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Abstract: Today, water distribution systems need to supply water to consumers in a sustainable way. This is connected 
to the concept of Watergy, which means the satisfaction of user demand with the least possible use of water 
and energy resources. Thanks to modern technologies, the forecasting of water and energy demand can help 
achieve this goal. In particular, water demand forecasting allows water distribution companies to know in 
advance how water resources will be allocated, it can help identify any anomalies in water consumption, and 
it is essential for pumps scheduling. On the other hand, energy consumption forecasting has other important 
roles, such as energy optimization, identification of anomalous consumption, and planning of energy load. 
The present paper aims to develop short-term water demand and energy forecasting models through 
innovative machine learning-based methodologies for the water distribution sector: global forecasting models, 
the N-Beats machine learning algorithm, and transfer learning approaches. These tools demonstrated very 
good performances in the creation of the models previously mentioned. 

1 INTRODUCTION 

Today water distribution systems (WDSs) are 
responsible for water delivery with the required 
quality, pressure, and quantity, but with the lowest 
possible water and energy waste (Adedeji et al., 
2022), (Mesalie et al., 2021). This goal is linked to the 
concept of Watergy efficiency, which means the 
satisfaction of user demand with the least possible use 
of water and energy resources (Bolognesi et al., 
2014). 

Water scarcity poses a great threat to humans. It is 
predicted that by 2025, 1.8 billion people may face 
severe water shortages, and about two-thirds of the 
world's population could be experiencing water stress 
(Hans et al., 2014). This scenario of decreasing water 
availability is the result of the amplification of 
various factors, such as climate change, population 
growth, increased urbanization rates, and industrial 
development (Patil et al., 2022), (Leitão et al., 2019), 
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(de Souza Groppo et al., 2019), (Esen et al., 2020). 
These phenomena have caused a significant increase 
in water consumption reducing the available water 
resources (Hussain et al., 2022), (Stańczyk et al., 
2022). Indeed, the increase in water consumption is 
not accompanied by an increase in water resources.  

Water demand forecasting can help in identifying 
wasteful behavior or leakages in the system, which 
lead not only to higher water consumptions but also 
to higher energy consumption (Kofinas et al., 2016). 
Furthermore, water demand forecasting prevents 
energy waste through the possibility of pumps 
scheduling, as it will be pointed out in the next 
section. 

Indeed, concerning energy consumption, a water 
distribution system incurs high energy costs in all of 
its operations (water extraction, treatment, and 
distribution), but pumping systems are the biggest 
cause of consumption (Sarmas et al., 2022). Luckily, 
the optimal management of pumps’ operations, called 
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pump scheduling can be a source of savings (Gan et 
al., 2022). This concept would be better explained if 
the Figure 1 has been considered. 

Figure 1 is a simplified representation of how the 
water is distributed to final users in a water 
distribution network. In this network, each zone is 
served by a pump system composed of 3 
collaborating pumps (parallel pumps) that distribute 
water collected in a reservoir. After each pump 
system, there is a single pipe in which the water flows 
to a network zone. Parallel pump systems give space 
for energy savings opportunities because it can be 
decided when to turn on/off pumps based on the water 
demand and energy consumption (Gan et al., 2022). 
In other words, not all pumps need to operate always 
simultaneously, for example during the night when 
the water demand is usually lower concerning 
working hours.  

 
Figure 1: A simple representation of a WDS. 

In this context, forecasting the aggregated water 
demand of each network zone plays a very important 
role to schedule pumps’ operations. Accurate 
forecasting helps in deciding how many and which 
pumps to turn on at a given moment of the day based 
on water demand. Furthermore, forecasting the 
energy consumption of pump systems can also be 
useful for different purposes: energy optimization, 
identification of anomalous consumption, and 
planning of energy load (Yi et al., 2022), (Alhendi et 
al., 2022). In particular, the planning of the energy 
load to be supported is fundamental to predicting the 
necessary costs to be incurred and also if the system 
will be able to cope with the required power. 

