Blockchain Data Replication

Roberto De Prisco!

4 Sergiy Shevchenko

12> and Pompeo Faruolo?

LComputer Science Department, University of Salerno, Salerno, Italy
2eTuitus s.r.l., Fisciano (SA), Italy

www.etuitus.it

Keywords:

Abstract:

Data Replication, Blockchain, Fault-Tolerance, Self-Sovereign Identity, KERI.

We consider applications that write data over a blockchain. Such applications are based on the implicit as-

sumption that the blockchain will work forever. Although blockchains are very fault-tolerant by construction,
the event that a blockchain becomes totally unusable or disappears is not impossible. We consider the problem
of making the applications fault tolerant against total blockchain failures by replicating the needed data over
several blockchains. As specific use cases, we consider the implementation of Self-Sovereign identities and
the implementation of a Key Event Receipt Infrastructure using data replicated over several blockchains.

1 INTRODUCTION

Blockchain technology has gained considerable im-
portance in the last decades. Although the basic tools
and the technology itself have been studied in cryp-
tography and distributed communities well before, the
blockchain revolution has been ignited by the success
of Bitcoin.

Following Bitcoin, literally hundreds of other
cryptocurrencies are available today, each one imple-
menting a blockchain. Many of them leveraged the
service to include more sophisticated tools, such as
fungible and non-fungible tokens and smart contracts.
Blockchain solutions have been proposed for manag-
ing healthcare data, to automate business transactions,
manage logistics and shipping. The emerging concept
of self-sovereign identity exploits a blockchain to im-
plement identity verification.

The prominent property of a blockchain is that
of being immutable. Moreover, a blockchain has
strong resilience against failures. There are many ap-
proaches to the implementation of a blockchain, but
the most common one is that of a fully decentralized
distributed ledger. Such systems are very resilient to
failures. As long as a sufficient number of the partici-
pating nodes are properly working, typically a major-
ity, the system functions correctly. In real life, fail-
ures happen, but they can also get fixed and if there is

https://orcid.org/0000-0003-0559-6897
@ https://orcid.org/0000-0002-0864-2919

746

De Prisco, R., Shevchenko, S. and Faruolo, P.
Blockchain Data Replication.
DOI: 10.5220/0012121000003555

enough redundancy, keeping active a sufficient num-
ber of nodes is doable. There is an implicit assump-
tion in the use of a blockchain regarding this aspect:
the failures never disrupt irreparably the system.

But is this always the case?

Technically any blockchain can disappear: if there
are too many failures it is possible that the entire his-
tory of transactions gets lost. As an extreme case
consider the one in which all nodes of the network
fail at the same time. Although such an event can be
considered extremely rare, it really depends on how
robust is the underlying distributed system. Current
estimates of the Bitcoin network count about 15,000
nodes spread all over the globe. Such a huge number
makes unlikely the event that the network collapses.
However not all the existing blockchains are so re-
silient; for example, Freecoin (Foundation, 2023) and
Devcoin (Devcoin, 2023) have basically disappeared
since the value of the corresponding cryptocurrency
is near zero and there have been no transactions for a
very long time.

In this paper we pose the following general prob-
lem: we consider applications that write overlay data
over an underlying blockchain but we take into con-
sideration the possibility that the blockchain might
disappear. Thus we want to replicate the data over
several blockchains in such a way that the collapse
of one (or few) blockchains does not cause the loss
of the overlay data and consequently does not block
the applications. Ideally, we would exploit a set of n
blockchains, and be able to write each piece of the

In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 746-751

ISBN: 978-989-758-666-8; ISSN: 2184-7711

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

overlay data into all the n blockchains. The spe-
cific properties that such writes have to satisfy are
strongly dependent on the specific application. In
simple cases, the applications might need to write
only a piece of data, but in more complex cases the
overlay data might contain more structured informa-
tion or it might even be itself a ledger implementing
an overlay blockchain.

