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Abstract: Leakages are one of the main causes of water loss in a water distribution system (WDS). In recent years, the 
increasing of streaming data coming from sensors installed in the water network, allows the monitoring the 
health status of each asset of the WDS. In this paper, a preliminary data-driven approach for leakages detection 
and prediction is proposed. Starting from the characteristics of a real water distribution network, a realistic 
leakages dataset has been achieved. Using this dataset, unsupervised rule-based time series algorithms has 
been trained for the detection and prediction of leakages. 

1 INTRODUCTION 

Water loss in the Water Distribution Systems (WDSs) 
is a topic that has been attracted much attention in 
recent years. The International Water Association 
(IWA) defines leakages as an important form of loss 
of water from a WDS due to leaks (Pearson, 2019). 
Leak is considered as a failure causing an unplanned 
loss of water from a network. The term is generic and 
can be used to define leaks of any size and referred to 
any type of asset from pipes and valves to reservoirs. 

As concerns the sizes, leaks can be categorized as 
abrupt leakages and incipient leakages (Vrachimis et 
al., 2018). Abrupt leaks are leakages that occurs 
suddenly in a water system and results in large 
volumes of water coming out of the network in a short 
period; generally, this type of leakages is associated 
to pipe burst. Incipient leakages, instead, increase 
gradually over time starting as background leakages 
and developing into full-blown leakages 
(Tornyeviadzi and Seidu, 2023). 

Detection of incipient leakages is difficult as they 
typically occur in pipes with smaller diameter, 
casusing at the beginning low volumes of water loss; 
this type of leaks growth slowly during the time 
leading to huge losses if not discovered and repaired 
in due time (Wan et al., 2022).  
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Leakage detection is defined as the process of 
locating and pinpointing water leaks (NAIADES, 
2022).  

Among the existing approaches for leakages 
detection there are those based on data-driven 
models. These models rely on learning techniques 
applied on a collection of data coming from the WDS 
and for this reason, they do not require a domain 
knowledge about the network. On the other hand, a 
large amount of historical data is needed to perform 
the analysis (Escofet et al., 2016).  

Prediction of water leakages involves spotting 
leaks before they happen (Cody, 2020). Leakages 
prediction methods are used to identify areas and 
pipes in the network with a high probability of 
leakage, allowing water utilities to create an 
appropriate active leakage control plan (Leu and Bui, 
2016). Prediction of water leak is a challenging task: 
tightness and invisibility of the hydraulic components 
as the rarity and uncertainty of these events makes the 
prediction of these faults events difficult (Wang et al., 
2022). 

Data-driven approaches have emerged as a 
powerful tool for predictive maintenance 
applications; indeed, the increase of data availability 
collected through the sensors and the smart meters 
lead to the beginning of a digitalization process of the 
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water sector, known as Water 4.0 (Adedeji et al. 
2022). Water 4.0 includes the service innovation of 
water networks: maintenance becomes preventive 
and predictive programmed on the basis of signals 
data (Caldognetto et al., 2022). 

In this paper, the authors are going to propose a 
data-driven approach to realize both detection and 
prediction of leakages, considering a real WDS of the 
city of Milan (Italy). The machine learning models 
aimed to realize this aim have been defined. Using 
these models, a performance evaluation has been 
carried out, comparing the leaks detected with the real 
ones. Finally, the selected algorithm has been used for 
leakages prediction and the relevant results have been 
achieved. 

The paper is structured as follows: Section 2 will 
give an overview about the similar approaches found 
in the literature, in order to point out the originality of 
the work proposed. In Section 3 the authors will give 
a description of the approach proposed for detecting 
and predicting leakages. Section 4 presents the results 
obtained from the application of the approach on the 
leakages dataset. A final section will summarize the 
conclusions.  

2 RELATED WORK 

The aim of this section is to give an overview of the 
main approaches present in the current literature 
about the use of data-driven approaches for leakages 
detection and prediction in WDSs. This overview will 
allow to point out the originality of the proposal. 