In conclusion, today Watergy efficiency is the 
main goal that water distribution companies want to 
achieve and the digitalization that has pervaded the 
management of water resources permits them to get 
as close as possible to this goal. Indeed, the 
sustainability of the water supply system would not 
be possible without the industrial revolution of the 
water sector, called Water 4.0 (Adedeji et al., 2022). 
Automation, increased integration of sensors, Internet 

of Things, big data analysis, and artificial intelligence 
are some of the features of Water 4.0. In particular, 
the most famous applications of artificial intelligence 
in the management of water supply systems are 
anomaly detection and water demand forecasting 
(Adedeji et al., 2022). The present paper is focused 
on the latter, together with the pumps’ energy 
consumption forecasting. In particular, it is 
implemented a 24-h horizon forecasting with a 
timestep of 1 hour.  

The proposal presented in the paper has been 
developed inside a research project funded by “Italian 
Ministry of Enterprises and Made in Italy” 
(https://www.mimit.gov.it/en/); details about the 
research project are given in the Acknowledgment 
section. One of the partners of the project, EHT, is an 
enterprise involved in the digital transformation of 
water distribution systems. The goals of the research 
here presented were specified by this enterprise 
together with sponsors of the project, fully involved 
in the same business area. Moreover, the enterprises 
involved in the project evaluated the results achieved 
in order to understand to what extent these results 
could be valuable in practical terms; the evaluation of 
these results was successful as the impact of the 
proposal on the real management of water distribution 
systems was considered important. 

The paper is organized as it follows. In Section 2 
the authors introduce related studies about machine 
learning (ML) models used for water demand 
forecasting and pumps energy forecasting. In Section 
3 the authors describe the proposed approach to solve 
the previously cited forecasting problems, explaining 
how the dataset was simulated, the preprocessing 
steps were done before the machine learning 
algorithm, the proposed forecasting models, and 
finally, the performance metrics used to evaluate 
models. In Section 4 and Section 5 the obtained 
results and conclusions with future works, 
respectively, are reported.  

2 RELATED WORKS 

Water demand forecasting was addressed with 
different machine learning forecasting models in the 
literature. In (Niknam et al., 2022) and (de Souza 
Groppo et al., 2019), a detailed review of the methods 
employed, and important future challenges are given.  

In particular, the three most used methods are in 
order: traditional time series (e.g., autoregressive 
integrated moving averages, exponential smoothing), 
different types of artificial neural networks (e.g., long 
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short-term memory, radial basis function ANN, gated 
recurrent units), support vector machines.  

Time series models are not able to reach high 
accuracy forecasts as machine learning models, 
because they are not able to learn complex, non-linear 
patterns in demand forecasting. Despite this, they are 
among the most used models due to their ease of use 
and interpretation (Niknam et al., 2022). Among the 
most recent papers, AutoRegressive Integrated 
Moving Averages (ARIMA) and Exponential 
Smoothing (ES) are the most used time series models. 
In (Ebrahim Banihabib et al., 2019), two forecasting 
methods for daily urban water consumption 
forecasting are used; one of them is ARIMA. In 
(Karamaziotis et al., 2020) different methods, among 
which ARIMA and ES, are used to realize a mid-term 
forecast. In (Ristow et al., 2021) the ARIMA and ES 
methods are used to forecast monthly urban water 
demand.  

Regarding ANN, in (Salloom et al., 2021) an 
hourly water demand forecasting with the Gated 
Recurrent Unit (GRU) method is presented. In (Hu et 
al., 2021), the GRU method is also used, but with the 
aim to make an hourly water demand forecasting, 
demonstrating the superiority of this method 
compared to Support Vector Machines (SVM). 

About the SVM method, in (Shabani et al., 2017), 
it is used with a polynomial kernel function to predict 
monthly water demand. In the paper (Candelieri et al., 
2019), the authors used the SVR with a parallel global 
optimization tuning of hyperparameters, which 
allowed them to increase the accuracy of the short-
term forecast. 

The pumps’ energy consumption forecasting of a 
water distribution system is instead a less explored 
area of study. In (Yi et al., 2022), the authors used 
four algorithms (multiple linear regression, random 
forest, deep neural network, and support vector 
regression) to forecast the energy consumption of an 
entire water system and the three subsystems of 
conveyance, treatment, and distribution. They 
pointed out the lack of similar papers. 

Partly according to the research carried out, and 
partly also according to what was affirmed by 
(Niknam et al., 2022), there are some quite 
unexplored topics in literature.  

