyze Data
Science publications from the past three years claim-
ing the DSR approach and examining their rigor.

To achieve the objective, the following chapter
lays the necessary theoretical foundations. Building
upon this, the methodology as well as the selection
criteria for the research data will be explained in more
detail. Subsequently, the data will be analyzed on the
basis of the previously defined schema in order to de-
rive statements about the rigor. The findings of this
research are summarized in a respective overview at
the end of this research work. In the end, after a short
summary of the results, the limitations and implica-
tions of this paper are pointed out.

2 THEORETICAL BACKGROUND

In this chapter, the terms ”Data Science Research”,
”DSR” and ”Rigor” are explicitly presented and ex-
plained to provide an overview of the theoretical foun-
dation of this paper.

2.1 Data Science Research

Data Science is an established interdisciplinary field
that combines scientific methods, systems, and pro-
cesses from statistics, information science, and com-
puter science to gain insight into phenomena about
structured or unstructured data (Zhu and Xiong,
2015). According to van der Aalst (2016), Data Sci-
ence is used to assign business value to data. Ethical,
social, and legal aspects also play a role when consid-
ering the resulting insights (van der Aalst, 2016).

Nowadays, several process models can help re-
searchers to execute data science projects (Baijens
et al., 2020). Well-known reference models are the
CRoss Industry Standard Process for Data Mining

(CRISP-DM) as well as the Knowledge Discovery
in Databases (KDD). Based on them, several addi-
tional process models emerged over time (Martı́nez-
Plumed et al., 2021). Taking CRISP-DM as an ex-
ample the typical process activities are arranged se-
quentially and consist of six different phases that can
optionally be iterated several times. These are (1)
Business Understanding, (2) Data Understanding, (3)
Data Preparation, (4) Modeling, (5) Evaluation, and
(6) Deployment (Chapman et al., 2000).

2.2 Design Science Research (DSR)

A well-known methodological framework in informa-
tion science that brings both practice and theory to
the solution approach is DSR (Hevner et al., 2004).
DSR is a problem-oriented approach that attempts
to gain a profound understanding of how novel so-
lutions, called artifacts, can be designed in the field
of information science. An artifact reflects the re-
search object under consideration and can be repre-
sented as a construct, model, method, or instantiation.
The knowledge from the generated artifacts can be
used for future research or for practical implementa-
tion (Hevner et al., 2004). Knowledge about the de-
sign problem can be generated through constructing
and applying artifacts. In principle, the DSR frame-
work according to Hevner (2007) is presented as a
DSR cycle model with three different research cycles.
These are the relevance cycle, rigor cycle and design
cycle.

The cycles shown can also be abstracted as a se-
quential process that represents a single iteration stage
after each run. Peffers et al. (2006) divided the De-
sign Science Research Process Model into six distinct
phases: problem identification, objective of solution,
design and development, demonstration, evaluation,
and communication. This process model also allows
iterating by going back to previous phases or starting
at different entry points (Peffers et al., 2006). Over
time several additional process models or advance-
ments of the presented models are made (Gregor and
Jones, 2007; Vaishnavi and Kuechler, 2004; Sonnen-
berg and Brocke, 2012).

2.3 Rigor

Primarily due to its practical orientation, the DSR
approach has been repeatedly criticized since its es-
tablishment for not meeting the demands of rigorous
research (Kuechler and Vaishnavi, 2011). ”In both
design-science and behavioral-science research, rigor
is derived from the effective use of the knowledge
base - theoretical foundations and research method-
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ologies”.(p. 88) (Hevner et al., 2004) Thus, Hevner
et al. (2004) set up seven guidelines ((1) design as an
artifact, (2) problem relevance, (3) design evaluation,
(4) research contribution, (5) research rigor, (6) de-
sign as a search process, and (7) communication of re-
search) for constructing and applying artifacts. These
guidelines are based on the fundamental principle that
DSR is a problem-solving process. Within Hevner
(2007) DSR cycle model, rigor is ensured in the form
of a separate cycle. According to Peffers et al. (2007),
rigor must be ensured in both development and evalu-
ation. This can be ensured through the thoughtful se-
lection and application of existing research methods
and reference models (Hevner et al., 2004).