Replicating an entire blockchain seems like
overkill. And indeed it is. However if an overlay ap-
plication uses a relatively small ledger, or not even a
ledger but just a small amount of data, it might make
sense to have it replicated over several blockchains in
order to be resilient to the failure of one or a few of
the blockchains. Moreover, the difficulty related to
the replication can vary depending on the specific ap-
plication. Data replication is already a difficult prob-
lem by itself; doing it over blockchains it is clearly a
challenge. For some applications, it might be very dif-
ficult or even impossible. For example, replicating the
entire blockchain of a cryptocurrency is very complex
since there are several peculiar difficulties that would
be exacerbated by the replication. Notwithstanding,
if an application makes a simple use of the underly-
ing blockchain, replicating all the transactions might
be feasible and would provide resilience against total
failures of (few of) the underlying blockchains. If we
abstract from the fact that the write operation is on a
blockchain, we would be left with a consensus prob-
lem. The difficulty of this problem depends on the
specific setting and it can be easy if the underlying
distributed system offers strong guarantees or quite
difficult, or even impossible, if such guarantees are
weak. The specific setting that we are considering,
however, is atypical: the “nodes” of the distributed
system are the blockchains themselves and there is no
direct communication between the blockchains. If, on
one hand, we can rely on the fact that a blockchain is
reliable, in the sense that as long as it exists it works
properly, on the other hand, the difficulties of main-
taining consistency over replicas of the data remain.
For simple cases, we can exploit a quorum based so-
lution that allows to replicate data in a consistent man-
ner. This, for some applications, is enough. For more
complicated scenarios we are left with a consensus
problem. In such cases, we need to exploit a consen-
sus algorithm to maintain consistency.

Sovrin is a publicly available infrastructure for
self-sovereign identities. It is based on a blockchain
on which some relevant data gets written. Transac-
tions in Sovrin do not happen often and although,
by definition, the blockchain provides a global order-
ing on the transactions, the use of the data written in
the blockchain is unrelated to the order in which the

Blockchain Data Replication

data appears in the ledger. This makes Sovrin a good
use case to consider. We propose an enhancement of
Sovrin, to make it resilient to a possible total failure
of the underlying blockchain.

As a second use case, we discuss the application
of blockchain data replication to KERI, a distributed
for the management of key event receipts.

Related Work. To the best of our knowledge this
is the first paper that considers the specific problem
outlined above. However, blockchain interoperabil-
ity and different forms of blockchain data replication
have been considered, for example, in (Diallo et al.,
2019; Li et al., 2020; Bacis et al., 2019; Pillai et al.,
2020; Pillai et al., 2022; Westerkamp and Kupper,
2022).

2 PRELIMINARIES

2.1 Blockchain

A blockchain is a just list of blocks of data linked to-
gether using hash pointers,.

The very first block, obviously, will not contain
any pointer to a previous block, nor any hash value.
Such a block, in the blockchain jargon, is called the
genesis block. The data structure implemented by a
blockchain is tamper resistant because of the prop-
erties of the hash function. If an adversary tries to
manipulate the data by changing something in a spe-
cific block then, to keep the data structure consistent,
it needs to change also the hash value of the block that
is stored in the subsequent one, and this modifies the
subsequent block thus the adversary needs to change
also all the subsequent hash values, up to the latest
hash value. So, it is sufficient to keep safe the latest
hash value in order to prevent malicious changes to
the data.

Access to the blockchain can be restricted: we can
classify blockchains into 3 categories: private, per-
missioned and public. A private blockchain is ac-
cessible only by some selected users, while public
blockchain can be accessed by anyone. Permissioned
blockchains are a sort of trade-off between these two:
anyone can join upon verification of the identity and
users are granted selected permissions, thus can per-
form only certain activities.

2.2 Consensus Problems
In order to implement a blockchain in a distributed

manner it is necessary that nodes of the distributed
system that stores the information, agree on the in-

747

SECRYPT 2023 - 20th International Conference on Security and Cryptography

formation being stored in the blockchain. Thus there
must be some form of consensus that the nodes have
to achieve.

A consensus mechanism is a method by which the
nodes in a blockchain network reach agreement on
the state of the ledger. There are several different
types of consensus mechanisms, each with its own
advantages and disadvantages. Consensus arises in
many distributed applications and is a well-studied
problem, see for example (Attiya et al., 1994; Ben-
Or, 1983; Castro and Liskov, 2002; De Prisco et al.,
2000; Dwork et al., 1988; Fischer et al., 1985; Lam-
port et al., 1982; Pease et al., 1980; Rabin, 1983).
The difficulty of the problem depends on the specific
setting considered. Each blockchain uses its own spe-
cific consensus mechanism to reach an agreement on
the distributed ledger.

