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Abstract: The paper is concerned with the optimization of a deep learning approach for the intelligent control of a 
factory process that produces precast reinforced concrete components. The system is designed and optimized 
to deal with the unique challenges associated with controlling construction work, such as high customization 
of components and the need to produce work to order. A deep reinforcement learning strategy is described 
for training an artificial neural network to act as the factory control policy. The performance of the approach 
is maximized via a sensitivity analysis that ranges key modelling parameters such as the structure of the neural 
network and its inputs. This set of experiments is conducted on data acquired from a real factory. The study 
shows that the performance of the policy can be significantly improved by an appropriate selection of the 
modelling parameters. The paper concludes with suggestions for potential avenues for future research that 
could build upon the current work and further advance the approach. 

1 INTRODUCTION 

Manufacturing construction components in a factory 
has the potential to overcome many of the 
inefficiencies of traditional on-site construction 
methods.  Achieving production efficiency in a 
construction factory is, however, far more difficult 
than for other manufacturing industries. The 
techniques used in mass production are not suitable 
for construction work. The workload is received in 
unpredictable batches with significant variations in 
demand, and the design of the work can differ widely 
both within and between batches, with little or no 
reproduction of the components. As a result, work 
must be produced on request with limited or no 
possibility for inventory accumulation, and with 
significant fluctuations in the demand for productive 
resources. 

The uncertainties of construction operations and 
demand make it challenging to formulate a 
straightforward policy for efficient control. One 
potential solution to this problem is to employ 
artificial intelligence (AI) agents to assist with 
operation control. These agents could function as 
advisors in a human-in-the-loop system or as 
controllers in an automated environment, providing 

solutions whenever an operational decision is 
required. This approach shows promise in improving 
construction operations as shown by Flood and Flood 
(2022). 

There is limited use of AI-based decision agents 
for controlling operations in the construction 
industry. In a study by Shitole et al. (2019), an agent 
was developed using artificial neural networks 
(ANNs) and reinforcement learning (RL) to optimize 
a simulated earth-moving operation. The agent 
performed better than previously published heuristics 
that were designed by hand. RL is a learning 
technique that has demonstrated much success in 
recent years by discovering and rewarding behaviour 
(Sutton and Barto, 2018). The earth-moving system 
in the study consisted of two excavators and a fleet of 
dump trucks. The agent's role was to direct the trucks 
to either of the excavators at a junction on the return 
road, with the goal of maximizing the overall 
production rate of the system.  

A drawback of the approach adopted by Shitole et 
al. (2019) is its lack of extensibility, meaning the agent 
can only be applied to the earth-moving system 
considered in the study. If applied to a new situation 
with a different site layout or equipment combination, 
the agent would require redevelopment. Although this 
could be done prior to starting a new construction 
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operation, it would still be a significant planning 
burden. 

Given current technology, an alternative area 
where AI can be applied more immediately without 
the extensibility issue is factory-based manufactured 
construction. In this context, the lifespan of an AI 
agent should be relatively long and endure until any 
reconfiguration of the factory system is required or a 
change occurs in its operating environment. Flood 
and Flood (2022) undertook a proof-of-concept study 
that showed that an RL trained deep artificial neural 
network (DANN) can significantly outperform a 
hand-crafted rule-of-thumb approach to making 
decisions in the control a construction factory.  The 
focus of their study was factory-based production of 
precast reinforced concrete (PRC) components, 
where the arrival of batches followed a Poisson 
process, the number of components in a batch was 
determined stochastically, and all components were 
custom designed and therefore varied in their 
processing times. 

Researchers such as Benjaoran and Dawood 
(2005), Chan and Hu (2002), and Leu and Hwang 
(2001), have examined ways to optimize precast 
reinforced concrete (PRC) component production 
using genetic algorithms (GAs). The approach proved 
to be effective although heuristic search techniques 
like GAs can be computationally demanding, making 
them unsuitable for scenarios where decisions need to 
be made promptly. 