In water distribution systems usually, water 
demand time series are forecasted individually, 
meaning that one model for each time series is 
developed. Instead, global models could allow the 
creation of a single model for all the time series 
(Montero-Manso et al., 2021). This is essential 
considering that, over the years, thanks to the 
technologies available, the number of available series 

will always increase, and new tools are needed to 
manage it.  

Furthermore, global models, learning from 
multiple time series simultaneously, allow the use of 
transfer learning approaches (Bandara et al., 2021). If 
the model is trained on fairly heterogeneous series, 
transfer learning should allow forecasting on series 
never seen before.  

Finally, to the best of the authors' knowledge, 
among all the algorithms used, there is one that has 
never been used in water demand and pumps’ energy 
consumption forecasting of an entire water 
distribution system: N-Beats (Oreshkin et al., 2020). 
This is an algorithm developed specifically for time 
series. 

In summary, this paper aims to fill the gaps in the 
literature by developing short-term water demand and 
pumps’ energy consumption forecasting models 
through global models using the N-Beats algorithm 
and transfer learning approach. 

3 DESCRIPTION OF THE 
APPROACH 

In this section, the authors describe the tools used for 
data simulation, the dataset preprocessing phases, the 
proposed forecasting method, and the performance 
metrics for the models' evaluation. 

3.1 Data Simulation 

Data plays a strategic role in a machine learning 
approach, as known. Considering the problem 
presented in this paper, information about the WDS 
like pipes flowrate and pumps’ energy consumption, 
is strongly required. Data for water distribution 
systems are often not available or of poor quality 
(Maira et al., 2014). As the main aim of the paper was 
the feasibility study of the proposed approach, data 
needed to run the machine learning-based solution 
was synthetically generated. 

Data were simulated through Water Network Tool 
for Resilience (WNTR), a Python package based 
upon EPANET software, designed for the simulation 
of water distribution networks (WDNs), version 0.5.0 
(Klise et al., 2020). The WNTR simulator takes as 
input an .inp file containing the network 
characteristics (e.g., pipes, pumps, valves, junctions, 
tanks, reservoirs, water demand patterns, pumps 
curves) and it returns different time series with the 
simulation results (e.g., pipes flowrate, nodes 
pressure, pumps’ energy consumption). 
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The network used for the simulation is a 
simplified version of the WDN of the city of Milano 
(Italy); it is made up of 12,354 nodes, 17,548 links, 
128 patterns, and 95 pump curves (one for each 
pump). At each node representing a user, a water 
demand pattern has been assigned. The demand 
pattern was extrapolated from water consumption 
data collected every minute on particular dates. More 
in-depth, these consumption data were aggregated in 
a dataset, where each column represented a specific 
zone, and each row was the water consumption of a 
particular minute of the day. In order to extract 
coefficients of the general demand pattern, a column 
with the total consumption per minute was added. 
Finally, the column with the coefficients per minute 
was obtained by dividing each observation of the total 
consumption column by the average value of this 
column. Then, the pattern was aggregated with the 
mean operator to obtain 1-hour interval observations, 
useful for the subsequent step of the hourly 
forecasting. True patterns of 24 hours are represented 
by a black line in Figure 2. 

From this real demand pattern, other 4 patterns 
were obtained adding for each value of the true one a 
random noise. In order to create a similar but different 
pattern, at each value of the true pattern was added a 
quantity that randomly increased or decreased the 
original value. To calculate this quantity, first of all, 
a random noise between -1.5 and 1.5 was generated 
by multiplying a random value between 0 and 1 by 3 
and subtracting 1.5. Then, this value was multiplied 
by 0.05 to obtain a relative number between the 5% 
of -1.5 and 1.5. For each value of the real pattern, this 
process was repeated 4 times to obtain other 4 similar 
patterns. Synthetic patterns of 24 hours are 
represented in Figure 2 and compared with the true 
values. 

 
Figure 2: True water demand pattern and synthetic ones. 

Even if this is the general water demand pattern, 
in the network.inp file each node demanding water 

has a specific base demand. This different base 
demand for each node makes the demand pattern of 
each node in the network unique. 

Furthermore, the pump's speed was set constant 
because WNTR at the moment doesn’t support 
variable speed pumps. 