One of the most widely-used consensus mecha-
nisms is proof of work (PoW). In a PoW-based sys-
tem, nodes, in blockchain jargon, also known as “min-
ers,” compete to solve a complex mathematical puzzle
in order to create a new block and earn a reward.

Another popular consensus mechanism is proof of
stake (PoS). In a PoS-based system, nodes “stake”
their own tokens in order to create new blocks and
earn rewards. The probability of creating a new block
by this specific node is proportional to the value of
tokens staked by the node.

Another consensus mechanism is Delegated proof
of stake (DPoS) which is a variation of PoS, where
token holders vote for a limited number of nodes to
validate transactions.

Consensus can be achieved also exploiting quo-
rums. A quorum system is a set of subsets such that
each subsets intersects with each other subsets. The
use of quorum systems has been well studied (see
for example (Gifford, 1979; Guerraoui and Vukolic,
2010; Malkhi and Reiter, 1998; Malkhi et al., 2001)).

3 REPLICATION OF DATA OVER
BLOCKCHAINS

We assume that there is a set B = {By,B>,...,B,}
consisting of n blockchains that can be utilized by a
set of clients C = {cy,c2,...,c;}. Each client ¢; must
interact with each blockchain in B through a function
write;(d) that requests a write operation of the data d
on a blockchain in B; such an operation is peculiar
to the blockchain b;, that is, it follows the protocol
of that specific blockchain. For example if b; is the
Bitcoin blockchain then d could be a Bitcoin transac-
tion that spends bitcoins and the write;(d) operation
is a request of inserting the transaction d into some

748

block. Function write;(d) returns either success, if
the operation is correctly completed and thus the data
d is written into the blockchain b; or failure, oth-
erwise. Since we want to replicate the data over all
available blockchains a write operation needs to loop
over all blockchains. Although, ideally, this is the op-
eration that we would like to perform, we have to take
into account the possibility that some of the writes
will not succeed. We assume that all clients involved
are honest and the only kind of failures that we worry
about are blockchain failures. An unsuccessful write
is a normal possible event: it just means that the at-
tempt of writing into the blockchain did not succeed
so the client needs to try again. A blockchain fail-
ure instead means that the blockchain has disappeared
forever and thus is no longer available, together with
the data stored in the blockchain. We are abstracting
from the specific blockchains B;, and we assume that
the type of data d that needs to be written, can actu-
ally be written in each B;, perhaps making some kind
of data conversion to make d compatible with the ac-
tual transactions of the specific blockchain.

We assume that the data D =d,d5, . . ., to be writ-
ten, is an ordered sequence of pieces of data, that is,
a ledger (an application ledger). As a boundary case,
we might also have k = 1, which means that there is
only a single piece of data and not a ledger.

We also abstract a read;(k) operation that allows
a client to retrieve the data written in the k" transac-
tion on the blockchain B;. The index k here refers to
the indexing of the data d;,d>,..., and not to the in-
dex of the actual transaction of the blockchain B; that
contains dy.

By using each blockchain as one storage node, the
problem is that of keeping consistent the data repli-
cated over the blockchains. The difficulty of the prob-
lem depends on the specific scenario considered. Us-
ing a “distributed memory jargon”, we can distinguish
single-writer or multi-writer cases and single-reader
or multi-reader cases. The writers and the readers are
the clients of the system and a client can be a writer,
a reader or both. What makes a big difference for the
difficulty of the problem is the number of writers. If
there is only one writer, maintaining consistency is
easier. When there are multiple writers it becomes
more problematic depending on the specific setting
considered. Consistent data replication is achieved by
having all copies reach consensus on the replicated
data.

3.1 Single-Writer

The case of a single writer is easier to deal with since
the data has only one source. Ideally, the single writer

would be able to write each d; over all n blockchains.
If we do so, a write(d) would be an iteration over all
blockchains B;, fori=1,2,...,n, and the execution of
write;(d). And for a read operation, it would suffice
to read any (single one) of the available blockchains.
However, depending on the characteristics of the sin-
gle blockchains, a wrire;(d) operation might take a
long time or even be unsuccessful. Thus the writing
of the replicated data over the blockchains can be in
different states on different blockchains. Although the
writer can keep trying to write in all the (still avail-
able) blockchains, we can exploit a quorum system to
avoid getting blocked by the impossibility of writing
on some blockchains and to improve performance. A
simple quorum system is provided by majorities. For
simplicity, we consider such a quorum system.