Once trained, RL solutions based on a learned 
model like the one developed by Shitole et al. (2019) 
can produce prompt solutions to a decision problem. 
Several researchers, such as Waschneck et al. (2018), 
Zhou et al. (2020), and Xia et al. (2021), have utilized 
this method for the control of factory operations and 
have observed encouraging results when compared to 
conventional approaches like rules-of-thumb. 
However, these applications have been beyond the 
scope of construction manufacturing, and therefore, 
fail to address numerous challenges within this 
industry. 

This study represents a significant advancement 
beyond the proof-of-concept work reported by Flood 
and Flood (2022). It conducts a comprehensive 
analysis of the impact of the DANN's structure, input 
variable selection, and RL algorithm variables on the 
system's performance, with the ultimate goal of 
optimization. In addition, the RL policy is applied to 
a genuine factory scenario, demonstrating its practical 
application in a real-world context. 

 

2 PROCESS CONTROL 

2.1 Decision Agents 

Both controllable and uncontrollable events shape the 
trajectory of a construction manufacturing system in 
the future and therefore its performance. The 
controllable events can be leveraged to direct this 
trajectory in a favourable direction for the 
manufacturer, maximizing productivity and/or profit. 
This is accomplished by making optimal decisions at 
critical junctures, such as prioritizing tasks in a queue, 
determining when to maintenance equipment, and 
allocating machines to processes.  

Figure 1 demonstrates how one or more agents 
make decisions dynamically throughout the system's 
lifetime by monitoring relevant variables that define 
the system's current state (st), and utilizes this 
information to determine appropriate actions at the 
next state (st+1). While the agent's actions are 
generally focused on the immediate future to make 
use of the most relevant and accurate information, 
they may also extend to events further in the future 
for decisions with long lead times.  The decisions 
made by the agents will affect the performance of the 
system over time.   

 

Figure 1: Process control by a Decision Agent. 

Decision agents can be categorized as search-
based or experience-based entities (Flood & Flood, 
2022). Search-based agents, including blind and 
heuristic methods, adopt a systematic approach to 
explore the solution space in search of the optimal 
action. They create a solution that is tailored to the 
specific problem instance at hand, which can 
potentially lead to better optimized solutions than 
experience-based agents. Moreover, search-based 
agents are highly adaptable, allowing them to be 
easily modified to new versions of the problem. 
However, they may not be suitable for situations that 
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require swift decision-making due to their 
computational complexity. 

On the other hand, experience-based agents, such 
as rules-of-thumb and ANNs, rely on past exposure 
to similar situations to make decisions. Once 
developed, these agents can rapidly generate 
decisions. However, their solutions are generic, rather 
than customized to each specific situation, which can 
result in suboptimal decisions compared to those of 
search-based agents. Additionally, experience-based 
agents typically lack extensibility, meaning that each 
new version of the problem requires the agent to be 
redeveloped. This redevelopment process involves 
acquiring and integrating large amounts of new 
information on system behaviour, making it time-
consuming and resource-intensive. 

This paper compares the performances of two 
experience-based agents used to decide which PRC 
component to process next from a queue, baselined 
against a random decision policy as detailed in 
section 3.2. The two experience-based methods 
considered are a rule-of-thumb and a RL trained 
DANN, representing two extremes in policy 
complexity. DANNs are a type of ANN that feature 
multiple hidden layers or recursion between units. 
This additional structure increases the functional 
complexity of the model, but also presents additional 
challenges in its development. Despite being an 
experience-based approach, the development of the 
DANN will involve the use of search techniques to 
find effective training solutions, in the form of 
reinforcement learning (RL) techniques. 

2.2 DANN Developing Strategies 

In a construction manufacturing environment, 
optimal solutions to decision problems are difficult to 
determine beforehand or through direct observation 
of the real system. As a result, using supervised 
training techniques directly for developing a DANN 
is not feasible. However, there are several ways to 
address this challenge, such as adopting a hindsight 
strategy where the agent explores different decision 
paths and chooses the most successful ones, 
effectively learning through trial-and-error. The most 

successful decision paths found at any one stage can 
be used to train or further train the DANN. The 
updated DANN can then be used search for even 
better decision paths. This approach is the essence of 
RL and can provide a viable alternative to direct 
supervised training for developing a DANN in 
construction manufacturing environments (Flood & 
Flood, 2022).  

