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Abstract: The goal of structural health monitoring is to continuously assess the structural integrity and performance of a
building or structure over time. This is achieved by collecting data on various structural parameters and using
this data to identify potential areas of concern or damage. A critical challenge involves some properties being
severely damaged by recurrent variations of external factors. These variations in environmental and opera-
tional conditions (such as humidity, temperature, and traffic) can deflect the variability in structural behavior
caused by structural damage and make it difficult to identify the damage of interest. In this paper, we present
a study on how regression analysis and deep learning can be used to measure the influence of environmental
factors on the structural behavior of the Leaning Tower of Pisa. Transparent linear regressors offer the benefit
of being simple to understand and interpret. They can provide insights about the relationship between input
and target variables, as well as the relative importance of each input in forecasting the outcome. On the other
hand, deep learning models are capable of learning nonlinear relationships between input and target variables.
Definitively, in this work the accuracy-interpretability trade-off for structural health monitoring is discussed.

1 INTRODUCTION

In order to diagnose and assess the stability condi-
tion of historic monuments, Structural Health Moni-
toring (SHM) is crucial. Indeed, such structures are
constantly exposed to the action of environmental ef-
fects, such as sun’s radiation, temperature variations
or wind motion, that eventually have a tendency to
lose their structural integrity. It is therefore essen-
tial to ensure precautions and perform proper analy-
ses to prevent any deterioration of these monuments
and preserve culture.

One of the most common analysis consists of
detecting whether the structure under examination
is affected by damage. This information is funda-
mental and useful for structural engineers to under-
take restoration measures and avoid unintended con-
sequences. However, in SHM, this information is of-
ten not enough and other tasks are available to pro-
vide more specific additional information, such as the
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region of the structure where the damage is present
by addressing a damage location task, or measuring
damage degree by performing a damage quantifica-
tion task (Parola. et al., 2022).

All of these tasks enable for the information col-
lecting needed to evaluate the scenario severity to
which a structure may be subjected, attempting to as-
sess any changes in the sensitive features indicative of
damage. Unfortunately, there are additional variation
sources, such as variations brought on by environ-
mental factors. If these impacts are not considered,
they can result in incorrect damage diagnosis or less
accurate injury detection. Differentiating between the
two sources of variance in static or dynamic charac-
teristics is crucial (Kullaa., 2014).

Effective monument maintenance, which distin-
guishes symptomatic changes of damage from envi-
ronmental ones, relies on a framework composed of
two main aspects: (i) the gathering of data and (ii)
the processing of them to obtain useful information
about the structure. The collection of data describ-
ing the structure exploits an SHM system involving
the use of sensors installed directly at the building
to measure its properties. SHM systems are divided
into two groups based on the kind of parameters they
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acquire: (i) Static systems, which track the temporal
development of variables that change gradually over
time (such as wall slopes or crack widths) by period-
ically sampling sensor devices; (ii) dynamic systems,
which track vibrational variables like speeds or ac-
celerations in order to collect information on broader
dynamic features like natural frequencies intrinsic to
the structure or modal forms (Zonzini et al., 2020).

About how the data are processed, Machine
Learning (ML) and later Deep Learning (DL) were
progressively introduced to enhance the analysis in-
struments adopted to solve these problems (Sujith
et al., 2022), as they exploit a data-driven approach.
These data-driven methods can be relied upon a su-
pervised or unsupervised learning. The former makes
use of labelled input-output pairs, where the input
is structural response, while the value of the target
structural parameters are the corresponding outputs.
On the other side, instead of requiring an associated
output label, unsupervised algorithms are frequently
used to find damage-sensitive patterns or similarities
in initial data (Cimino. et al., 2022). Specifically,
transparent machine learning models have the advan-
tage of being simple to understand. As an exam-
ple, modular neural architectures refer to a design ap-
proach based on a collection of small neural (Cimino
et al., 2009). However, such constrained architec-
tures are limited in capturing input-output complex
patterns.

Regression analysis is considered a supervised
learning problem in the field of machine learning be-
cause it involves training a model on labeled data,
where the true values of the output variable are
known. In the SHM domain, regression analysis can
be adopted to model the problem of measuring the in-
fluence of environmental conditions on the health and
the structural behavior of a building (Farreras-Alcover
et al., 2015) (Dervilis et al., 2015).

The case study investigated in this paper is the
Leaning Tower of Pisa located in the Miracle Square
in Tuscany. The SHM system installed on the Lean-
ing Tower operates as a static system whereby, upon
activation, it records a single value for each sensor.
The system is programmed to activate on an hourly
basis. However, since the monitoring system has been
installed in 1993, the sampling frequency has varied
by the service staff. To overcome this problem, time
series resampling techniques can be adopted. The lo-
cations where the sensors have been installed on the
tower are illustrated in Figure 1 and Table 1.