A write;(d) operation is successful when the sin-
gle writer has been able to execute successfully at
least a majority of the single write;(d), i=1,2,...,n.

To improve the performance of subsequent read
operations, a writer, although considering success-
ful the write(d) after n/2+ 1 successful blockchain-
writes, can keep writing d over all the other
blockchains, as long as the blockchains exist and until
the write of d in the blockchain is successful. How-
ever given a specific blockchain B;, the write opera-
tion write(d;,) can be executed only before a write
operation write(d;,) for any j, > jj. In other words,
once write(j) is completed the writer cannot execute
anymore wrire(j;), otherwise, the order of the appli-
cation ledger gets disrupted. This means that a spe-
cific data d; might not get written in all blockchains;
however, it is guaranteed that it gets written on a ma-
jority of them. An alternative approach consists in
not proceeding on write;(d;,) for any j, > j; before
completing write;(d;,).

For the read(k) operation a reader needs to query
a majority of blockchains in order to be sure to obtain
dy.

Notice that after at most n/2 + 1 successful reads,
it is guaranteed that the data d will be retrieved. It
is also worth to remark that data consistency is guar-
anteed by the properties of the blockchains and that
the only “failure” that we are considering is the disap-
pearance of blockchains. Assuming that no more than
n/2 blockchains disappear, a reader is guaranteed to
get back the data.

3.2 Multi-Writer

In a real setting, there will be multiple writers.
And this clearly creates a consistency problem over
the sequence of actual data written in the various
blockchains. If every writer just tries to write its own

Blockchain Data Replication

data in every blockchains the order in which the data
will be written in each of the blockchains might vary,
depending on the time each write takes on each of
the blockchains. A possible solution is the following:
instead of writing only its own data each writer exe-
cutes a consensus protocol with all the other writers
to decide a global order on d;,d>,... so that they all
try to write the same sequence of pieces of data in
all the blockchains. There are some drawbacks. First
of all this solution requires that all the clients have to
be active in order to execute the consensus protocol;
this might not be always the case as in many appli-
cations clients come and go and they are active only
when they have to perform some actions. Moreover,
this solution poses a computational extra load on the
clients for the execution of the consensus protocol.

We are not suggesting a specific consensus proto-
col: the choice of such a protocol needs to take into
account the interaction functionalities of the underly-
ing blockchains and also the specific properties of the
communication network that connects the clients.

We remark that there can be applications for
which the global order might not be strictly necessary
and some other partial order might be sufficient.

4 APPLICATIONS

In this section, we discuss two possible use cases.

4.1 Replicating SSI Data

Self-sovereign identity systems are identity systems
in which the control is moved from a centralized au-
thority to a self-governed system in which the user has
full control on its identity. Indeed, the Self-sovereign
model is a model in which the identity and the claims
related to the identity are given back to the user with-
out the need of a central authority. Distributed ledgers
and blockchain approaches have facilitated the path to
such a model.

The Sovrin Hyperledger network is designed to
manage digital credentials (the digital equivalent of
things like identity cards, passports, driver licenses,
but also college degrees, medical certificates, etc.) so
that they can be securely stored, managed and shared
online. Sovrin gives users digital identities and allows
them to manage controllable, trustworthy, and verifi-
able digital credentials. Such credentials are stored in
a digital form in what is called, in the Sovrin jargon,
a (digital) wallet. The wallet is managed through an
app on a smart device (e.g. smart phone). Using his
wallet, the user can prove his identity, or other claims,

749

SECRYPT 2023 - 20th International Conference on Security and Cryptography

and safely use private information online. Sovrin ex-
ploits a distributed ledger.

Users of Sovrin can get digital identities from
all kinds of trusted organizations, like governments,
banks, insurers, hospitals, universities, and any orga-
nization that is publicly listed in the Sovrin network
can verify who you are. The trusted organizations,
once they have verified the identity of the user, can
issue credentials.

Verifiable credentials are the digital analogs of any
physical document that can attest the identity of an
individual such as identity cards, passports or driving
licenses. In addition to provide the same functionality
as their physical counterparts, verifiable credentials
can be more tamper-evident and trustworthy by using
digital signatures for example. There are three main
actors in an ecosystem where verifiable credentials
are used: Holder (the entity that possesses creden-
tials), Issuer (the entity that creates the credentials),
and Verifier (the entity that checks the credentials).