The water distribution was simulated using this 
network to obtain 5 days of hourly time series (120 
observations). The simulation was a demand-driven 
simulation, meaning that the pressure in the system 
depends on the node demands, and that node demands 
are always satisfied (Klise et al., 2020). The time 
series collected to proceed with the analysis are: 
flowrates series for each pipe (120 rows, 17548 
columns), and energy consumption of each pump 
(120 rows, 95 columns). 

Table 1 and Table 2 provide an example of 
flowrates and energy consumptions datasets, 
respectively, where f indicates the flowrate and e is 
the energy, while the index of the rows represents the 
hours (120 of total hours because there are 5-day 
hourly data). 

Table 1: Simulated flowrates time series example. 

 Flow 
pipe id 1

Flow 
pipe id 2

… Flow  
pipe id 17548

1 f1,1 f1,2 … f1,17548

2 f2,1 f2,2 … f2,17548

… … … … … 
120 f120,1 f120,2 … f120,17548

Table 2: Simulated energy consumptions time series 
example. 

 Energy 
pump id 1

Energy 
pump id 2 

… Energy 
pump id 95

1 e1,1 e1,2 … e1,95

2 e2,1 e2,2 … e2,95

… … … … …
120 e120,1 e120,2 … e120,95

3.2 Feature Selection 

A feature selection procedure was done for both 
flowrates dataset and pumps’ energy consumption 
dataset to obtain the best input setting for the machine 
learning algorithms. 

As represented by Figure 1, after each group of 
pumps there is a pipe from which water flows to a 
zone based on the zone's aggregate water demand. 
After this pipe, there would be many other pipes that 
allow water to reach all the end users. Since the 
authors were interested only in the aggregated 
demand of a network area, for each served zone, the 
pipe represented in Figure 1 was selected through its 
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id, and the flowrates dataset was reduced from 17,548 
to 27 columns (one pipe for each network zone). 
Among the 27 time series, 7 of them showed an 
almost constant pattern, and consequently, they were 
excluded from the analysis. Therefore, a further 
reduction was implemented from 27 to 20 columns 
because the pipes of areas having an almost constant 
simulated daily pattern were excluded.  

The names of the selected zones of the Milano 
network are: Anfossi, Armi, Assiano, Baggio, 
Cantore, Chiusabella, Cimabue, Comasina, 
Crescenzago, Feltre, Gorla, Italia, Lambro, Novara, 
Padova, S. Siro, Salemi, Suzzani nord, Suzzani sud, 
Vialba.  

The final dataset was composed of 20 time series, 
each one representing the 5-day aggregated water 
demand of a network zone with an hourly interval. 

The pumps’ energy consumption dataset needed a 
first reduction of features to contain only the pumps’ 
energy consumption of the previously selected 
network’s zones (from 95 to 72 pumps). Thus, a file 
associating each pump with its area was consulted to 
make the above selection. In each area, the pumps 
collaborate for the delivery of water to the specific 
zone. The number of collaborating pumps for each 
area ranges from a minimum of 2 to a maximum of 5. 
Furthermore, the consumption of pumps in the same 
zone was aggregated with the sum operator to prepare 
the dataset for the pumps’ energy consumption 
forecasting of a network zone. 

The final dataset was composed of 20 time series, 
each one representing the 5-day aggregated pumps’ 
energy consumption of a network zone with an hourly 
interval. 

3.3 Model Definition 

The aim of the paper is to develop machine learning 
(ML) models for the aggregated water demand and 
pumps’ energy consumption forecasting of 20 
different water distribution network zones.  

Each time series was normalized with the Min-
Max scaling so that the range of each variable 
becomes 0-1. More specifically, given max the 
maximum value of a variable, and min its minimum 
value, each observation x is transformed according to 
this formula: 𝑥 െ 𝑚𝑖𝑛𝑚𝑎𝑥 െ𝑚𝑖𝑛 (1)

Then, to prepare the datasets for the machine 
learning algorithms, each time series was divided into 
a training set (first 4 days, 96 hours of observations) 
and a test set (last day, 24 hours of observations).  

The proposed forecasting approach is shown 
below in Figure 3 and Figure 4.  