While Arnott and Pervan (2012) subdivided rigor
into the theoretical foundation and the selection and
use of appropriate research methods. This paper fo-
cuses mainly on applied research methods. The rea-
son for this focus is that the original study (Arnott
and Pervan, 2012) already identified a high level of
theoretical rigor but a low level of rigor in relation to
research methods. Several publications present possi-
ble methods that are well suited for DSR (Sonnenberg
and Brocke, 2012; Peffers et al., 2012).

3 METHODOLOGY

Fig. 1 illustrates our research approach. In the first
step, we conducted a literature review to identify rel-
evant publications. For this, we followed the guide-
lines of vom Brocke et al. (2009) to meet the require-
ments for rigor in this work. Initially, the criteria for
the selection of suitable literature are determined. The
selection first focused on the three literature databases
IEEE, ScienceDirect, and SpringerLink. Using the
keyword search, relevant publications were searched
with the following search string. “Data Science”
AND (“Design Science*” OR “DSR”).

Applying this, 82 publications are identified and
examined for duplicates. Their suitability in terms of
content is assessed on the basis of the abstracts and
the respective methodological sections. Here, a publi-
cation is only classified as suitable if it actively states
that it proceeds according to DSR. In addition, data
science has to play at least a thematic role. Accord-
ingly, the number of relevant publications is reduced
to a final number of 62, which are subsequently ana-
lyzed in depth.

The second step is to analyze the characteristics
of publications. Therefore, qualitative content anal-
ysis according to Mayring (2000) is used. The pub-
lications are systematically analyzed on the basis of
previously developed coding guidelines. Through an

inductive category development process, two new di-
mensions are identified. These are extended by two
further dimensions that are deductively derived
1. The use of research process models. Both in the

area of DSR and Data Science. In the context of
the analysis, only those sources were taken into
account where the authors state that they follow a
DSR approach.

2. The role of Data Science in the publications. Here
it is inductively identified on the basis of the liter-
ature examined that Data Science

(a) appears as an enabler and is only considered
from a meta-perspective. No implementation or
detailed explanation of Data Science concepts
follows.

(b) appears as an demonstrator within the frame-
work. For example, as a prototype in the
demonstration while the actual main artifact is
a framework.

(c) appears as an artifact itself and is thus the main
component of the publication. Here, for exam-
ple, a prediction model is developed for a prob-
lem and its performance is subsequently vali-
dated.

3. The type of artifact developed according to the
classification of Hevner et al. (2004).

4. The research methods used or cited are classified
according to Sonnenberg and Brocke (2012).
If such a concept is identified in a publication, this

is indicated by an X in the concept matrix. A finer
distinction is made for the research methods in order
to assess the rigor of Data Science Research as men-
tioned in section 2.3. If the use of a research method is
only mentioned, a blank circle is filled in. If a suitable
publication is referenced and justified, a full circle is
used as a symbol instead.

In the third step, an assessment based on the pub-
lication by Arnott and Pervan (2012) is made. For
this purpose, the classification is broken down into
the areas Weak, Adequate, and Strong. As the orig-
inal paper did not provide a comprehensive definition
of the assessment categories, the following guidelines
are made for the purpose of this paper.

• Weak: The rigor of a publication is classified
as Weak if it (1) does not mention any research
methods (2) mentions research methods but does
not give any references and justifications for the
choice of methods or (3) appropriately references
and justifies less than 50 % of the chosen research
methods.

• Adequate: The rigor of a publication is classi-
fied as Adequate if (1) it uses at least one research
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Figure 1: Overview of the Research Approach.

method and (2) justifies and supports the choice
of research methods with appropriate references
in 50 % or more of the cases.

• Strong: The rigor of a publication is classified
as Strong if it justifies and references each chosen
research method, in contrast to Adequate.
According to Peffers et al. (2012), a four- or multi-

eye principle is applied. In this way, an appropriate
and consistent assessment is attempted. In a fourth
step, the identified dimensions are presented in a con-
cept matrix according to the approach of Webster and
Watson (2002), based on the presented assessment
rules. The findings can be derived from the matrix
and will be presented in the following chapter.

4 FINDINGS

The rigor assessment of the 62 publications accord-
ing to the procedure already described yields differ-
ent findings. These are mapped in the concept matrix
below and then subsequently explained. For this pur-
pose, this section is subdivided according to dimen-
sions in the concept matrix.