Leakage detection methods can be broadly 
classified into hardware methods and software-based 
methods. 

Hardware methods can be further categorized into 
passive and active systems; if the former requires 
vision and sensor utilization, the latter involves the 
analysis of acoustic, vibration, flow or pressure 
signals (Chan et al, 2018). In (Hunaidi et al. 1999), 
leak identification through the acoustical signals 
given by plastic pipes is presented. More recently, 
(Cody et al. 2020) proposed a mixed approach where 
deep learning is involved for the monitoring of 
hydroacoustic spectrograms to pinpoint leaks on 
pipelines. Finally, in (Wang et al. 2021) the authors 
investigated the characteristics of acoustic signals 
obtained by simulating leaks through an experimental 
platform; then these signals have been passed to an 
artificial neural network model for leak detection. 

As concerns vibration signals, (Bentoumi et al. 
2017) proposed a leak-detection model based on the 
‘Haar’ continuous wavelet; the algorithm takes as 

input vibration signals issued from a water pipeline 
and decides if there is or not a leak in the network. In 
(Yu et al. 2023), the authors presented a machine 
learning models for leak detection on vibration 
signals collected by wireless piezoelectric 
accelerometers placed in real complex water 
distribution systems. 

Active systems comprise transient-based 
approaches, hydraulic model-based approaches and 
data-driven approaches. The core idea of transient-
based approaches is that any change in the physical 
structure of the pipe can alter flow and pressure 
measurement of a system (Wan et al., 2022). To 
capture transient behavior, this type of analysis 
requires big amount of data with high sampling 
frequency that results in costly and too complex 
process. For this reason, transient approaches are not 
recommended for real-time monitoring of large 
WDSs (Colombo, 2009). 

Hydraulic model-based approach instead uses 
mathematical functions and formulas to replicate the 
operation of a network. Apart from requiring domain 
knowledge to be built, these models need the 
availability of large amount of historical data for 
calibration. Another major drawback is that model-
based methods assume WDS conditions stability over 
time; this is not true in real life scenarios since factors 
as pipe ages and roughness coefficient as time goes 
on increase and become increasingly influential on 
leak occurrence (Perez et al., 2014). 

Active systems include data-driven models; in 
particular, three types of approaches can be actually 
used for the detection of leakages: Supervised, Semi-
supervised and Unsupervised learning. 

In Supervised learning methods binary or multi-
class classifier are trained using normal and abnormal 
labeled data. This type of methods is rarely used for 
leakages detection in reality due to the lack of labeled 
hydraulic data. Moreover, if they let us reach high 
accuracy for the identification of the leaks in small 
and simple WDS, this is not the case for larger and 
more complex network (Kammoun et al., 2022).  

Semi-supervised learning requires only the 
availability of normal labelled data; they have been 
adopted for water quality applications (Barros, 2023). 

Finally, unsupervised learning algorithms do not 
rely on either normal or abnormal labeled data 
availability. They are widely used in the field of 
leakages detection since they are more flexible and 
realistically feasible (Kammoun et al., 2022). In 
particular, in this paper, the authors applied an 
unsupervised RNN model for leaks detection and 
localization on flow and pressure data coming from 
different realist water demands scenarios of the Leak 
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DB dataset. In the NAIADES project an unsupervised 
temporal and spatial anomaly detection approach is 
applied to detect leakages on pressure and water flow 
data of the Braila districts (NAIADES, 2022). 
Although many studies have investigated over the 
problem of the detection of the leakages in the water 
networks, a very limited amount of researches 
focused on prediction of leakages (Leu et al, 2016). 
In the paper (Lijuan et al., 2012), the authors 
presented a pipe leakages prediction approach based 
on a radial basis function (RBF) neural network; 
specifically, the authors analyze all the possible 
factors influencing leaks and the possible relationship 
existing between them that could facilitate in 
predicting leakages more effectively. In their work, 
(Leu and Bui, 2016) used a Bayesian network 
learning (BNL) model with an updated failure 
probability of each asset for leakages prediction. 
Finally, in (Wang et al., 2022) the authors proposed a 
five-dimensions digital twin model for both fault 
diagnosis and predictive maintenance on hydraulic 
system; to illustrate the effectiveness of their method, 
they applied it to an hydraulic cylinder. 