All machine learning models were performed 
through Darts (version 0.23.1), a Python machine 
learning library specific for time series analysis, in 
particular for time series forecasting (Herzen et al., 
2022). The powerful feature of Darts is to provide 
modern machine learning functionalities with a user-
friendly and easy-to-use API design (Herzen et al., 
2022). Furthermore, all deep learning forecasting 
models implemented in Darts are global forecasting 
models. A global forecasting model has great 
potential because it can be trained with multiple time 
series and it can make forecasting not only for these 
time series but also for unseen series (transfer 
learning approach).  

Other important information about the training of 
global forecasting models will be provided in the next 
paragraph, together with detailed information on the 
architecture of the used model. 

 
Figure 3: Water demand and pumps’ energy consumption 
forecasting through a unique ML model trained with 
flowrates series. 

 
Figure 4: Water demand forecasting for one zone through a 
ML model trained with all the flowrates series excluding 
the forecasted one. 

As depicted by Figure 3 and Figure 4, the water 
demand forecasting of each flowrate time series was 
addressed with two different methodologies. 

The first consists in the creation of a global 
forecasting model taking as input all the flowrates 
series training sets, and giving 24 hours of forecast 

A Proactive Approach for the Sustainable Management of Water Distribution Systems

119



for all of these series (Figure 3). The Darts model 
used for forecasting is the N-Beats model. The default 
hyperparameters were maintained except for two of 
them: the input_chunk_length and the 
output_chunk_length. The former specifies the length 
of the time series portion taken in input by the internal 
neural network and was set to 72, meaning that the 
neural network looks 72 hours in the past. The latter 
represents the length of the forecast of the model and 
was set to 24, meaning that the neural network 
produces 24 points of forecast. 

The second method consists in the creation of a 
global forecasting model for each flowrate series 
taking as input all the flowrates series training sets 
except for this one, and giving 24 hours of forecast 
for this series. This approach exploits the knowledge 
gained with the training of some series to forecast 
unseen series (transfer learning). Figure 4 represents 
an example of this method applied for the forecasting 
of a single flowrate series. 

The latter method was applied also for the 
construction of the pumps’ energy consumption 
forecasting model. The energy consumption of pumps 
strictly depends on the flowrate pattern. The WNTR 
simulator calculates it considering the pump flowrate, 
the node head, and the global efficiency of the pump 
(set to 75%). Therefore, each pump’s energy 
consumption time series has almost the same pattern 
as the flowrate time series in the same network zone. 
Instead of creating an additional model, the first 
global model trained with all the flowrates time series 
was tested for the energy consumption forecasting of 
each zone (see Figure 3). 

3.4 N-Beats Global Forecasting Model 

This section provides insights into the used model (N-
Beats) and how the training of global models works 
on the Darts library. 

Recently, the authors of (Oreshkin et al., 2020) 
proposed a neural network architecture designed for 
time series forecasting called N-Beats (Neural basis 
expansion analysis for interpretable time series 
forecasting). In the following, the architecture of the 
model will be described, as shown in Figure 5; more 
details may be achieved by (Oreshkin et al., 2020).  

Given a forecast horizon (or forecast period) of 
length H and an observed series history (or lookback 
period) of length T (where T = n × H), the model takes 
as input the lookback period to learn the behavior of 
the time series, and it predicts the behavior of the 
same time series in the forecast period (upper part of 
Figure 5). There are different stacks (right part of 
Figure 5), and at the end, the output of each stack is 

combined to obtain a global forecasting output. In 
each stack, there are multiple blocks (middle part of 
Figure 5), and each block has a fully connected stack 
with 4 layers that do both forecasting and backcasting 
(left part of Figure 5). The difference between 
forecasting and backcasting is the direction of 
predictions: the former predicts future values by 
looking back at historical data, and the latter 
extrapolate past values from future data (forecasting 
backward in time). Furthermore, nonlinearities are 
provided by the ReLU activation function. Activation 
functions have an important task because they 
introduce non-linearities in the network. In other 
words, learning complex pattern in the data, help in 
the resolution of real-world problems. There are 
different activation functions that can be used in the 
network, but the ReLU (rectified linear unit) is the 
most popular because it is simple and fast (Nair et al., 
2010). 

 
Figure 5: N-Beats architecture. 

