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Abstract: A recent trend for organizations is to shift to cloud services which typically include email. As a result, the
natural privacy concerns for users stem not only from outside attackers, but from insiders as well. Our solution
does not rely on unproven assumptions and does not need a PKI. To achieve this, we partially rely on concepts
from Private and Secure Message Transmission protocols, which are built on top of secret sharing. This
technology allows us to distribute trust over email providers. Hence, the system remains secure as long as
hackers are unable to penetrate a threshold number of providers, or this set of providers does not form a
coalition to attack their users. The prototype of our proposed system has been implemented as an add-on
for the Thunderbird email client, using Mozilla’s Web Crypto API and Rempe’s secret.js library. It currently
supports the following secret sharing schemes: the 2-out-2 additive scheme (set as a default), the k-out-n
threshold Shamir scheme, and the Rabin and Ben-Or robust scheme.

1 INTRODUCTION

Previously, public and private organizations, such as
universities and companies, used to maintain their
own email services. In recent years, we see a trend for
these organizations to shift their computer system op-
erations to the cloud. Private users have also utilized
web-based email services since the 1990s. All this
time, concerns for the user data privacy were growing,
and webmail-related data breaches kept resurfacing in
the recent years with alarming frequency.

For decades, email protection efforts were mainly
limited to prevailing forms of encryption provided
by the software such as PGP and its genus. How-
ever, these encryption techniques rely on unproven
assumptions, i.e., on hardness of the computational
aspects of some mathematical problems.

In this paper, we propose a different approach
to email security which partly relies on techniques
underlying Private and Secure Message Transmis-
sion (PSMT), namely the secret sharing technology.
Roughly speaking, this allows us to distribute trust
over several email providers.

Secret sharing is one of the cornerstones of theo-
retical cryptography. It uses shares such that a partic-
ular number of these, called the threshold, will be re-
quired to recover the message. At the same time, any

number of shares below the threshold will reveal no
information about the message, in the strongest sense
(called unconditional security). Known to mathemati-
cians as a mechanical problem (Liu, 1968), secret
sharing was realized in the digital world by Blakley
(Blakley, 1979) and Shamir (Shamir, 1979) (indepen-
dently) in 1979. This technology is well tested by
time. In particular, it was proposed to secure the
launching of nuclear missiles since the 1980s (Sim-
mons, 1990, p. 437).

When secret sharing is applied to email security,
we assume that the receiver has e-mail addresses with
different providers. An email message will be “split”
into several shares each to be sent over a different
provider. This way, the need for key management will
be eliminated, and hence the Public-Key Infrastruc-
ture (PKI) will not be required.

1.1 Related Works

Although the works by Shamir (Shamir, 1979) and
Blakley (Blakley, 1979) are very extensively cited,
they are quite rarely used in industrial applications
as stand-alone primitives. The only closely related
work, which the authors are aware of, is the report by
Oren and Wool (Oren and Wool, 2009) which used se-
cret sharing in a similar email security setting. Their

Chiapputo, N., Desmedt, Y. and Morozov, K.
Using Untrusted and Unreliable Cloud Providers to Obtain Private Email.
DOI: 10.5220/0012090700003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 171-182
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

171



work is different from ours in that they used only 2-
out-of-2 secret sharing and did not implement a ro-
bust scheme (hence not providing data integrity). At
the same time, they introduced a linguistic encod-
ing which makes both of the secret-shared messages
meaningful.1

This lack of interest by the industry is quite re-
markable in the light of a straightforward applica-
tion to protection of cloud storage with unconditional
security—see, e.g., (Attasena and Harbi, 2017; ?) for
surveys of the literature on this topic.

1.2 Our Contribution

The proposed system is implemented as an add-on to
the Thunderbird email client, and it is made avail-
able via Github (git, 2022). The code is written
in Javascript using Mozilla’s Web Crypto API (web,
2021b) and Rempe’s secret.js library (Rempe, 2019).
The add-on uses a modular design, which allows a
flexible setting of the number of supported e-mail
providers, the number of untrusted providers to be tol-
erated, as well as other security parameters. The add-
on has an option of automatic deletion of the mes-
sage copies (shares) on the email provider servers,
further lowering the chances for unauthorized access.
It is guaranteed that the email messages are protected
against access by an unauthorized set of the email
providers, with unconditional security.

Specifically, a current version of the add-on al-
lows users to distribute their e-mail messages to-
gether with attachments using one of the follow-
ing schemes: 2-out-of-2 additive scheme, k-out-of-n
threshold Shamir scheme (Shamir, 1979), and the Ra-
bin and Ben-Or robust scheme (Rabin and Ben-Or,
1989) (throughout this paper, we will refer to it as the
RB scheme, for short). Also, it allows an easy inte-
gration of different secret sharing schemes, including
those for arbitrary access structures.

1.3 Organization

This paper is organized as follows: our notation,
the software used, and the underlying cryptographic
primitives are described in Section 2. A high-level de-
scription of the proposed architecture is presented in
Section 3. Details of the implemented functionality
are discussed in Section 4. The cryptographic aspects
are discussed in Section 5. Section 6 presents and dis-
cusses the simulation results. Finally, conclusions and
future works are discussed in Section 7.

1This useful feature adds to the user privacy in case of
the “Big Brother”-style surveillance.

2 PRELIMINARIES

2.1 Notation

A uniformly random selection of an element x from
its domain X is denoted as x←R X . A bitwise XOR
is denoted by “⊕”.