Experimenting with alternative decision policies 
using the real system is not feasible in construction 
production, including factory-based construction 
manufacturing. Construction work is typically unique 
are rarely reproduced, making it almost impossible to 
compare the effectiveness of alternative strategies 
through direct experimentation. Artificially 
reproducing work is also not a practical option, given 
the cost and time required to manufacture a 
construction component. 

One way around this problem is to build a 
simulation model of the construction production 
system, and then to use this to explore and test 
alternative policies. Information about the real system 
and its past behaviour would be used to develop and 
validate the simulation model. The information 
gathered from the simulated system would be used to 
develop and validate the policy, as described in 
section 4.1. 

3 MODELLING 

3.1 Factory Production Simulator  

Figure 2 shows the factory based process model used 
for simulation, taken from the real system reported by 
Wang et al. (2018), representing the manufacture of 
precast reinforced concrete (PRC) components such 
as walls, floors, beams, and column units. The system 
selected was chosen as it captured the following 
challenging and somewhat unique features of 
construction manufacturing: 
 orders arrive in a sparse random manner, must be 

made to order and cannot be stockpiled; 
 each order consists of a batch of components 

variable in number; 

 

Figure 2: Factory based process model for precast reinforced concrete (PRC) components. 
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 many if not all components are unique in design 
both within a batch and between batches, and 
therefore have variable handling times at each 
process; 

 all components have uncertainty in the handling 
times at each process; and 

 all components must be delivered by a given date 
in accordance with a site assembly schedule. 

The study also incorporates several assumptions 
regarding the logic of the PRC manufacturing system: 
 the processes are executed sequentially by all 

components, in the order shown in Figure 2; 
 the order in which components are served can 

change between processes; and 
 each process has just enough resources to handle 

one component at a time, with the exception of the 
Cure process, which can process an unlimited 
number of components simultaneously. 

The stochastic time related data used in this study was 
taken from Wang et al. (2018).  This is summarized 
in Table 1, along with the distribution types used. The 
units of time are not given because the behaviour of 
the system is given by the relative values of these data 
rather than by their absolute values. 

Table 1: Modelling time parameters. 

System Variable Distribution Parameters

Order arrival time 
Poisson 
process 

Arrival rate (λ) 
1/7,000

Batch size 
Discretized 
triangular  

Min Mode  Max 
 1      20      100

Forms duration 
Triangular 
distribution 

Min  Mode  Max
130    150   170

Rebar duration Fixed 
Min  Mode  Max
120     200    250

Concrete duration 
Triangular 
distribution 

Min  Mode  Max
    0       50      70

Cure duration Fixed ~

Strip duration 
Triangular 
distribution 

Min  Mode  Max
 80   100    120

Delivery duration 
Triangular 
distribution 

Min  Mode  Max
  30     50      70

Contingency relative 
to site assembly time 

Triangular 
distribution 

Min Mode  Max 
  10    100     200

When an orders at the factory it consists of a batch 
of PRC components, the number of which is sampled 
from a positively skewed triangular distribution, 
rounded to a positive integer.  The arrival of orders is 
considered to be a Poisson process, with an arrival 
rate, λ, selected so that the work demand would 
slightly exceed the factory production – in this way 
the DANN will have something to improve upon. 

Each PRC component is considered to have a 
different design and therefore their process durations 
(for Forms, Rebar, Concrete, Strip, and Delivery) are 
sampled separately. Curing time is considered to be 
the same for all PRC components. On site delivery of 
a PRC component is measured as a contingency time 
beyond the sum of the component’s process 
durations, and sampled from a triangular distribution. 

3.2 Policy Types Considered  

The PRC component factory process is managed by a 
decision agent, as illustrated in Figure 2. When a 
process becomes vacant, the agent selects a PRC 
component from the appropriate queue for 
processing, using its current policy. Using the 
parameters outlined in Table 1, it was found that the 
only bottleneck in the system was at the Forms 
process.  As such, the rule-of-thumb policy (described 
below) was used as the default policy type for all 
processes except the Forms process. For the Forms 
process, two alternative experience-based policies 
were considered baselined against a random policy:  

1. A DANN based policy developed using the RL 
method described in section 4. The selection of a 
PRC component is based on the current state of 
the system and predictions about the handling 
times for all the PRC components at Forms 
processes. 