In this paper, the authors use the unsupervised-
based time series anomaly detection algorithms for 
leakages detection and prediction. Differently from 
the existing literature works, only one variable is used 
to perform these tasks. Indeed, the core idea proposed 
in the paper is to let the algorithms learn leakages 
changes in the pressure nodes during the anomaly 
detection step and to use then this information also for 
the prediction. The advantage of this proposal is that 
a reduced set of information is needed for the 
detection and prediction of leakages, simplifying the 
approach. The paper aims to provide a contribution to 
the current literature concerning water leakages 
prediction of water, considering the scarcity of 
research available on this topic. Furthermore, the 
proposed method for identifying and predicting 
leakages is applicable to both incipient and abrupt 
leakages. The authors believe that this additional 
aspect should be considered when evaluating the 
paper's contribution to the knowledge of predicting 
and detecting water leaks, as current literature 
primarily focuses on the detection of abrupt leaks. 

3 APPROACH 

In this paper we propose a two phases approach: 
leakages detection and the leakages prediction. First 
phase consists of the application of unsupervised 
algorithms for the identification of leaks events. 

Then, among the algorithms applied for detection we 
choose the best performing one for prediction.  

The analysis is divided in several steps: Data 
Acquisition (Step 1), Data Pre-processing and 
Transformations (Step 2), Leak Detection (Step 3) 
and Leakages Prediction (Step 4). The Leakages 
Prediction includes a Feature Engineering step, as 
explained later. 

In the next sections, each phase of the analysis 
will be described. 

3.1 Data Generation 

Data plays a strategic role in a machine learning 
approach, as known. For the problem of leakages 
detection and prediction in WDSs data about real 
losses is needed. Availability of data relevant to 
losses is very difficult as many time data is missing; 
this happens for different reasons, among which there 
is the lack of digital support systems to store the 
maintenance activities inside the water distribution 
system assets. To solve this problem, in the present 
paper the data needed to run the machine learning-
based solution was synthetically generated. 

In details, data was created using the Water 
Network Tool for Resilience (WNTR), a Python 
package designed to simulate and analyse resilience 
of water distribution networks (Klise, 2018). 
Simulations data is related to the actual water 
distribution network of Milan, Italy.  For the analysis, 
we consider a reduced version of the original urban 
water network, obtained through a skeletonization 
process that allows us to remove those pipes and 
nodes that have a minimum impact on the system 
behaviour.  

Figure 1 and Figure 2 show a planimetry of the 
Milan network and of its reduced version. 

The analysed WDS is made by: 12,354 nodes, 
17,548 pipes, 26 pumping stations, 95 booster pumps. 
To simulate the behaviour of the system in different 
days of the week, the coefficients of variation of 
water demand should be taken into account. To get 
these coefficients, the authors adopted the following 
approach. First of all, the real water demand 
coefficients recorded by the Supervised Control and 
Data Acquisition system (SCADA) each minute on a 
particular day, have been considered. SCADA are 
industrial applications for the control and monitoring 
of assets (either machines or single components of an 
equipment).  

Then, the original coefficients have been 
aggregated to half an hour using the mean as 
aggregating function. Next, the results of this 30-
minutes aggregation have been stored, summed to a 
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random value between + 1.5 and – 1.5 and multiplied 
for a percentage (0.05). This percentage corresponds 
to a noise factor that lets us reproduce possible 
fluctuations of the water demand curve without 
altering the daily patterns of water consumption. 