Parties are called honest when they follow the de-
scribed protocol and do not attempt to eavesdrop a se-
cret. Adversaries could be passive (sometimes called
“semi-honest”), or active. Passive adversaries will
follow the described protocol, but will attempt to re-
cover a secret in an unauthorized way. Active adver-
saries do not have to follow the given protocol.

2.2 Thunderbird

Thunderbird is an open-source e-mail client devel-
oped by Mozilla. This client allows users to read any
of their e-mail accounts from separate domains into
one location. Since it is open-source, it is highly cus-
tomizable through user-made themes and add-ons to
add extra functionality to the software. The add-ons
are developed in JavaScript as a result of Thunderbird
being built on top of the Mozilla web platform that
is shared with Firefox. This allows the add-ons to be
cross-platform so they can be developed for any oper-
ating system or device that Thunderbird is developed
for.

We chose Thunderbird to host the add-on both be-
cause of the cross-platform ability, and because it is
able to connect with multiple e-mail servers and to
get direct access to a user’s full e-mail history. This
allows the add-on to easily search through the e-mails
and find matching shares for reconstruction. The
browser extensions do not normally have this ability,
so that Thunderbird being an email client is the obvi-
ous choice.

Thunderbird recently underwent an overhaul of its
add-on environment, moving from legacy extensions
to a more unified WebExtension API (web, 2021a).
Thunderbird has several advantages, which are be-
yond the scope of this paper, such as an active on-
line community for add-on developers supported by
Thunderbird (top, 2021).

Because Thunderbird incorporates the majority of
Firefox’s features, Thunderbird add-ons have access
to Mozilla’s WebCrypto API (web, 2021b). This API
is developed by Mozilla to allow access to crypto-
graphic primitives. Using this API, the add-on can
generate cryptographically-strong random values us-
ing a Crypto object with the getRandomValues()
method.

The add-on also has access to the TextEncoder
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and TextDecoder APIs developed by Mozilla. These
APIs allow encoding and decoding to and from strings
and Uint8Arrays (arrays of eight-bit unsigned inte-
gers representing the character codes of the string).
They are used in this add-on to more easily com-
pute XOR calculations using bytes instead of char-
acters by converting strings into byte streams (of type
Uint8Array) and vice versa as well as decoding the
information in the attachment files generated during
the share generation phase.

2.3 Secret Sharing and Access
Structures

Secret sharing is a cryptographic protocol which al-
lows one to split sensitive data (a secret) into pieces
(called shares) which individually2 provide no infor-
mation about the secret.

More generally, one defines a certain number k,
called a threshold such that less than k shares provide
no information about the secret. At the same time, k
shares (or more) allow an efficient reconstruction of
the secret. Clearly, k cannot exceed the total number
of parties n (email providers, in our case).

The access structure is a collection of sets (of par-
ties) who can reconstruct the secret. The access struc-
ture just described is called a threshold access struc-
ture and the schemes which realize it are the threshold
schemes. In particular, the Shamir scheme (Shamir,
1979) used in our implementation is of this type. For
the k-out-of-n threshold structures and schemes de-
scribed in the previous paragraph, we will use the no-
tation (k,n), e.g., a (k,n)-threshold scheme.

The general access structures support arbitrary
collections of access sets. These may reflect differ-
ent levels of trust which the data owner may assign to
different providers. For example, different thresholds
may be assigned to different groups of providers. It
is easy to extend our implementation to support such
access structures.

2.3.1 2-out-of-2 Additive Secret Sharing

A secret value is shared between two parties in such
a way that each individual share gives no information
about the secret, while reconstruction is possible from
both shares.

An easy way to implement it, assuming that the
secret is a binary string s∈{0,1}m, is to use a (binary)
one-time pad scheme, where the key represents the
first share s1←R {0,1}m and the ciphertext represents

2In special cases, it is possible that some individual
shares may allow recovery of the secret, but this is just an
academic possibility, which typically is not used.

the second share s2 = s⊕ s1. The reconstruction is
s = s1⊕ s2.

Note that the above is a special case of a thresh-
old scheme with both the threshold and the number of
parties equal to 2, hence we will be referring to it as
(2,2)-additive scheme.

Finally, we remark that the (2,2)-additive scheme
was proposed during the US Clinton administration
for key escrow (dep, 1994; Cli, 1993).

2.3.2 Shamir Threshold Secret Sharing Scheme

The (2,2) scheme suffers from two potential security
problems. First, two of the servers may collaborate
to recover the secret. To increase the security, the
aforementioned scheme can easily be adapted to an
(n,n) scheme. Secondly, any (n,n) scheme does not
provide a backup in case some of the serves is down.
The scheme we now discuss allows to deal with these
problems, provided we choose the parameters care-
fully.

System parameters (Shamir, 1979): A field Fp, a
number of shares n, a threshold k, where k ≤ n, and a
set (α1, . . . ,αn) of distinct and public elements of Fp,
which serve as id’s of the parties. To share a secret
s ∈ Fp for some prime p > n, k− 1, the coefficients
a1, · · · ,ak−1 ∈ Fp are chosen uniformly at random to
form the polynomial f (x) = s+a1x1+ · · ·+ak−1xk−1.
The value f (αi) is the share si that is given to party
pi. Any set of at most k− 1 shares provide no extra
information on the secret.

To reconstruct the secret, at least k honest par-
ties must submit their share si. For every k distinct
α1, · · · ,αk and s1, · · · ,sk values, there exists a unique
polynomial q(x) of degree at most k− 1 such that
q(αi) = si for 1 ≤ i ≤ k. Hence, the reconstruction
algorithm uses Lagrange interpolation to compute the
secret as s = q(0).