Sovrin exploits Decentralized Identifiers (DIDs)
in order to identify the involved entities. DIDs are
identifiers specifically designed for the management
of cryptographically-verifiable digital identities that
are fully under the control of the owner. Crypto-
graphic operations exploit public key cryptography
and an entity that needs to use the service generates a
secret (master) key and the corresponding public key
that in the Sovrin jargon is called a Verkey. A pair of
secret and public keys is relative to a specific DID. A
DID can identify, for example, an issuer.

The main data that Sovrin needs to write in the
blockchain are the following:

* DID and VerKey of the issuers,
¢ Schema definitions,

¢ Credential definitions,

* Revocation registries,

* Custom data.

These data constitute the sequence dj,d,... that
needs to be written in the blockchain.

Since the Sovrin infrastructure has multiple writ-
ers, which are the issuers, in order to replicate the
data over several blockchains and maintain consis-
tency over the order we need to use the multi-writer
approach outlined in Section 3.2. Actually, Sovrin al-
lows only trusted nodes, called endorsers, to write
on the blockchain. However, endorsers write on the
blockchain on behalf of the issuers. Thus, from a log-
ical point of view, the writers are the issuers.

Moreover, we observe that for this specific appli-
cation, it might be sufficient to use the multi-writer
setting in which each writer uses the simpler approach

750

outlined in Section 3.1. In this case, we might lose the
ordering over different blockchains but this might not
be as bad as it seems. Indeed, on one hand, this order-
ing can be messed up when there are multiple transac-
tions executed at the same time; in the Sovrin network
transactions are executed very slowly, in the order of
one every few days; thus the probability that the order
gets messed up is low. On the other hand, the actual
order of the data is not strictly necessary for the use
of the data itself, as long as there is an efficient mech-
anism to retrieve the needed data. Indeed, the data
on the blockchain is needed when a verifier needs to
check a credential. To check the credential handed
in by an owner, the verifier needs to retrieve from the
chain the credential definition, the schema used by the
credential definition and the VerKey of the issuers. It
is not important in which order these three pieces of
data are written in the blockchain, as long as they are
all retrieved by the verifier. The Sovrin blockchain
allows to efficiently recover the needed data. When
writing the data on the replicated blockchain we need
to implement an efficient mechanism to retrieve the
needed data. Recall that the read operation that we
assumed available, allows to retrieve the k-transaction
where k is not the index in the real blockchain but the
index of the overlay data.

4.2 Replicating KERI Data

KERI (Key Event Receipt Infrastructure) (Smith,
2023) is a decentralized key management infrastruc-
ture. Such infrastructure needs to manage public
cryptography key pairs. The basic tasks are key repro-
duction (creation and derivation), key recovery and
key rotation. Key pairs are associated to identities
and, in the KERI jargon, identities are “controlled”
by a controller. All the key management events in-
clude a signature from the controller of the associ-
ated identity. The KERI system is built on the con-
cept of a root-of-trust, which creates a secure bind-
ing between a controller, a key pair, and an identity.
The events, called key management events, or just key
events in the KERI jargon, are “inception events*, that
create an identifier and its associated keys and “rota-
tion events®, that represents the rotation of the keys
of an existing identifier. Moreover, there are special
events called key event receipts, that represent the val-
idation of the events. The function of KERI is based
on a key event receipt log (KERL), that is an order
set of all the key event receipts. In a decentralized
implementation of KERI, such a log can be written
in a blockchain. In (Smith, 2023) (see Section 10.2),
an alternative approach that removes the need for a
totally ordered distributed consensus ledger is sug-

gested. Thus KERI can be an application that could
benefit from the blockchain data replication that we
have proposed.

S CONCLUSIONS

In this paper, we have put forward the idea of replicat-
ing blockchain data over several blockchains to face
the possibility that a blockchain suffers a total failure.
Blockchains are very resilient to failures of partici-
pating nodes but only if such failures are contained
within reasonable limits. If failures go beyond these
limits the blockchain can become completely unreli-
able and even disappear.

We have also discussed two actual use cases of ap-
plications that make use of an underlying blockchain
to implement their services.

Future work can go towards several directions. We
have assumed a quite simple scenario where we have
at our disposal a write and a read operation for all
the blockchains. One could consider different set-
tings in which the underlying operations allowed by
the blockchains are less powerful. We have not con-
sidered temporary outages of the blockchains; dealing
with such events is a future improvement.