This model has been used through the Darts 
Python library. Darts library has implemented many 
forecasting models, but only a subset of them can be 
trained with multiple time series (among which N-
Beats). These models are called global forecasting 
models. Time series can be divided into two classes: 
target time series (series to be forecasted) and 
covariate time series (series not to be forecasted but 
to be taken into consideration to help target time 
series forecasting). The present paper does not 
consider the presence of covariates, therefore models 
take in input only target series. This choice lies in the 
fact that water demand history is the main factor 
influencing future demand, therefore it is sufficient 
for developing accurate models (Hu et al., 2021), 
(Bakker et al., 2013). 

When a model with multiple target time series 
needs to be trained (as in our case), Darts creates a 
dataset aggregating multiple input/output pairs from 
the provided time series. The length of the input is 
equal to the input_chunk_length hyperparameter, 
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while the length of the output depends on the 
output_chunk_length hyperparameter.  

Figure 6 shows the training phase of a model with 
two example series of different lengths and different 
time stamps in input.  

In this example, the input_chunk_length is equal 
to 4, while the output_chunk_length is equal to 2. The 
number of samples used for training is calculated by 
subtracting from the time series length the sum of the 
input_chunk_length and output_chunk_length, and 
adding 1 to this result. Therefore, the first series has a 
number of samples used for training equal to 9, while 
the number of samples of the second series is 7. A 
training epoch in multiple series models consists of 
the complete pass over all the samples of all the 
series. Finally, the most important things to point out 
are that series do not need to have the same length, 
the same time stamps, or the same frequency 
(although this is not our case). 

 
Figure 6: Training of global models in Darts library. 

3.5 Performance Metrics 

Different metrics were considered for the 
performance evaluation of forecasting models: mean 
absolute error (MAE), symmetric mean absolute 
percentage error (SMAPE), mean squared error 
(MSE), and root mean square error (RMSE). 

MAE is a measure of error between predicted and 
true values, and it is calculated as an arithmetic 
average of the absolute errors (Hyndman et al., 2006). 

SMAPE is a measure of accuracy based on 
relative errors, therefore it is a percentage value 
(Hyndman et al., 2006), (Bandara et al., 2021). 

MSE is a measure indicating the average squared 
difference between predicted values and actual values 
(Hyndman et al., 2006). 

RMSE is calculated as the square root of the mean 
of the square of all the errors (Hyndman et al., 2006). 

For all of these measures, the lower the values, the 
better the model performance.  

4 RESULTS 

In this work, innovative machine-learning based 
methodologies are proposed to develop short-term 

water demand and energy forecasting models. This 
important task was addressed with the use of global 
forecasting models and transfer learning approaches. 

First of all, four different global models were 
tested to select the one that provided the most 
accurate water demand forecasting. Among the 
models available within the Darts python library, the 
ones that were tested are: N-Beats, RNN, BlockRNN, 
and Transformer.  

Performance metrics are reported in Table 3.  

Table 3: Performance metrics of N-Beats, RNN, 
BlockRNN, and Transformer global models. 

N-Beats RNN Block RNN Transf
MAE 0.031 0.188 0.23 0.16

SMAPE 21.322 52.15 56.174 45.762
MSE 0.003 0.06 0.075 0.043

RMSE 0.043 0.237 0.265 0.194

Among the models used, the N-Beats model 
outperforms the others according to all metrics 
considered, confirming its superiority in terms of 
forecasting accuracy. The other algorithms obtained 
very similar metrics’ results, and the following 
ranking was obtained in decreasing order of 
performance: N-Beats, Transformer, RNN, 
BlockRNN. Taking as an example the SMAPE 
metric, it can be seen that considering the N-Beats 
model this metric is reduced by more than half 
compared to all the other models. The 
outperformance of this model may be attributed to its 
ability to do both backcasting and forecasting, which 
is a property that greatly differentiates it from the 
other algorithms, as said before in Section 3.4 while 
describing its architecture. 