The novel contribution of this work is to explore
the influence of the environmental conditions on a
specific historical monument: the Leaning Tower of
Pisa. Such analysis is performed through two dif-

ferent regressive methods; more specifically, we go
deeper by measuring the impact of these conditions
on the individual sensors.

The paper is organized as follows: Section 2 out-
lines the methods and methodologies we used to an-
alyze the sensor data, while Section 3 provides an
overview of the data discovery process. Section 4 de-
scribes the conducted experiments and displays the
results achieved by the two compared models. Fi-
nally, Section 6 summarizes the work and addresses
the conclusions.

Figure 1: Sensor locations on the tower, as indicated by the
color legend in Table 1.

Table 1: Sensor system installed on the leaning tower.

Sensor # Leg Thresholds
Deformometer (D) 10 [-0.5,0.5] mm
Telecoordinom. (T) 4 [-2.1,1.8]∗ ”
Termometer (TM) 1 [-10,42] °C
Wind speed (WS) 1 [0,45] m/s
Wind dir (WD) 1 [0,360] deg
Pressure (P) 1 [1, 1.04]∗hPa
Solar radiation (SR) 1 [0,1]* W/m2

2 METHODS

Our methodology is structured in two main parts: data
discovery and regression analysis. In the data dis-
covery phase, we explore the data identifying aspects.

*·103
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This includes study the linear dependencies between
environmental and operational factors through a cor-
relation analysis. Indeed, by introducing the correla-
tion matrix, correlation degree between pairs of vari-
ables in a dataset can be computed, allowing the iden-
tification of which ones are positively or negatively
correlated, and how strongly they are related to each
other.

During the regression analysis phase, we use re-
gressive techniques to model the relationship between
the dependent variable and one or more independent
variables. This enables to identify key factors influ-
encing the dependent variable and make predictions
about future outcomes. Combining these two strate-
gies provides a comprehensive and rigorous approach
to investigating our research purpose and generating
interesting insights.

A linear regression problem aims to find the line
that best fits the data, which is expressed through the
equation.:

y = β0 +β1x1 +β2x2 + ...+βnxn (1)

Where x1,x2, ...,xn are the independent variables
and the goal is to find the best coefficients values
(beta1, beta2, ..., beta n) that minimize the sum of the
squared differences between the predicted values of y
and the actual values of y.

In non-linear regression, the relationship between
the independent and dependent variables is modeled
using a non-linear function, such as a polynomial or
exponential function.

Overall, regression analysis is a powerful tool
for understanding and predicting the relationship be-
tween variables. It can be used for a wide range
of applications, such as the measurement of the in-
fluence of environmental factors on a structure’s be-
havior (Farreras-Alcover et al., 2015) (Dervilis et al.,
2015).

The goal of this strategy is to understand how en-
vironmental factors, such as temperature, humidity,
wind, and precipitation, can affect the structural in-
tegrity of a building over time.

Gathering information on the environmental vari-
ables and the structural behavior of a building, such
as displacement, strain, or vibration measurements, is
one technique to employ regression analysis in this
context. The operational quantities can then be pre-
dicted using a regression model built using this data
and the environmental parameters.

Against the traditional statistical models, Neu-
ral Networks (NNs) have proven to be an effective
solution for regression problems in many contexts.
They offer several advantages for regression prob-
lems, such as the ability to learn complex non-linear

relationships and the ability to handle large and noisy
datasets.

The methodology entails resolving a regression
problem and subsequently evaluating the performance
of two distinct models using a chosen metric.

We introduce performance metrics to evaluate the
performance of our regression model: mean squared
error mse and coefficient of determination R2. The
mse measures the average squared difference between
the predicted and actual values of the response vari-
able as shown in Equation 2.

mse =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

where n is the number of observations, yi is the
actual value of the response variable for the ith obser-
vation, and ŷi is the predicted value of the response
variable for the ith observation.

On the other hand, the R2 value measures the pro-
portion of variation in the response variable explained
by the regression model. The equation for R2 is shown
below:

R2 = 1− SSres

SStot
(3)

where SSres is the residual sum of squares, which
is the sum of the squared differences between the ac-
tual and predicted values of the response variable, and
SStot is the total sum of squares, which is the sum of
the squared differences between the actual values of
the response variable and the mean value of the re-
sponse variable.

3 DATA PREPROCESSING AND
MINING

In this section, we present the data preprocessing
and mining techniques we applied to a sensor device
dataset. The goal of this process is to extract valu-
able insights and knowledge from the raw data, which
would then be used for further analysis in the next sec-
tion.