2.3.3 Rabin and Ben-Or Robust Secret Sharing
Scheme and its Variant

While Shamir secret sharing protect against acci-
dental or unauthorized deletion (or unavailability) of
shares by less than n− k parties, it does not give any
protection against active adversaries. It was observed
by Tompa and Woll (Tompa and Woll, 1987) that in-
correct shares submitted at the reconstruction in the
Shamir scheme will result in incorrect secret.

A goal of the so called robust secret scheme is
to ensure reconstruction of a correct secret. Rabin
and Ben-Or (Rabin and Ben-Or, 1989) proposed to
use the so-called check vectors for this purpose. In
the context of unconditional message authentication
codes (MAC), their schemes can be interpreted as fol-
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lows: the share generation algorithm produces shares
(according to some secret sharing scheme), as well as
the MAC keys/tags for each pair of parties. This way,
each party obtains their share, the tags which authen-
ticate it for each respective party, and the keys which
authenticate shares of all other parties.

At the reconstruction, one accepts only the shares
supported by majority of the parties. By “supported”,
we refer to the fact that the corresponding tag verifies
correctly for the corresponding key. It is implicitly
assumed that parties always support themselves (al-
though no tag is generated for this case)—this is just
counted as “plus one” vote for each share.

Finally, note that when using the RB scheme
(which provides data integrity), the probability ε for
dishonest e-mail providers to successfully modify
messages (without being noticed) cannot be zero. The
reason is that the RB scheme relies on MAC, which
can only guarantee a positive ε. By increasing the
length of the MAC, ε can be made sufficiently small.
Note that the non-zero ε is what makes our approach
different from the original work on Private and Se-
cure Message Transmission (PSMT) (Dolev et al.,
1993). We observe the later variants of PSMT, e.g.,
(Franklin and Wright, 2000), incorporate a non-zero
ε as a relaxed reliability requirement. Further details
on PSMT is beyond the scope of this paper.

2.3.4 Universal Hash Functions

Universal hash functions were introduced by Carter
and Wegman (Carter and Wegman, 1979) and
their use for authenticating messages by Wegman-
Carter (Wegman and Carter, 1981). In one of their
algorithms, a message mmm is a vector over a field F
and a key k is a single element of F. Specifically, in
Carter and Wegman’s original algorithm, for the mes-
sage mmm ∈ Fn+1 and key k ∈ F, the function is com-
puted as y = ∑

n
i=0 mikn−i, where mi ∈ F are the ele-

ments of mmm for i = 0, . . . ,n.
A lot of fast Universal Hash Functions were de-

veloped; see, e.g., (Bierbrauer et al., 1994; Johans-
son et al., 1994; Afanassiev et al., 1997). For our
implementation, we selected PolyQ32 (Krovetz and
Rogaway, 2001), which is designed to hash strings in
32-bit blocks.

Note that since the collision bounds for the
Krovetz-Rogaway approach are linear in the message
size n, it is important to implement a method of con-
trolling the collision probability to improve security.
The collision bound is also linear in the inverse of the
size of the key space |K32|. By choosing the key as
multiple elements from this set, the collision proba-
bility can be decreased to (1/|K32|)m with respect to
the number of elements m chosen.

3 HIGH-LEVEL DESCRIPTION
OF THE PROPOSED
FUNCTIONALITY

The secret sharing Thunderbird add-on currently
implements the (2,2)-additive scheme, the (k,n)-
threshold Shamir scheme, and the RB robust secret
sharing scheme (using Shamir shares and MAC based
on universal hashing). The parties (share holders) of
the secret sharing schemes are the email providers.

Hence, when using a (k,n)-threshold scheme, n is
the number of e-mail providers with which the recip-
ient has an e-mail account (or, e.g., the employer of
the sender does).

3.1 Sending a Message

With the add-on, Thunderbird provides an easily-
accessible button on the compose message window
that allows the user to secret share a message, in-
cluding attachments, in the compose window. When
secret-sharing a message, the add-on has a feature to
automatically fill out the to: fields of the different
share messages. Each e-mail sent contains a unique
128-character hex string identifier (UID).

The add-on is also integrated with Thunderbird’s
address book system. The user is required to store
their contact’s information in a preferred address book
that is selected using the popup preferences window.
The email addresses associated with secret sharing
communication are stored in a comma-delimited list
in the “Notes” section of the contact information. The
user then adds the contact’s main email address as the
receiver in the original message. Then, when the user
secret-shares the message, the add-on will find the as-
sociated emails and auto-fill the fields when generat-
ing the new messages with the secret shares.

Since the purpose of the add-on is to prevent
enough information to reconstruct the message being
on any one e-mail server, the user is expected to send
each message (or at least a number of the messages
less than the threshold) from a different e-mail ac-
count (e.g., a Gmail, Yahoo, ProtonMail, or Outlook
account). The recipient addresses should not include
more than a threshold amount from any one provider.

3.2 Receiving a Message

When a user opens any one of the secret shared e-
mails, they are provided with a custom button as
part of the add-on. Clicking on this button initiates
the reconstruction process. Users can view the re-
constructed message and download any attachments
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through a custom window opened after the recon-
struction.

When reconstructing the email, the add-on is able
to automatically detect the scheme and parameters
used to share the message based on the body con-
tents of the received message. To retrieve shares
other than the one the user is viewing, the add-on
searches through other email inboxes on the system to
match with the aforementioned unique 128-character
(64 byte) hex UID in the subject line. The add-on
then takes the shares and, if applicable, the keys and
tags from each of these files. If reconstruction is pos-
sible, the add-on is able to separate the subject, body
text, and any attachments and display them in a cus-
tom window. The user can then select the attachments
and download them to their local system exactly as
they would with a regular, unsecured email commu-
nication.