We are also working on an actual prototype imple-
mentation over a few of the most popular blockchains.

ACKNOWLEDGEMENTS

This work was partially supported by project SER-
ICS (PE00000014) under the NRRP MUR program
funded by the EU-NGEU.

REFERENCES

Attiya, H., Dwork, C., Lynch, N. A., and Stockmeyer, L.
(1994). Bounds on the time to reach agreement in the
presence of timing uncertainty. Journal of the ACM,
41(1):122-152.

Bacis, E., Vimercati, S., Foresti, S., Paraboschi, S., Rosa,
M., and Samarati, P. (2019). Securing resources in de-
centralized cloud storage. IEEE Transactions on In-
formation Forensics and Security, PP:1-1.

Ben-Or, M. (1983). Another advantage of free choice:
Completely asynchronous agreement protocols. In
Proceedings of the 2nd ACM Symposium on Princi-
ples of Distributed Computing, pages 27-30.

Castro, M. and Liskov, B. (2002). Practical byzantine fault
tolerance and proactive recovery. ACM Transactions
on Computer Systems, 20(4):398-461.

Blockchain Data Replication

De Prisco, R., Lampson, B. W., and Lynch, N. A. (2000).
Revisiting the paxos algorithm. Theoretical Computer
Science, 243(1-2):35-91.

Devcoin (Accessed: 2023). Devcoin. https://www.devcoin.
org/.

Diallo, E., Laube, A., Agha, K., and Martin, S. (2019). Effi-
cient block replication to optimize the blockchain re-
sources. In 2019 3rd Cyber Security in Networking
Conference (CSNet), pages 1-5.

Dwork, C., Lynch, N. A., and Stockmeyer, L. (1988). Con-
sensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288-323.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985).
Impossibility of distributed consensus with one faulty
process. Journal of the ACM (JACM), 32(2):374-382.

Foundation, P. (Accessed: 2023). Freicoin. https://wiki.
p2pfoundation.net/Freicoin.

Gifford, D. K. (1979). Weighted voting for replicated data.
In Proceedings of the 7th ACM symposium on Oper-
ating systems principles, pages 150-162.

Guerraoui, R. and Vukolic, M. (2010). Refined quorum sys-
tems. Distributed Computing, 23:1-42.

Lamport, L., Shostak, R., and Pease, M. (1982). The byzan-
tine generals problem. ACM Transactions on Pro-
gramming Languages and Systems, 4(3):382—401.

Li, K., Tang, Y., Chen, J., Yuan, Z., Xu, C., and Xu, J.
(2020). Cost-effective data feeds to blockchains via
workload-adaptive data replication. In Proceedings of
the 21st International Middleware Conference, Mid-
dleware °20, page 371-385, New York, NY, USA. As-
sociation for Computing Machinery.

Malkhi, D. and Reiter, M. (1998). Byzantine quorum sys-
tems. Distributed Computing, 11(4):203-213.

Malkhi, D., Reiter, M., Wool, A., and Wright, R. (2001).
Probabilistic quorum systems. Information and Com-
putation, 170(2):184-206.

Pease, M., Shostak, R., and Lamport, L. (1980). Reaching
agreement in the presence of faults. Journal of the
ACM, 27(2):228-234.

Pillai, B., Biswas, K., Héu, Z., and Muthukkumarasamy,
V. (2022). Cross-blockchain technology: Integration
framework and security assumptions. [EEE Access,
10:41239-41259.

Pillai, B., Biswas, K., and Muthukkumarasamy, V. (2020).
Cross-chain interoperability among blockchain-based
systems using transactions. The Knowledge Engineer-
ing Review, 35.

Rabin, M. O. (1983). Randomized byzantine generals. In
Proceedings of the 24th Annual Symposium on Foun-
dations of Computer Science, pages 403—-409. IEEE
Computer Society.

Smith, S. M. (Accessed: 2023). Keri: Key event receipt
infrastructure. https://github.com/SmithSamuelM/
Papers/blob/master/whitepapers/KERI_WP\ _2.x.web.
pdf.

Westerkamp, M. and Kupper, A. (2022). SmartSync: Cross-
blockchain smart contract interaction and synchro-
nization. In 2022 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). IEEE.

751