 

Figure 1: Milan WDS. 

 

Figure 2: Skeletonized Milan WDS. 

This method is repeated to generate the coefficient 
of variation of the half an hour water demand for the 
other days. These coefficients are given as input to the 
simulation tool to obtain hydraulics data. 

Figure 3 shows the obtained water curves demand.  

 

Figure 3: Water demand curves. 

In Figure 3, the black-line curve represents the 
original water demand curve, obtained starting from 
the real-world coefficients. The other curves in the 
plot (Demand-Pat2, Demand Pat3, Demand Pat4 and 
Demand Pat5) are the simulated water demand 
curves. 

WNTR package includes the possibility to add 
leaks in the water system.  

Leakages are simulated at network nodes 
randomly selected. The leakage magnitude varies due 
to the assignment of a random leakage hole diameter. 
Considering the data obtained through simulations, 
the authors used the pressure data recorded each 30 
minutes for the nodes of the skeletonized network, 
and the leak history used to evaluate the performances 
of the algorithms. 

3.2 Data Pre-Processing 

Data pre-processing was needed before proceeding 
towards the detection and prediction of the leakages.  

To realize simulated leakages the WNTR 
simulator adopts the following method: first it divides 
the randomly selected pipe in two parts. Then, it adds 
a new node where we want to locate the leak. For this 
reason, duplicate columns will be present on the data 
achieved by the simulation: one containing the 
normal conditions pressure values, and the other 
showing a decrease in pressure data when the leak 
occurs (e.g., “N04755” column and 
“N04755_leak_node” column). We retain columns 
whose values reflect the occurrence of a leak. For the 
pressure and the leak history datasets, the time given 
in seconds was converted in a date format.  

Table 1 and Table 2 show the final datasets after 
transformations. 

Table 1: Pressure dataset. 

Timestamp Abbiategrasso Anfossi ...
2009-11-18 00:00:00 66.4090 64.3000 ...
2009-11-18 00:30:00 66.6450 64.3740 ...
2009-11-18 01:00:00 62.2259 63.9548 ...

... ... ... ...
2009-11-22 23:00:00 67.6521 64.6836 ...

Table 2: Leak history dataset. 

End Node Start Time Diameter
N03185 2009-11-18 01:30:00 0.3717
N22998 2009-11-18 16:00:00 0.1328

... ... ...
N01352 2009-11-21 02:30:00 1.2112
N10174 2009-11-22 04:00:00 0.1174

Table 1 contains a total of 12,355 columns: first 
column represents the Timestamp while the 
remaining ones, named as the nodes of the Milan 
network, contain 30 minutes-pressure values for each 
of the nodes. Table 2 is made by three columns: the 
‘End Node’ column containing the names of the leak-
nodes, the ‘Start Time’ column containing the time at 
which the leak happens, and the ‘Diameter’ column 
giving us information about the size of the leak in the 
pipe (in meters). Pressure data was standardized using 
the Standard Scaler function in order to normalize 
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features by removing the mean and scaling to unit 
variance (Scikit-learn). The proposed choice is based 
on the fact that the hydraulic features look like 
standard normally distributed data. 

3.3 Leak Detection 

Detection and prediction of leakages are performed 
through the use of the Anomaly Detection Toolkit 
(ADTK), a Python package for unsupervised/rule-
based time series anomaly detection (ADTK, 2023). 
The algorithms implemented have been widely used 
in recent years for anomaly detection applications in 
time series data (Gopali and Namin, 2022), (Otte et 
al., 2022), (Ameli et al., 2022), (Beliichovski et al., 
2022). 

For all these models, there is only one 
hyperparameter that must be fixed that is the c-factor. 
The c-factor establishes when an observation has to 
be considered normal or anomalous basing on the 
historical interquartile range. We leave it to the 
default value c = 3.0; this means that when an 
observation is 3-times greater than the interquartile 
range of the n-previous observations, it is classified 
as anomalous. As Table 3 shows, the output of the 
trained algorithms is a data table containing for each 
end node, the timestamp when the leak has been 
identified. 