3.3 Further details

The add-on implementation is centered around a
background script and a pop-up window. Both of
these, along with all the necessary permissions, im-
age icons, and add-on information, are defined in the
manifest file (manifest.json) included in the open
source repository (git, 2022). The pop-up window al-
lows the user to adjust the system parameters includ-
ing the scheme, number of shares, and threshold for
reconstruction. This pop-up window (popup.html)
is written in HTML with custom CSS to improve the
interface.

4 FUNCTIONALITY DETAILS

Let us describe the details of our implementation and
justify some of its features.

4.1 Sending a Message

When the user clicks on the compose window button,
the script first removes the subject line on the email.
The body text of the email is prepended with “SUB-
JECT: ” followed by the original subject line and fol-
lowed by an empty line. The subject line is then re-
placed with a randomly generated 128-character (64-
byte) hex string. This will be used to identify the
shares on the receiving end during the reconstruction
process.

Next, the add-on checks if any attachments have
been added to the compose window. A header string
is created with information about the attachments

to allow the reconstruction to correctly parse the e-
mail content and the attachments. The first line of
the header contains the number of attachments be-
ing shared in the format count=<n> where <n> is the
number of attachments.

Following this, there is a line for each attachment
that contains the name, MIME type, and size in bytes
of the respective attachment with each piece of in-
formation delimited by a comma. This information
is prepended to the contents of the currently written
message (subject line and body text) to create the cur-
rent secret value.

To differentiate between the end of the e-mail con-
tents and the beginning of the attachment contents, a
single null character delimiter is appended to the end
of the current secret value. For each attachment, the
file object is taken and its contents are appended to
the end of the secret. There are no delimiters neces-
sary between the file contents as the size of each of the
files is stored in the header information. This allows
us to avoid any issues caused by setting delimiters that
users may put into their e-mails (e.g., random strings
of characters, new line characters, lengths of equal
signs, etc.).

This data is then converted into byte data by con-
verting the string contents into a Uint8Array using
the TextEncoder API where each index in the ar-
ray is a single byte. The body text is then changed
to a message that tells the recipient the name of the
scheme, the number of shares created, and the thresh-
old for reconstruction.

If the user wishes to attempt to automatically find
the addresses of where to send the secret shared ma-
terial, the add-on requires the user to fill in the to:
field of the original compose email with an email ad-
dress of a contact added in the user-selected address
book (as selected from the preferences popup win-
dow). To retrieve the email addresses the user has
saved (if any) to use when secret sharing with the se-
lected recipient, the add-on first retrieves the selected
address book. When the user selected a preferred ad-
dress book in the settings menu on the popup window,
the add-on stored the internal address book ID value
to the addressBook local storage value.

The add-on then uses the WebExtension folders
API to search for this address book. If the search
fails, an error will return. The add-on listens for this
error and, if none is found, the list of contacts is re-
turned back to the main thread. However, if the ad-
dress book is not found, this likely means that it has
been deleted. This is because the add-on internally
stores the ID value instead of the name of the address
book, as the name can be changed but the ID can not.

In the event that the selected address book has
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been deleted, the add-on will recognize this issue and
search through the current available address books for
the “Personal Address Book.” This is the default ad-
dress book in Thunderbird and can not be deleted, so
it is guaranteed to exist. The local storage value for
the address book preference is then overwritten with
the ID of the default address book. It is important to
note that this check for the existence of the selected
address book is also performed when the add-on loads
and when the preferences popup window is opened to
ensure the preference option remains current. Then,
the contacts of the selected address book are returned
back to the main thread.

Once the main thread receives back the list of
contacts, it will first parse the original to: field for
the display name and email address of the receiver.
Thunderbird formats this string as DisplayName
<email@address> where the angle brackets surround
the contact’s email address. This can be easily parsed
to retrieve the display name and email address. With
this information, we can then iterate through the ad-
dress book (there is no search API with the given in-
formation) to look for a contact with a matching dis-
play name and email address.

Once the contact is found, the add-on will ac-
cess the content of the “Notes” section of the contact.
This content is assumed to be a comma-delimited
list of email addresses and is returned as a string.
The string is split on each comma and the substrings
at each index are trimmed of leading and trailing
whitespace to clean the data. For user readability,
the display name parsed earlier is appended in front
of each email address and the address is surrounded
by angled brackets to create the format DisplayName
<email@address> that Thunderbird prefers for the
to: field.

After this step, the add-on will take the combined
data from the header text, subject line, body text, and
attachment data and send the combined string through
the selected secret sharing algorithm (either (2,2) Ad-
ditive, Shamir, or Robust) along with the number of
shares, the threshold, and the original compose details
(to preserve the hex subject identifier and informative
body text). After the secret sharing algorithm is com-
plete and the necessary number of shares are gener-
ated, the add-on will open one compose window for
each share.

In each window, each of the pieces of the respec-
tive share (share, keys, and tags as applicable to the
current scheme) are added as attachments to the new
e-mail. The subject line for each e-mail contains a
common 64 byte hex string. This string is used as an
identifier during reconstruction to allow the add-on to
find which e-mails contain shares to be used in the

same instance of reconstruction process.

4.2 Receiving a Message

To reconstruct the messages, the user opens any one
of the messages that contains a share and clicks on
the customized button in the message display view.
Since some e-mail providers append to the subject
line (e.g., “[EXT] ” in Outlook, or “Fwd: ” for for-
warded e-mails), the add-on uses the regular expres-
sion /[0-9a-f]{128}/ to eliminate all but a 128
character long hex string from the current subject
line. This result is then used as a query to search
for messages with matching subject lines. This query
searches for any e-mails with matching subject lines
under any account from any incoming folder.