2. A rule-of-thumb policy in which the PRC 
component with the least remaining contingency 
time in the queue is selected. Note, negative 
contingencies (delays) are possible. This type of 
policy was included as the default and, when 
implemented at the Forms process, it acts as a 
performance benchmark for comparison with the 
DANN based policy. 

3. A random policy strategy in which the PRC 
component is selected from the Forms queue 
using a uniformly distributed random variate.  
This was included as a baseline for comparison 
with the DANN policy. 

3.3 DANN Structure 

The DANN has a layered feedforward structure as 
shown in Phase II of Figure 3. 

3.3.1 Input Layer 

The input layer receives spatiotemporal information 
about the state of the system and the work to be 
completed. The input values specify the estimated 
process durations and the remaining contingencies for  

Optimization of a Deep Reinforcement Learning Policy for Construction Manufacturing Control

85



 

Figure 3: Three phase reinforcement learning DANN development cycle. 

the PRC components waiting to be processed. These 
data are normalized at the input for each process. The 
location of the values at the input indicates the 
position in the queue, and the relevant process.  

An issue with this approach stems from the fact 
that the structure of the inputs to the DANN is fixed 
(DANNs are structurally rigid) yet the number of 
PRC components in the system that need to be 
evaluated is variable. To get around this, the DANN 
was designed to allow up to a stipulated number (N) 
of PRC components to be evaluated in each queue: if 
the number of PRC components in a queue is less than 
N then the spare input values are set to 0.0; and if the 
number of PRC components in a queue is greater than 
N then only the first N PRC components will be 
evaluated. Furthermore, the N PRC components 
evaluated are those with the least contingency (or 
greatest delay), and in this sense this the DANN is a 
hybrid with the rule-of-thumb policy. For this study, 
N was initially set to 20 PRC components, but then 
was ranged as reported in section 5 to see how it 
affects performance. 

3.3.2 Hidden Layers 

The number of hidden layers was initially set to 6 and 
the number of hidden units per layer was initially set 
to 64. These values were then ranged to seek an 
optimum configuration for the DANN, as reported in 
section 5. All hidden units adopted the ReLU 
(rectified linear unit) activation function due its 
computational efficiency and avoidance of the 
vanishing gradient problem (Glorot et al., 2011). 
 
 
 

3.3.3 Output Layer 

The DANNs output layer is where the PRC 
components are selected from the Forms queue for 
processing.  All output units use a sigmoid activation 
function, thereby limiting their activation to values 
between 0.0 and 1.0. Each output unit represents a 
position in the Forms queue. The number of units in 
a group is limited to N, the number of PRC 
components to be evaluated in Forms queue (see 
section 3.3.1 above). The current length of the Forms 
queue or N, whichever is smallest, determines the 
number of units that are active.  The values generated 
at the active output units are normalized to sum to 1.0.   
This allows the output values to be treated as 
probabilities for selecting PRC components from the 
queue.  

The DANN based policy has two modes of 
operation: 
 Exploration. This mode is used to steer the 

simulation through alternative partially-
randomized paths, to gathering high-reward input-
output pattern pairs for training the DANN. Monte 
Carlo sampling is used to select PRC components 
based on the values generated at the relevant 
output units. The higher the value generated at an 
output, the more likely the corresponding PRC 
component will be selected. The broader strategy 
adopted for learning is given in section 4 below. 

 Validation/Implementation. This mode operates 
by selecting a PRC component from the queue 
based on the output unit that generates the highest 
value.  The operation is entirely deterministic. It is 
used to control the simulated system in non-
training mode, to validate the performance of the 
current policy.  In addition, this is the mode that 
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would be adopted when using the policy to control 
the real system. 

4 RL LEARNING STRATEGY  

Figure 3 shows the overall RL strategy used to train 
the DANN policy. There are three main steps: Phase 
I, the collection of training patterns through the 
exploration of alternative decision paths; Phase II, the 
training of the DANN; and Phase III, validation of the 
policy. These phases are iterated through a number of 
times until learning converges, each occasion using 
the most recent version of the DANN to control the 
simulation.  Each time the system iterates back to 
Phase I, the simulation is reset to a new starting point. 
These phases are described in detail in the following 
two sections. 