Table 3: Example Output Anomaly Detection Algorithms. 

End Node Timestamp
Anfossi 2009-11-18 12:00:00

Abbiategrasso 2009-11-18 16:00:00
N05636 2009-11-19 02:00:00

... ... 
N00780 2009-11-22 19:30:00

Table 4 summarizes the performances of the 
algorithms described in the previous section.  

Table 4: Performances Anomaly Detection Algorithms on 
Unbalanced Dataset. 

Algorithms  Accuracy Precision Recall F1
PersitAD 0.8452 0.0007 0.1728 0.0015

LevelShiftAD  0.9007 0.0007 0.1043 0.0014
GeneralizedESD TestAD 0.9985 0.0004 0.0005 0.0005
InterQuartile RangeAD 0.9981 0.0029 0.0055 0.0038

Auto RegressionAD 0.8498 0.0007 0.1637 0.0018
Local Outlier Factor 0.9164 0.0005 0.068 0.0011

Isolation Forest 0.9041 0.0009 0.1325 0.0004
K-Means 0.9413 0.0001 0.0166 0.0003

Affinity Propagation 0.9911 0.0002 0.0023 0.0014

When dealing with anomaly detection problems, 
we would like to know how good the anomaly 

detection algorithm was in identifying the anomalous 
events. This measure is expressed by the precision.  

Looking at Table 4, the InterQuartileRangeAD 
stands out as the top-performing algorithm in terms 
of precision score. However, this algorithm suffers 
from a Quadratic Time Complexity O(n2), requiring a 
greater computation effort. On the contrary, the 
Isolation Forest algorithm, despite its lower 
computational complexity (Linear Time Complexity 
- O(n)), exhibits lower precision compared to the 
InterQuartileRangeAD. 

Difference in ranges between accuracy and the 
other evaluation metrics is motivated by the 
unbalancing of the dataset, where observations 
referring to normal conditions of the system are 
present in large quantities with respect to leakages 
events. The analysis of the data generated in the first 
tests showed that leakage duration was limited to 24 
hours. It was, therefore, decided to extend this 
duration to obtain leakages with a minimum duration 
of 8 hours and a maximum of 72 hours thus increasing 
the size of the data set in the presence of losses.  

Table 5 shows the performances of the anomaly 
detection algorithms tested on the balanced dataset. 

Table 5: Performances Anomaly Detection Algorithms on 
Balanced Dataset.  

Algorithms Accuracy Precision Recall F1
PersitAD 0.8450 0.4370 0.0300 0.0563

LevelShiftAD 0.8451 0.4074 0.0147 0.0284
GeneralizedESD TestAD 0.8462 0.5455 0.0040 0.0080
InterQuartile RangeAD 0.8470 0.7222 0.0087 0.0172

Auto RegressionAD 0.8403 0.3399 0.0405 0.0723
Local Outlier Factor 0.8354 0.1790 0.0194 0.0350

Isolation Forest 0.7834 0.2310 0.1752 0.1993
K-Means 0.8441 0.4383 0.0475 0.0857

Affinity Propagation 0.8443 0.3889 0.0211 0.0400

Looking at Table 5, it can be seen that the 
performances of all the algorithms (in terms of 
precision) trained on the balanced dataset improved. 
Also in this case, the InterQuartileRangeAD 
algorithm exhibits the highest precision score 
compared to the others. For this reason, the authors 
selected the InterQuartileRangeAD algorithm for the 
leak prediction task. 

3.4 Leak Prediction 

Before passing to prediction, a Feature Engineering 
step was needed.  

Feature Engineering is a machine learning 
technique that leverages data to produce new 
information by combining features. To reach this 
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goal, a mathematical function f is applied to data 
(Gutschi, 2018).  