Thunderbird helpfully provides attributes for each
folder in each account and assigns them a type value
that can take the value, among other less important
values, “sent”. In the event that a user sends these
protected e-mails to themselves, the e-mails will ap-
pear in both an outbound and inbound folder. When
querying for messages given a unique subject line,
messages sent from the user to their own e-mail ad-
dress, or addresses, will appear twice. This will result
in an error during share generation as the implemen-
tation will find twice as many messages as it needs
and will not know which ones are duplicates without
parsing the attachments.

To fix this, we can change the message query to
only look for folders of type “inbox”. However, many
users wish to use custom folders to sort their e-mails.
These custom folders commonly have an undefined
type. It is then easier to remove all query results from
“sent”-type folders to ensure that there are no dupli-
cate messages.

The messages found from non-sent-type folders
are parsed for attachments with titles matching the
format of the shares, keys, or tags to find the rele-
vant reconstruction information. Since there is no API
for parsing the individual attachments, the raw attach-
ment data must be retrieved and parsed to find the
individual pieces of information and then converted
from Base64 format.

To facilitate parsing the raw message data
for the attachments, the raw data is sent to the
getAttachmentData() function. The raw data is
then split at every instance of the string “Content-
Disposition: attachment;”. While the raw data file
does actually define a specific boundary string in the
beginning of the file, it is easier to simply split on
sections where we know there are attachments rather
than look through each section between two bound-
aries and figure out if it is an attachment.
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Splitting the raw data on the content disposition
string results in n + 1 strings for a message with n
attachments where the remaining string is the header
information followed by the email contents and other
information related to the delivery of the email. The
format of each string resulting from the split is such
that the first and third lines are blank. The second
line provides the name of the file using the format
filename="<f>" where <f> is the name of the file.
To then get the name of the file, we first split the cur-
rent string into another array of strings based on the
newline delimiter. Then, we can simply take the sub-
string from the eleventh character to the third to last
character, inclusively. We omit the final two charac-
ters as these are the closing quotation mark and a new-
line character.

Before iterating through the attachments to
store the content data, we must first verify that this
is a share, tag, or key file sent from the add-on
since it is possible that a user may have attached
a separate file to the secret share message (this
is not suggested, but is possible for users to do).
This is done through a simple regular expression
that checks if the filename is “share”; “tag-” fol-
lowed by one or more digits, then a “-”, and one
or more digits; or “k-” (for key) followed by one
or more digits, then a “-”, and one or more dig-
its. In the regular expression format, this is written
/(share|tag-[0-9]+-[0-9]+|k-[0-9]+-[0-9]+)/.

If the filename matches this regular expression,
then the add-on iterates through the array of strings
split from the current section of the raw message data
starting from the fourth line as the first three were
two empty lines and the filename. At each line, we
first check if the string starts with 14 hyphens. This
is because the ending delimiter for the attachment
data section is formatted such that it starts with 14
hyphens followed by 24 hex characters (A through
F). While we could again use a regular expression,
it has actually been shown that using the JavaScript
String.startsWith() function is much faster, es-
pecially on small strings. If this returns true, then we
break out of the loop. If the ending barrier has not
been reached, then we simply append the current line
to the data from the previous lines.

Once we reach the end of the attachment data,
the final newline is removed from the data as this
has the possibility of corrupting the attachment data.
The attachment content data is then pushed to an ar-
ray where each index contains the contents of an at-
tachment with the corresponding filename pushed to
a separate array. After each attachment has been
parsed, these two arrays are returned back to the call-
ing function.

Input: Secret data s
Output: Randomness r
r←∅
n← s.length / 65,536
for i← 1 . . .n do r← r ∩ getRandomValues(
65,536 )

r← r ∩ getRandomValues( s.length mod
65,536 )

Figure 1: Key generation algorithm for the (2,2)-additive
scheme to work around the 65,536 byte limitation of
getRandomValues().

The body of the current message is then parsed
to find which secret sharing scheme was used to gen-
erate the shares. The detected scheme is then used to
reconstruct the message using the parsed shares, keys,
and tags as appropriate.

After reconstruction, the attachments and e-mail
contents need to be separated. The attachment header
information is used to get information on the attach-
ments in the message. The e-mail content is found
by looking for the first occurrence of the null charac-
ter. The remaining attachment data is parsed using the
size attributes stored in the header information.

After the attachment parsing, a custom window
is opened with a message area that displays the re-
constructed message along with an area for attach-
ment files to be downloaded from. If there was an
error somewhere along the reconstruction, the area
will instead be populated with the error message (e.g.,
“Missing tag”, etc.).

5 CRYPTO DETAILS

We now explain how the different secret sharing
schemes explained in Section 2.3 have been imple-
mented and other details about the cryptography be-
ing used for these schemes.

Note that when sending a message, we first follow
the steps outlined in Section 4.1. Similarly, we follow
the steps in Section 4.2 when receiving a message.

5.1 (2, 2) Additive Secret Sharing

To first test the ability of the Thunderbird ecosystem
to handle secret sharing schemes, we implemented
a simple (2,2)-additive secret sharing scheme as de-
scribed in Sec. 2.3.1.