3.1 Data Preprocessing

This section presents the dataset collected from a
static monitoring system. It hourly records samples
by enabling continuous monitoring and tracking of
environmental changes. The dataset covers a period
of two months, from May to June 2020, during which
the monitoring system captured the 19 parameters
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listed in Table 1. The collected data underwent a se-
ries of preprocessing steps to ensure its quality and
consistency. The data preprocessing pipeline is com-
posed of the following steps:

• detection of out-of-scale samples, based on upper
and lower thresholds;

• normalization, to mitigate the phenomena of the
curse of dimensionality by applying the z-score
scaling;

• statistical anomalies detection, where observa-
tions with an actual value farther than ±2.5 from
the data distribution of the current moving average
are dropped;

• missing samples recovery, short sequences of suc-
cessive missing samples are reconstructed for iso-
lated missing samples, by using a linear interpo-
lation between the closest neighbors for the out-
liers that have already been identified (at most 4
samples). Long missing value sequences, such as
those caused by device failure, are not recreated.

• temporal data resampling, since the sampling rate
was changed over time during the entire monitor-
ing period, the entire time series was resampled to
1-hour frequency.

3.2 Data Mning

In order to avoid redundancy and be more concise,
we present a subset of deformometers given the com-
mon trends among them. Figure 2 displays the partial
correlation matrix between deformometers 4, 5, 11,
12, the four telecoordinometers with the five envi-
ronmental factors; for space reasons we have not in-
cluded the full matrix.

The highest correlation (absolute) values are re-
lated to the temperature, exept for north-south direc-
tion of both the telecoordinometers (T1 and T3).

We can observe a reduction in the value measured
by all the deformometers and the two east-west di-
rection telecoordinometers, when the temperature in-
creases. For the deformometer, an increase in temper-
ature causes an expansion of the Tower, which will
then tend to solicit the man-made cracks in which the
sensors are installed, so the measured value decreases.

Regarding the telecoordinometer, the correlation
is due to the fact that temperature causes not only an
horizontal expansion, but also in the vertical direc-
tion; this expansion-contraction cycles causes move-
ment in the Tower, which is then perceived by the
sensor that measures the inclination in the east-west
direction. The correlation related to solar radiation is
also negative and strongly linked to the previous ob-

servations, considering the relationship between radi-
ation and temperature.

For wind speed and direction, the correlation val-
ues are extremely close to zero, suggesting a low im-
pact of the wind condition on the structure.

Finally, pressure is the only factor showing a pos-
itive correlation with the operational factors; in this
case, as the pressure increases, the values measured
by the deformometer and telecoordinometer sensors
increase, although with a low correlation value.

Figure 2: Partial correlation matrix - environmental sensors
against operational sensors.

To further explore the data discovery phase, we
conduct a regression analysis over the entire monitor-
ing period considered in this work. Equations 5, 6, 7
and 8 describe linear models of the relationship be-
tween environmental factors and deformometers D4,
D5, D11 and D12, respectively; while equations 9,
10, 11 and 12 similarly describe the dependence of
telecoordinometers T1, T2, T3 and T4, respectively.

This analysis provides valuable insights into our
data, allowing to better understand how different sen-
sors interact with each other and how they are affected
by environmental factors. By examining these rela-
tionships, we can identify patterns and correlations in
the data that may not be obvious from the visual in-
spection.

Correlation and linear regression analyses per-
formed previously show a relevant dependence of op-
erational sensors on environmental factors. However,
several studies show that the relationship between en-
vironmental conditions and structural parameters can
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D1 = (4.43e−4) WS− (1.39e−6) WD− (2.81e−3)T M+(2.54e−6) SR+(2.40e−4) P (4)

D4 = (4.43e−4) WS− (1.39e−6) WD− (2.81e−3)T M+(2.54e−6) SR+(2.40e−4) P (5)

D5 = (3.43e−4) WS− (9.45e−7) WD− (1.39e−5)T M+(1.25e−5) SR+(7.46e−5) P (6)

D11 = (7.67e−4) WS+(9.7e−7) WD− (1.23e−3)T M− (9.51e−6) SR+(1.49e−4) P (7)

D12 = (2.75e−4) WS− (3.91e−6) WD− (1.01e−3)T M− (1.09e−5) SR+(3.39e−5) P (8)

T 1 = (4.10e−2) WS− (1.19e−3) WD− (3.17e−2)T M− (8.59e−4) SR− (4.37e−2) P (9)

T 2 =−(2.74e−2) WS− (3.83e−5) WD− (1.30e−1)T M− (2.17e−3) SR+(1.46e−2) P (10)

T 3 = (5.80e−3) WS− (4.27e−4) WD+(3.09e−2)T M− (2.18e−3) SR− (2.36e−2) P (11)

T 4 =−(2.88e−2) WS+(6.03e−4) WD− (2.18e−1)T M− (9.92e−4) SR+(6.59e−3) P (12)

introduce some nonlinear components (Hsu and Loh,
2010) (Shi et al., 2016). Therefore, in the experiments
section we also explore a DL regression architecture
to model the nonlinear components of the relationship
between environmental and operational sensors.