The performance metrics of the N-Beats global 
forecasting model (Table 3, first column) have been 
compared to the ones obtained from the creation of 
single models trained with one series at a time; in this 
case, the following values have been achieved: 
MAE=0.030, SMAPE=21.839, MSE=0.003, RMSE= 
0.043. As it can be easily pointed out, almost identical 
results have been achieved. This situation may have 
been arisen because a restricted amount of data was 
used, but building a global forecasting model trained 
with a lot of real data with a longer period of time may 
benefit from learning from more patterns at the same 
time. Indeed, related time series could improve the 
overall predictions with respect to the result obtained 
with a collection of local models (Hewamalage et al., 
2022). However, the time spent for training one 
model with multiple time series was lower than the 
total time needed to train a model for each series (36 
seconds and 476 seconds respectively). This could be 
justified considering that the model complexity of 
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local models grows proportionally to the number of 
time series in the dataset, and it can be higher than the 
constant complexity of the global model 
(Hewamalage et al., 2022). As said in Section 1, in 
the Water 4.0 era, water distribution systems are 
characterized by increased integration of sensors, 
Internet of Things, and big data. As a result, so much 
more data can be collected, analyzed, and exploited 
in the decision-making and planning phases. 
However, having access to all this information also 
means learning how to manage it properly. The 
results obtained demonstrate that the use of global 
models meets these needs, as forecasting can be 
performed by training a single model on multiple 
series with less time spent than creating multiple local 
models. 

Pumps energy consumption patterns strictly 
depends on the water demand of the respective zone. 
For this reason, the previously created model trained 
with water demand time series has been used to reach 
the goal of pumps’ energy consumption forecasting. 
Performance metrics results demonstrate the 
effectiveness of the approach (MAE: 0.032; SMAPE: 
21.305; MSE: 0.003; RMSE: 0.043).  

Finally, it has been explored the capacity of global 
forecasting models to forecast previously unseen 
series. For each flowrate time series, it has been 
created a model trained with all the other series and 
tested with this excluded one. Out of 20 forecasts, 18 
of them produce very good results, demonstrating the 
ability of the models to generalize well (MAE: 0.079; 
SMAPE: 25.141; MSE: 0.012; RMSE: 0.1), while the 
other two have been considered unacceptable 
forecasting (MAE: 0.203; SMAPE: 97.746; MSE: 
0.057; RMSE: 0.238). The worst performance of 
transfer learning in this small group of time series 
may be attributed to the fact that the patterns of these 
time series are too different from the group of time 
series on which the model is trained. Consequently, 
the fact that these two series have a totally different 
pattern from the others suggests that a global model 
made up of as heterogeneous series as possible can 
obtain better performances in the case of transfer 
learning.  

A few examples of comparisons between the 
forecasting of global forecasting models and transfer 
learning models are reported in Figure 7, Figure 8, 
and Figure 9. 

In conclusion, an essential step in the water and 
energy forecasting approach is to compare the results 
of this study with similar research in the past 
literature. However, no comparative research was 
found as the use of global models, the N-Beats 
algorithm, and transfer learning techniques is a field 

being explored for the first time in the water 
distribution sector. 

 
Figure 7: Water demand forecasting for the zone named 
Cimabue with the global forecasting model and the pre-
trained model. 

 
Figure 8: Water demand forecasting for the zone named 
Comasina with the global forecasting model and the pre-
trained model. 
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Figure 9: Water demand forecasting for the zone named 
Feltre with the global forecasting model and the pre-trained 
model. 

5 CONCLUSIONS 

In this study, the authors developed a short-term 
water demand and pumps’ energy consumption 
forecasting with simulated data from the Milano 
water distribution network. In particular, hourly data 
were used to make 24-h horizon forecasts.  

To the best of the authors' knowledge, the 
approaches proposed for forecasting differ from 
previously published studies in different points.  

First of all, both water and energy forecasts are 
investigated together for the same water distribution 
network.  

Then, it is the first time that global models are 
used in the water sector, and this has made it possible 
to create fast a single and general model able to 
generalize on unseen time series (transfer learning).  

Finally, although N-Beats was never used before 
in the water demand and pumps’ energy consumption 
forecasting of an entire water distribution system, the 
results achieved by the authors pointed out that it 
offered the best performance; on account of these 
results, it seems very suitable to be used in this field. 

Future studies plan to test this methodology with 
real data covering a longer period, to create more 
complex models able to detect weekdays, weekends, 

and yearly patterns, or trends if present. Furthermore, 
also mid-term and long-term forecasts could be 
developed.  
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