Note that a (2,2) scheme is the same as the one-
time pad (Vernam, 1926) encryption scheme in which
one share is the key and the other the ciphertext. Since
the one-time pad scheme is well known, we use this
terminology.
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While the XOR operation is quite simple, the
complexity of this implementation lies in the gener-
ation of the key with which to XOR the secret. To do
this, an empty byte array is created of the same length
as the secret byte data. To generate the random values
for the key, the Crypto API’s getRandomValues()
function is called. However, this function will return
a DOMException (quota exceeded error) if more than
65,536 bytes are asked to be generated at once. To
work around this issue, we generate n sets of 65,536
bytes where n = l/65,536 is the result of the inte-
ger division of the length of the secret content l in
bytes and the maximum number of bytes we can gen-
erate per function call. After those n sets, we gen-
erate the final remaining number of bytes equal to
l mod 65,536. This solution can be seen in Fig. 1.

Since the secret content is passed to the func-
tion as an array of bytes and the key is also of the
same dataset, we can easily iterate through each byte
and use the built-in XOR operation in JavaScript to
compute the ciphertext. Once the ciphertext is com-
puted, two files are created: one with the ciphertext
byte data and one with the key byte data. Two com-
pose windows are also created. If available, the secret
email addresses from the user-selected address book
are added as the recipients of these two messages. Ad-
ditionally, the hex ID is saved to the subject line and
the informative body text is added. Finally, the ci-
phertext and key byte files are added as attachments
with one to each new compose window. These win-
dows then display for the user to finalize and send off
to the recipient.

The reconstruction for this scheme is straightfor-
ward. Once the user clicks the reconstruction but-
ton in the message view window, the add-on will
search for another message in the user’s inboxes with
a matching hex subject identifier. If no other message
is found, then the reconstruction halts. If the other
message is found, then the attachments for the two
messages are parsed from the raw message data. The
add-on then takes the byte data from the two files and
XOR’s them together to produce the original secret
message. This information if then parsed to check the
header information for any initial attachments. If at-
tachments are found, then they are saved in local stor-
age. The reconstructed message view page will then
open. If there were any attachments with the original
message, then they will be available on this page for
download alongside the original message content.

5.2 Shamir’s Secret Sharing

The implementation of Shamir secret sharing scheme
takes the e-mail content and creates n shares as deter-

mined by the scheme parameters selected by the user.
The development time of this scheme is significantly
improved through the use of the “secrets.js” library
(Rempe, 2019) that is used to construct the shares and
reconstruct the secret. To construct the shares, the se-
cret is first required to be converted to a hex string.
While it does come with a string to hex conversion al-
gorithm, it was quite slow. Instead, a new algorithm
was written that experimentally showed to be about
1.5 times faster and is also easier to follow.

The first stage of the construction follows the ad-
ditive scheme. The user first clicks secret sharing but-
ton in the compose window and the e-mail content
is combined into a byte string. The Shamir secret
sharing algorithm is then given as input the content,
the updated compose window details with the hex ID
subject line and informative body text, the number of
shares, and the threshold for reconstruction. The e-
mail content is then converted from a byte string to a
hex string. This hex string secret is passed to the “se-
crets.js” library along with the number of shares and
reconstruction threshold to generate the shares.

The library first converts the hex string into a bi-
nary string that is prepended with a 1 as a marker to
preserve the length of the message and then padded
to a multiple of 128 bits. The default implementation
of this padding appends a pre-generated 1,024-length
string of zeros to the string and then uses the slice()
method of the String object to reduce the length back
to the desired padding. This method can be somewhat
slow, so it is replaced by a single line command using
the function padStart(), also from the String object.
This resulted in a time improvement of up to 25% and
is more noticeable with larger secret sizes.

The binary string is then read starting with the
least significant bit, converting every byte into an in-
teger and populating an array with the data. For each
integer in the array, the library generates a polynomial
of degree k− 1 and then evaluates the polynomial at
n locations using Horner’s method. This results in n
Shamir shares for each integer in the integer array.

The n shares for each integer are referred to as
subshares. Each subshare is converted from a number
to a binary string and padded to a multiple of eight
bits. The ith subshare is then prepended to the ith

share. At the conclusion of the share generation, each
share is composed of n subshares in binary string for-
mat.

Since the library is designed to be configurable to
different data representations, the constructed shares
have two pieces of extra data prepended to them.
First, the number of bits per integer is converted to
a base 36 value. For this implementation, eight bits
is always used so this will be a constant. This value
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also limits the maximum number of shares to 28. The
second piece of data is an identifying value. This is
simply the index of the share over the range [1,n].
This value is converted to a two-character hex string
as the maximum value would then be 255, covering
the range of the maximum number of shares. The
first three characters of the n shares are given by
801,802, · · · ,8xx where xx is the hex representation
of n. The remainder of the share is the hex string
conversion of the binary string share calculated pre-
viously.

The n shares are then returned to the main imple-
mentation. The hex strings are converted into byte
arrays that are used to create a file for each share.
The shares are then added as attachments to new com-
pose windows. The original compose window is then
closed and the user is able to send the shares to their
selected intermediaries.

The reconstruction also begins much the same as
the additive scheme. The user opens an e-mail and
selects the reconstruction button. E-mails in any in-
coming folder with matching subject identifiers are
collected. The same attachment parsing method as
described in the additive scheme is then used to find
the share data from the attachments. The resulting hex
string shares are then passed as an array to the Shamir
reconstruction algorithm.

The reconstruction algorithm calls the reconstruc-
tion function from the secrets.js library. The library
first extracts the two pieces of extra information at the
front of each of the shares in order to know how to
convert the string into an integer array. The set of in-
teger arrays are then placed in a matrix with each ar-
ray representing a row. The matrix is then transposed
such that the number of columns is equal to n and the
number of rows is equal to the length of the integer
arrays.