4.1 Assessment

Looking at the assessment of the entire sample of this
study, three (4.8 %) publications are in the category
strong, eleven publications (17.7 %) are adequate and
48 (77.4 %) are weak. According to the study con-
ducted by Arnott and Pervan (2012) about 10 years
ago, 3.3 % were Strong, 22.1 % were Adequate, and

74.6 % were Weak. Thus, it can be seen that within
this sample the ratio of publications seems to remain
the same. In the context of data science publications,
therefore, the weak rigor with regard to the selec-
tion, justification, and citation of appropriate research
methods continues to be clearly evident.

4.2 Research Methods

During the analysis numerous research methods could
be identified. A detailed overview of all methods as
well as which publications use specific methods can
be found in the concept matrix 1. Upon closer exam-
ination of the research methods used, the most com-
mon one is literature analysis followed by expert in-
terviews. Although they are used in 33 and 24 cases
respectively, the concrete application is seldom ex-
plained and supported by research method references.

A distinct portion of the sample did not mention
any applied research method in the context of DSR.
In eight cases, it was not possible to observe any re-
search method. Consequently, these cases completely
omit the mention of adequate research methods. They
limit themselves to the naming of DSR in general. In
addition to this, eight further cases only mentioned
a single research method for their research approach.
In both of those cases, this automatically resulted in
classification as weak.

There are publications that merely mention the use
of research methods without referencing them. This
applies to 41 cases (66.1 %) after classification. This
percentage does not allow for a general conclusion
on the mention of methods since publications in this
group also mention using more than four methods.
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Table 1: Overview of Publication Characteristics and Assessment Results.
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Nevertheless, according to the rules of rigor defined
before, all these publications are rated as weak. The
delta of these cases to all weak cases is represented by
publications that make references in less than half of
the cases.

4.3 IT-Artifact and Role of Data Science

A dedicated examination of rigor considering the
Data Science role within this publication did not re-
veal any relation. The same applies to the differenti-
ation per artifact type. However, independent of the
research question, the distribution of the individual
classes is nevertheless interesting.

4.4 Process Model

Since the sample was selected based on the use of
DSR, it is not surprising that each publication men-
tions a process model. A corresponding reference is
always given as well. Overall, a variety of sources
is used. Sometimes publications referenced several
sources for the used methodology. However, when
considering data science process models, only three
models mention CRISP-DM. In this sample other
Data Science process models are not applied. The ex-
tended concept matrix showing all process models is
available from the authors upon request.

5 DISCUSSION

The study reveals significant weaknesses in connec-
tion with the selection and citation of suitable re-
search methods. As a result, over 77 % of publica-
tions are rated as weak in regard to the rigorous se-
lection and application of research methods. When
publications lack rigor, it can lead to results that are
not replicable by other researchers, unreliable, or even
incorrect. This can lead to incorrect conclusions be-
ing drawn which can have implications for further re-
search and practice. Although each publication spec-
ifies a DSR methodology and provides evidence of
it through widely used references, this still does not
infer a fundamental rigor in the approach. Peffers
et al. (2007), indicated by 29 publications (46.7 %),
also confirmed that the citation of research methods
contributes to better understanding, increased validity
and generalizability of the results. A possible expla-
nation might be that the researchers work conscien-
tiously and structured in the background, but do not
document it in the paper. Moreover, researchers may
be unaware of the actual use of the research methods

(e.g. experiment, survey, case study) and the need to
explicitly validate the results from them.

Furthermore, it can be seen in the concept matrix
that only in three cases name a Data Science process
model. The referenced CRISP-DM, which is popular
in knowledge and practice, has fundamental similar-
ities to DSR. Both approaches focus on the develop-
ment and validation of solutions to practical problems
using similar phases and methods. This could be a
reason for the low number of Data Science process
models while the number of DSR models is high.

Especially in publications in which the role of
Data Science is a demonstrator or artifact, metrics
such as accuracy are often used. One explanation for
the omission of specific justifications and references
could be that for many metrics in the field of Data Sci-
ence no foundation papers are available. Furthermore,
authors could assume that the methods used are gen-
erally known and therefore refrain from citing them.