4.1 Exploration 

In Phase I, the collecting training patterns is 
undertaken in a series of stages ‘s’, as illustrated to 
the left of Figure 3. Each stage experiments with a 
predefined number of trials ‘t’ simulating the 
fabrication of a set of PRC components, the reward 
length. The trial with the best delivery performance 
(see section 4.1.1 below) is selected for later training 
of the DANN, and as the lead-in for the next stage in 
the simulation.  The training patterns collected are the 
mappings from input to output for each state 
transition in the selected trial. 

This process continues until a specified number of 
stages have been completed, each time collecting 
training patterns from the best performing trial. After 
completion of the exploration phase, the system 
moves to Phase II, DANN training. 

4.1.1 Delivery Performance 

Delivery performance is measured in terms of delays 
to the delivery of PRC components, with smaller 
delays being more favourable. The cost function used 
for training is the root-mean-square (RMS) of these 
delays, as shown in Equation 1. Note, a PRC 
component could be delivered early (indicated by a 
negative delay) but the square operation would cancel 
the negative sign and thereby treat it as an equivalent 
delay.  Therefore, the delays in this function are offset 
relative to a base value to give greater emphasis to 
actual delays over early deliveries.  
 

𝑐𝑜𝑠𝑡 
∑ 𝑑 𝑏

𝑛 (1)

where: 
d is the delay for the ith PRC component at its 

completion; 
n is the number of PRC components completed 

at the current trial; 
b is the base value against which the delays are 

offset - this value is the maximum 
contingency time possible for a PRC 
component. 

4.1.2 Rewards 

The learning strategy presented here collects training 
patterns based on their success in improving delivery 
performance. For this reason, a training pattern’s 
output values are modified from that produced by the 
DANN to increase the probability of making the same 
selection in a similar circumstance. The modification 
(a reward) is to move the selected output value closer 
to 1.0, and to move the other relevant output values 
closer to 0.0, remembering that the output values are 
treated as probabilities of selecting a RC component 
from the queue.  The extent of the modification will 
be treated as an experimental hyper-parameter, 
although for this study the rewards are set to 0.0 and 
1.0 without any discount.  

4.2 Training 

In Phase II, the training patterns collected in the 
exploration phase are used to train the DANN, or to 
further train it in repeat iterations, as illustrated in the 
centre of Figure 3. The DANN was implemented in 
Python (Van Rossum, 1995) and PyTorch (Paszke et 
al., 2019), using the optimizer RMSProp (root-mean-
square propagation) and the loss function MSELoss 
(mean-squared-error) with reduction set to ‘mean’. 
Data loading used a mini-batch size of 64 (with a 
training set size around 2,000) with shuffling 
switched on. The learning rate was set to 0.001. 

Training was conducted until the output from the 
loss function had converged, which was found to be 
within 1,000 epochs.  

4.3 Validation 

After training, the system moves to Phase III, 
validation of the policy, as illustrated to the right of 
Figure 3. This involved running the simulation in 
validation/implementation mode (see section 3.3.3) 
using a PRC component start point not used for 
learning. After validation, the RL iteration returns to 
Phase I.  This cycling through the phases continues 
until either the delivery performance at the validation 
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phase plateaus or tends to decline. The policy with the 
with the best performance measured at the validation 
phase is adopted. 

5 RESULTS AND DISCUSSION 

A series of experiments were undertaken to optimize 
the delivery performance of the DANN (see section 
4.1.1) by adjusting its structure, and to compare this 
to both the rule-of-thumb and random policies 
outlined in section 3.2.  In the experiments reported 
here, training data was collected over a 2,000 PRC 
component production run, divided into 100 stages of 
20 components each and with 100 trials per stage. 

5.1 Performance for the DANN with 
the Optimum Structure 

Figure 4 shows the performance of the DANN policy 
for the last 2,000 PRC components in an 8,000 
validation run. Performance is measured on the 
vertical axis as the mean improvement in delivery 
time for each PRC component compared to the 
random policy. For example, a value of 150 indicates 
that the policy delivers the PRC components 150 time 
units earlier on average than the random policy. The 
value is the average measured from the start of the 
PRC component completion sequence. 