In this step, the authors performed a rolling 
window aggregation that consist in aggregating data 
into equally sized windows for all the timestamps. 
Rolling aggregation allows us to build a dataset ready 
for prediction so that, starting from the pressure data 
which represents the system behaviour over historical 
time widows, we can anticipate leakages occurrence.  

In the analysis, the rolling aggregation process has 
been applied on the test dataset containing the 
simulated pressure data of the 24th November 2011. 
Table 5 reports the leak history test set.  

Table 6: Leak History Test Set. 

End Node Start Time 
N02197 2009-11-24 23:00:00
N15337 2009-11-24 04:30:00
N10848 2009-11-24 10:00:00
N11577 2009-11-24 16:30:00
N26758 2009-11-24 16:30:00
N06633 2009-11-24 04:00:00
N19500 2009-11-24 03:30:00
N00971 2009-11-24 03:00:00
N04628 2009-11-24 20:30:00

As Table 5 shows, the leak history dataset 
contains two columns: the ‘End Node’ that is nodes 
where the leak occurred, and the start time that is 
when the leak occurred. 

For leakages prediction, two different lag 
windows were considered: a shorter prediction 
window of 1 hour and a longer prediction window 
with duration of 3 hours. We used the median as 
aggregating function since compared to the mean, it 
is more robust to the outliers. 

4 RESULTS 

In the present section we will present the results given 
by the application of InterQuartileRangeAD 
algorithm for leakages prediction.  

In order to evaluate the performances of the 
InterQuartileRangeAD algorithm in predicting 
leakages, we use the start time information shown in 
Table 5. In other words, we will verify if the 
algorithm raises a warning before the true leak time.  

Figure 4 and Figure 5 show the performances of 
InterQuantileRangeAD algorithm with 1-hour 
prediction window. In this case the algorithm was 
able to predict the leak events for two nodes of the 
network: N00971 and N02197. As shown in Figure 4, 
for the node N00971 the algorithm generated two 

warnings, at 02:00 pm and 02:30 pm, before the true 
leak time that is at 03:00 pm.  

The same for the node N02197 shown in Figure 5, 
where the leakage event occurred at 11:00 pm and the 
first warning was generated by the algorithm at 10:00 
pm. 

 
Figure 4: 1 Hour Prediction Node N00971. 

 
Figure 5: 1 Hour Prediction Node N02197. 

In Figure 6, we report the performances of the 
algorithm with 3-hours prediction window. In this 
case, the InterQuantileRangeAD algorithm generated 
the first warning at midnight that is 3 hours before the 
true leak time (2009-11-24 03:00:00).  

 
Figure 6: 3 Hours Prediction Node N00971. 

5 CONCLUSIONS 

In this paper an approach for leaks detection and 
prediction has been presented. The authors applied an 
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unsupervised approach for detecting leakages in the 
Milan WDS. In our data leaks represent a minority 
class: as in real-world cases, values representing 
normal conditions of a water system are present in 
large quantities with respect to the ones referring to 
leakages, which make them an unrepresented class in 
data. 

Unbalancing of data given as input to the trained 
algorithms for detection and prediction let to obtain a 
high gap between values of accuracy with respect to 
precision. To solve this problem in the present case 
study the leak duration has been extended, analysing 
leak events with a minimum duration of 8 hours. This 
let us have a significative improvement in the 
precision score of the trained algorithms. One future 
step could be that of considering data in the night 
period, normally defined as being between midnight 
and 6 am. During night, flowrate is low while 
pressure assumes maximum values. For this reason, 
the minimum night flow is the most meaningful piece 
of data as far as estimating night leakage is 
concerned. Giving to the algorithm flowrate data in 
addition to pressure data could be another possible 
improvement.  

Finally, for future works we plan to simulate more 
data in order to include in the analysis weekly and 
yearly seasonality in water consumption. 
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