4 EXPERIMENTS AND RESULTS

The whole machine learning pipeline has been im-
plemented on Google Colaboratory (Colab)(Bisong,
2019), an open web platform design on top of the
open-source Jupyter project. The virtual machines on
which Colab is run are powered by a NVIDIA Tesla
K80 GPU cards. The source code has been publicly
released and can be accessed at (Parola, 2023).

This section shows the results achieved by the two
regressive models previously described by presenting
the value of evaluation metrics.

A single neuron with a linear activation function
implemented the linear regressor (Jolivet et al., 2008),
while the second model is a deep NN with a hidden
layer containing 16 neurons. Both models have five
neurons in the input layer, as the number of environ-
mental sensors. The training phase has been run for
150 epochs where the Adam algorithm has been used
as the optimizer and an early stopping condition was
set to prevent overfitting with a patience value equal
to 10.

Tables 2 and 3 show the evaluation metrics val-
ues of mse and R2 obtained from the linear regressor
model and NN model for the deformometer and tele-
coordinometer sensors, respectively.

Table 2: Deformometer mse and R2.

LR NN
sensor mse R2 mse R2

D1 .277 .719 .206 .791
D2 .242 .754 .188 .809
D3 .258 .737 .186 .810
D4 .202 .794 .168 .829
D5 .303 .551 .222 .774
D6 .241 .754 .190 .806
D8 .201 .797 .152 .847
D9 .431 .549 .237 .752
D11 .509 .482 .374 .619
D12 .299 .694 .239 .761
Mean .287 .679 .208 .838

Table 3: Telecoordinometer mse and R2.

LR NN
sensor mse R2 mse R2

T1 .705 .290 .489 .507
T2 .568 .424 .479 .514
T3 .721 .280 .436 .565
T4 .716 .281 .542 .455
Mean .677 .318 .486 .510

From above tables it is evident how the deep learning
based strategy is more effective in estimating the in-
fluence of environmental effects on the structural be-
havior of the tower of Pisa; indeed, we can observe for
each table row the mse value is higher for the linear
regressor column compared with the DL model.

Specifically, both models are able to accurately
forecast the deformometer sensor group behave, with
a R2 mean values for the linear regression being
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67.9% and the NNs being 83.8%. The mse mean
value of the deformometers is 28.7% using linear re-
gressor and 20.8% using NN. As a result, we find that
the deep learning architecture outperforms the linear
models by a factor of 27%, computed as the error of
the first method minus the error of the second one over
the error committed by the first.

Telecoordinometer sensor modeling does not ex-
hibit the same effectiveness, as the NN R2 has a low
value of 51.0%; while the performance of the linear
regression is significantly poorer with an R2 value of
31.8%.

5 DISCUSSION

Empirical results clearly denote how NNs outperform
a linear regression approach in modeling operational
sensors depending on environmental factors. How-
ever, the linear regression strategy may be preferred
to NNs due to the lack of explainability of DL, which
is considered a black-box approach (Guidotti et al.,
2018).

By analyzing the linear regression coefficients,
we can identify the environmental factors having the
most significant impact on sensor measurements can
be identify and a quantitative indication of them can
be measured. This information can then be used to
develop correction factors that take environmental in-
fluence into account and improve the accuracy of the
monitoring system by calculating the corrected fea-
tures adjusted from environmental effects (Roberts
et al., 2023).

6 CONCLUSIONS

In this work, two regressive techniques to estimate the
influence of environmental condition on structural be-
havior have been designed and compared, after a data
mining phase to explore the time series data. The sen-
sor network data of the leaning Tower of Pisa have
been chosen as case study to implement the method-
ology.

In conclusion, transparent regression models may
not be able to detect complex patterns in the data but
have the benefit of being easy to understand and re-
quiring less computing capabilities. Although deep
learning models may capture complicated patterns,
they can be challenging to interpret and need a lot
of computational resources and training data. The
choice between transparent regression models and
deep learning models ultimately depends on vari-
ous specific challenges of the problem and histori-

cal building to monitor: ranging from logical mod-
els to scoring systems. In any exploratory data anal-
ysis different models co-exist. Future research ef-
forts aimed at establishing interconnections between
different models could be founded on model-centric
explanations derived from ontologies, which serve
as standardized representations. This approach has
the potential to help both system designers and users
make systematic connections between explanations
and their respective data sets and models.
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