Each grey line in the figure represents the DANN 
policy’s performance at different iterations in the RL 
process. The dark grey line represents the iteration 
that gave the best performance measured at the end of 
the 8,000 PRC component validation run. The DANN 

always finished learning within 10 iterations in the 
experiments reported here. The green dashed curve 
represents the performance of the rule-of-thumb 
policy.  

This figure presents the results after the DANNs 
structure had been optimized, having just 1 hidden 
layer, 64 hidden units, and N (the number of PRC 
components that can be inspected by the policy) set 
to 10. After 8,000 PRC components had been 
completed in the validation run, the DANN had a 
mean improvement per PRC component of about 152 
time units, approximately 62 times better than the 
rule-of-thumb. 

5.2 Optimizing N 

Figure 5 shows the relationship between performance 
and N, for the first 10 RL iterations.   This was for the 
DANN with the optimum structure of 1 hidden layer 
and 64 hidden units. The graph indicates that the 
DANN with N=10 had the best overall performance, 
happening at the 5th RL iteration. It is reassuring that 
these curves are relatively smooth indicating that 
performance dependence is well behaved.  

These results are summarized in Figure 6 showing 
the improvement in performance versus N. Again, the 
curve is smooth giving validity to the assessment that 
N=10 is around the optimum solution.   

5.3 Optimizing the Internal Structure 
of the DANN 

Figure 7 shows the dependence of performance on the 
number of hidden neurons per hidden layer, for a 
 

 

Figure 4: Delivery performance for the optimum DANN structure. 
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Figure 5: Dependence of performance on N versus RL iteration. 

 

Figure 6: Summary of dependence of performance on N. 

DANN with 1 hidden layer.  In this case, the number 
of hidden units is increased logarithmically as ANNs 
tend to demonstrate a linear dependence on the 
number of units per hidden layer.  The curve suggests 
the optimum structure is around 64 hidden units. 

 Finally, Figure 8 shows how performance 
changes with the number of hidden layers, assuming 
there are 64 hidden units per hidden layer.  There is a 
clear vertical trend in performance as the number of 
hidden layers decreases, with 1 hidden layer being the 
optimum.  This is somewhat surprising as deep 
structures usually perform better than shallow 
structures, although not all the time.  This could be 
due to the nature of the problem, or that the RL 
algorithm is not conducive to learning composite 
functional relationships. It will be intresting to see if 
this basic trend holds for other case studies, or when 

multiple DANN policies have to be trained and work 
together, serving concurrent processes. 

6 CONCLUSION AND FUTURE 
WORK 

The work presented in this paper was concerned with 
optimizing the performance of a RL trained DANN to 
provide high-performance control of factory based 
construction processes.  The problem is particularly 
challenging given the nature of construction projects: 
uneven and uncertain demand, high customization, 
the need to manufacture work to order, and a lack of 
opportunity to stockpile work.  
 

Optimization of a Deep Reinforcement Learning Policy for Construction Manufacturing Control

89



 

Figure 7: Dependence of performance on the number of hidden units per hidden layer. 

 

Figure 8: Dependence of performance on the number of hidden layers. 

A series of experiments, using a real factory as the 
case study, showed the approach to significantly 
outperform a rule-of-thumb policy and a random 
policy in the control of long validation production 
runs.  In addition, the study demonstrated the 
importance of selecting an appropriate structure for 
the DANN and its inputs. 

Future work will be aimed at improving the 
performance of the RL approach, and increasing the 
applicability of the technique to a more diverse range 
of construction manufacturing problems. This will 
include: 
 Undertaking sensitivity analyses on the RL hyper-

parameters such as the reward term lengths, the 
rewards discount rate, the number of trials per 
stage, and the number of stages in an iteration. 

 Consideration of the use of alternative RL 
algorithms, and the use of heuristic search 
techniques to solve the same problem. 

 Increasing the range of state data used for input 
and the scope of the type of decisions made by the 
decision agent. 
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