Moreover, mathematical constructs such as an ac-
curacy score are often used for evaluation in the field
of Data Science. While Sonnenberg and Brocke
(2012) argue that logical reasoning and mathemati-
cal proofs can also be a method for evaluating, this
was not considered as a research method itself in this
work. These metrics usually have a practical origin
and are generally known in the community. Neverthe-
less, a reference to the work that justifies the selection
and describes the metrics is usually omitted. Further-
more, the results still can be considered valid, because
this does not excuse the absence of referencing cho-
sen research methods or the absence of research meth-
ods in other phases of DSR at all. In addition, these
metrics are only used for quantitative evaluations. A
qualitative perspective is therefore completely miss-
ing if no other evaluation method is conducted. For
this reason, the procedure can generally be regarded
as well-suited to answer the research question.

6 CONCLUSION

Based on the findings of Arnott and Pervan (2012),
many publications have a shortcoming in rigorously
describing the selection, application, and justification
of appropriate research methods. This motivates this
study to re-validate these findings after ten years. For
this purpose, the focus lies on the increasingly popu-
lar field of Data Science. Other publications have al-
ready shown that DSR is a suitable methodology for
Data Science publications. According to the search
criteria, 62 publications in the investigated time pe-
riod were based on a DSR approach.
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6.1 Summary

This paper examined the rigorous use of research
methods and systematically maps them through a con-
cept matrix 1 to answer the research question. Based
on the research methods mentioned in each case, as
well as on the corresponding references provided, an
assessment of rigor is made. In summary, 77.4 % of
these publications were categorized as weak in terms
of rigor. Consequently, the ratio remains nearly simi-
lar to the data from the 2012 study of Arnott and Per-
van (2012). Looking at the analysis of Data Science
Research, 66.1 % do not reference or justify the re-
search methods with appropriate literature references
at all. At the same time, eight publications com-
pletely abstained from mentioning further research
methods. Only three publications could be identified
as strongly rigorous. The main reason for this assess-
ment is the consistent use of research methods for all
activities within the various phases of DSR. In each
case, references are cited that prove that it is an es-
tablished research method whose success can be ex-
pected. Hereby it can be concluded that after using
the methods in a comprehensible and promising way
in many contexts, the results are also valid for this
publication.

6.2 Limitations

We need to acknowledge some limitations to our re-
search. First, it must be taken into account that during
the data collection and classification, despite main-
taining a dual control principle, the absence of errors
cannot be guaranteed. Due to the diversity of this re-
search area and the missing separation precision pro-
vided by the search string used, it cannot be guaran-
teed that all publications matching the topic could be
determined. In Addition, the differentiation by con-
cepts and role of Data Science did not lead to any find-
ings due to the small sub-sample size in some cases.
In addition, the rigor applied by researchers can only
be assessed based on what was written in the publica-
tions. This means that only explicitly mentioned re-
search methods can be considered. Researchers may
omit (intentionally) details or steps for different rea-
sons. It is important to acknowledge the limitations in
assessing the rigor based solely on the written docu-
mentation in form of publications.

6.3 Future Work

To validate this work as well as for further analysis, a
replication of the study with additional Data Science
publications, even if they may not explicitly state that

they proceed according to DSR, would be useful. In
future studies, an exploration of DSR in the domain
of Data Science may benefit from adopting a quali-
tative methodology. By analyzing Data Science re-
search more in-depth the rigor can be assessed beyond
the applied research methods described in the corre-
sponding publications. Another possibility for further
work would be to develop a DSR process model, tai-
lored to the specific needs of Data Science research.
In order to take into account the characteristics of
Data Science Research, the authors propose future
work about the integration of a Data Science process
model like CRISP-DM into DSR.
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ding light on blind spots – developing a reference ar-
chitecture to leverage video data for process mining.
Decision Support Systems, 158.

Kregel, I., Stemann, D., Koch, J., and Coners, A. (2021).
Process mining for six sigma: Utilising digital traces.
CAIE, 153.

Rigor in Applied Data Science Research Based on DSR: A Literature Review

133



Kuechler, B. and Vaishnavi, V. (2011). Promoting relevance
in is research: An informing system for design science
research. InformingSciJ, 14:125–138.
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