The Lagrange interpolation is then evaluated us-
ing each row of integers. Each result is then converted
to a binary string, padded to a multiple of eight bits,
and prepended to a string holding the results of all of
the evaluations. The final binary string result is con-
verted back into a hex string and returned to the main
implementation. This hex string is converted into an
ASCII string as the return value for the Shamir recon-
struction algorithm.

5.3 Robust Secret Sharing

The robust secret sharing (RSS) implementation
builds on top of the Shamir Secret Sharing scheme.
When the user selects the option to construct the
shares, the system generates the Shamir shares as
in the previous scheme. Then, keys (ki j) and tags

(tagi j) are generated for each pair of parties i, j ∈ [n]
where i ̸= j using the fast universal hashing algo-
rithm PolyQ32 as described in (Krovetz and Rog-
away, 2001). Fortunately, the algorithm as defined in
the paper can be mapped directly into JavaScript, so
there are no translation or syntactical issues to work
around. After the keys and tags and generated, the
share for party i after the construction consists of si,
n−1 keys ki j ∀i ̸= j, and n−1 tags tagi j ∀i ̸= j for a
total of 2n−1 attachments.

The fast universal hashing function from (Krovetz
and Rogaway, 2001) allows the system to use a small
key size of 32-bits with a message in 32-bit blocks.
This plays well with the Shamir implementation that
generates shares whose lengths are multiples of 128
(this is customizable in the Shamir implementation,
but is not changed for the purpose of this add-on).
This allows the system to generate the keys using the
getRandomValues() function and send the key and
share directly to the PolyQ32 function.

The function as described in (Krovetz and Ro-
gaway, 2001) is directly implementable in the
JavaScript implementation. Because the share is in
binary format, the only addition to the function is con-
verting 32-bit blocks of the share into integers to per-
form the calculations. The arithmetic of the function
is computing modulo 232−5, the largest prime num-
ber under 232. Since JavaScript can represent integers
up to 253−1 without needing other objects, these 32-
bit calculations will not overflow and lose any accu-
racy.

The construction of PolyQ32 is such that the colli-
sion probability increases with the length of the mes-
sage. To improve the collision bounds, multiple keys
in Z32 are used to generate multiple tags for each
share. These tags are then concatenated before send-
ing to generate a longer tag. In the key and tag attach-
ment files, they are delimited by a newline to allow
the reconstructor to parse them. For the reconstruc-
tion, each of the key-tag pairs must match for tagi j to
be accepted. If a majority of the tags for one share are
accepted (at least n

2 −1 are verified), then the share is
accepted into the reconstruction. Otherwise, the share
is not included in the reconstruction.

As with the other schemes, the reconstruction be-
gins when the user opens an e-mail. The add-on first
searches for any messages with a matching subject ID
in any incoming folder. It then parses the attachments
for all of the files. Since RSS requires multiple attach-
ments (share, keys, and tags), the attachment parsing
had to be reconfigured for this scheme to allow both
the contents and the titles of the attachments to be re-
trieved. This allows the system to then parse the at-
tachments with the knowledge that the attachment is
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Table 1: Average share generation time in milliseconds over
500 iterations for each implemented scheme with secret
sizes of 1 KB, 10 KB, 100 KB, and 500 KB.

Scheme Secret Size
100 B 1 KB 10 KB 100 KB 500 KB

(2, 2) Additive 4.58 4.70 5.82 14.07 53.15

Shamir 6.68 13.74 83.23 728.24 3,527.35

Robust 8.00 17.09 114.58 1,113.62 6,025.45

Table 2: Average reconstruction time in milliseconds over
500 iterations for each implemented scheme with secret
sizes of 1 KB, 10 KB, 100 KB, and 500 KB.

Scheme Secret Size
100 B 1 KB 10 KB 100 KB 500 KB

(2, 2) Additive 52.67 54.78 56.68 74.86 179.41

Shamir 55.57 64.03 145.61 913.43 2,797.70

Robust 58.09 74.62 234.25 1,529.21 5,143.46

a share, tag, or key. The tags and keys are parsed into
matrices where each index represents the list of keys
and tags used to verify the shares. The tags for each
key and share are then calculated and compared to the
tags received from the e-mail attachments. If a ma-
jority of the tags match, then the share is added to the
list of accepted shares.

Once all the accepted shares are found, they are
sent to the Shamir decryption implementation as a
part of the library in (Rempe, 2019) as described pre-
viously. The results are then sent back to the main
program and stored in local storage. The reconstruc-
tion is also printed in the developer console to allow
for debugging.

6 SIMULATION RESULTS

In this section, we present experimental results on the
execution time of the add-on relative to the selected
scheme and the size of the secret. We compare each
of the three implemented schemes with secret sizes of
1 KB, 10 KB, 100 KB, and 1 MB. To remove some of
the overhead caused by Thunderbird and focus more
on the implementation, we remove output logging and
new windows are not opened at the end of both the
sharing and reconstruction phase. Each experiment is
tested 500 times. During the experimentation, it was
noted that around the 75th iteration during testing, the
execution time would consistently slow down signifi-
cantly. In an attempt to negate this behavior, the 500
experiments are split into 10 sets of 50 iterations. The
simulations are executed using Thunderbird version
81.0b2.

The results in Table 1 shows the experimental re-
sults for generating shares using the three schemes for

Table 3: Average time spent only on share generation (ex-
cluding attachment parsing) in milliseconds over 500 itera-
tions for each implemented scheme.

Scheme Secret Size
100 B 1 KB 10 KB 100 KB 500 KB

(2, 2) Additive 0.03 0.10 0.74 6.18 30.38

Shamir 0.80 5.99 69.36 710.44 3,465.80

Robust 1.35 9.57 100.67 1,109.91 5,972

Table 4: Average time spent only on reconstruction (exclud-
ing content parsing, message querying, and attachment sav-
ing) in milliseconds over 500 iterations after removing mes-
sage and attachment parsing and message querying.

Scheme Secret Size
100 B 1 KB 10 KB 100 KB 500 KB

(2, 2) Additive 0.07 0.23 1.68 13.08 63.50

Shamir 0.45 3.09 27.43 338.82 2,072.65

Robust 0.87 5.97 57.29 714.61 4,881.69

secret sizes of 100 B up to 500 KB. Table 2 shows
the same results for reconstructing the shares gener-
ated from Table 1. These results show that the im-
plementation has decent performance for lower secret
sizes. Based on the percentage increase in the exe-
cution time compared to the percent increase in the
secret sizes, it can be surmised that a large portion of
the execution time for small secret sizes is composed
of overhead caused by Thunderbird or the test sys-
tem. Since Thunderbird is a single-threaded process,
it is likely that other operations introduce delay into
the secret sharing processing.

In addition, the execution times for larger secret
sizes (in particular 100 KB and 500 KB) had sig-
nificant variation between individual reconstructions.
For the 500 KB test set, the individual execution
times ranged from 4,400 milliseconds to 5,600 mil-
liseconds. This can likely be explained as the result
of Thunderbird frequently attempting to save drafted
messages and query for new messages, causing some
inconsistent overhead. The results for lower secret
sizes also varied with a similar percentage of the over-
all time. It is important to note that this implementa-
tion has not been thoroughly optimized, so there is
likely still some significant room for improvement in
these execution times by improving the iteration and
conversion operations.

In an attempt to isolate the reasons for the longer
execution times for larger secrets, we also recorded
the time for just the share generation and reconstruc-
tion without Thunderbird-related operations such as
querying for matching messages, parsing the raw
message contents, parsing the message body for the
scheme information, and saving the files to local stor-
age. This removes overhead that can not be improved
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Figure 1: (a) The percentage of time spent on only share
generation. (b) The percentage of time spent only on recon-
struction. Both ignore message parsing, Thunderbird APIs,
and attachment data saving in order to examine the over-
head cost.

much given the current Thunderbird API and instead
focuses on just the secret sharing implementations.
The share generation execution time results for this
experiment are recorded in Table 3 and the recon-
struction execution time results are recorded in Ta-
ble 4. These results are illustrated as a percentage
of the total execution time in Fig. 1 for the three
schemes.

These results show that, for small secret sizes
around 1 KB and below, the Shamir and robust
scheme reconstructions take less than 10% of the
overall time. The remaining time is spent querying
and parsing the messages and saving the attachments
to local storage. At a secret size of 10 KB and above,
the Shamir and robust scheme reconstructions take
the majority of the time and reach 90% and greater
around 500 KB.

Since the reconstruction has significantly less
message parsing and file saving, the share generation
has noticeably less overhead. The Shamir and robust

scheme share generation accounts for around 50% of
the total execution time with a 100 KB secret size.
This value only decreases to around 10% for a 100 B
secret.

7 CONCLUSIONS AND FUTURE
WORK

The proposed private email communication system is
implemented in the form of the Thunderbird add-on
which currently supports 2-out-of-2 additive scheme,
Shamir’s scheme, as well as the Rabin and Ben-OR
robust scheme (based on Shamir’s sharing and fast
universal hashing by Krovetz and Rogaway). The
shares (and also keys, and tags in the robust scheme)
are sent as attachments in multiple e-mails via email
providers (that represent different parties in a secret
sharing scheme). Each e-mail contains a unique 128-
character hex string identifier (UID) to link them to-
gether during the reconstruction process.

This implementation has a distinct advantage over
other forms of email security apps. Indeed, our Thun-
derbird add-on keeps the contents secret not only from
the communication channel eavesdroppers, but also
from the email hosts and servers who facilitate the de-
livery and receipt of the email. To guarantee this, the
user needs to chooses not to send a threshold number
of the shares through untrusted providers.

Another advantage of our add-on is that in current
existing email security apps, such as PGP, the secu-
rity relies on computational security, which remains
unproven. This entails the need to perpetually eval-
uate the security of the cryptographic primitives and
their security parameters (such as key length). The
use of unconditional security by our implementation
eliminates these concerns (provided the random gen-
erator provides true uniformly random independent of
anything).

It is worth noting that our proposal can also be
combined with the existing (computationally secure)
application to enhance their security. For example, an
email message can be both encrypted using PGP and
then secret-shared using our implementation. Then,
the adversary will have no information about the mes-
sage unless (s)he is able to access the threshold num-
ber of shares. After that, (s)he would have to break
the encryption scheme to finally access the message.
A proper combination of unconditionally and compu-
tationally secure cryptographic primitives for the pur-
poses of email security may be worth a further study.

The add-on is available via Github (git, 2022).
Future work could focus on speeding up the add-

on, and on evaluating how good the random gener-
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ation is. We now discuss the speeding up in more
details.

One topic is focusing on optimizing the Shamir
library to reduce the execution time. In addition,
the message parsing needs to be optimized as cur-
rently it is required for the system to parse the en-
tire raw message contents to get attachments on in-
coming messages. In the future, this may be made
more simple through expanded WebExtension APIs.
Currently, due to the recent major version change and
add-on overhaul, the Thunder WebExtension APIs do
not have any direct access to message attachments.
Another potential route for optimization is selecting
another secret sharing scheme that may be more op-
timized for a JavaScript implementation and for file
sizes of up to a few megabytes. Finally, alternative
universal hashing functions should be considered.
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