Automated Feature Engineering for AutoML Using Genetic Algorithms

Kevin Shi and Sherif Saad

School of Computer Science, University of Windsor, Sunset Ave, Windsor, Canada

Keywords:

Abstract:

Automated Machine Learning, Optimization, Genetic Algorithm, Feature Engineering.

Automated machine learning (AutoML) is an approach to automate the creation of machine learning pipelines

and models. The ability to automatically create a machine learning pipeline would allow users without ma-
chine learning knowledge to create and use machine learning systems. However, many AutoML tools have
no or limited automated feature engineering support. We develop an approach that is able to augment existing
AutoMI tools with automated feature generation and selection. This generation method uses feature generators
guided by and genetic algorithm to generate and select features as part of the AutoMI model selection process.
We show that this approach is able to improve the AutoML model performance in 77% of all tested cases with
up to 78% error reduction. Our approach explores how existing AutoML tools can be augmented with more
automated steps to improve the generated machine learning pipeline’s performance.

1 INTRODUCTION

The use of machine learning plays a key role in to-
day’s society, with many models providing data to
change both the physical and digital world. As with
many technologies, automation is a logical next step,
but the complex and customizable nature of the ma-
chine learning pipeline makes this difficult. In recent
years tools such as automated machine learning have
automated the process of selecting machine learning
models and tuning them. During research on auto-
mated machine learning tools, four main weaknesses
were identified: feature engineering, model drift,
interpretability and explainability, and data quality.
This research will study one of the four weaknesses:
feature engineering by creating a method of automat-
ing feature engineering using genetic algorithms to
optimize the transformation of features from their raw
state to transformed state for the use of machine learn-
ing models. We hope by using a genetic algorithm
for automating feature engineering, we can avoid the
black-box nature of many current automated machine
learning tools as the process of feature engineering
will be visible to the user and the generations explain-
able.

This study investigates the use of genetic algo-
rithms for automated feature engineering to augment
AutoML tools. In particular, we are interested in un-
derstanding the effects of extending existing AutoML
and the impacts on overall tool performance and time

450

Shi, K. and Saad, S.
Automated Feature Engineering for AutoML Using Genetic Algorithms.
DOI: 10.5220/0012090400003555

requirements. The contribution of this paper is three-
fold.

1. First, it implements a genetic automated feature
engineering tool for AutoML.

2. Second, it compares the performance of different
generation approaches for automated feature en-
gineering.

3. Third, it assesses the impact of automated feature
engineering for AutoML and traditional machine
learning models.

The rest of the paper is structured as follows.
Section 2 is a literature review covering existing au-
tomated feature engineering methods and the cur-
rent support for feature engineering in AutoML tools.
Section 3 describes the methodology we follow and
provides a breakdown of the automated feature engi-
neering method. Section 4 presents our experimen-
tal work and discusses our findings. Finally, section
5 concludes our paper and presents potential future
work.

2 LITERATURE REVIEW

The existing research in regard to developing auto-
mated feature engineering for AutoML can be best di-
vided into two categories, research that focuses purely
on automated feature engineering and AutoML tools

In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 450-459

ISBN: 978-989-758-666-8; ISSN: 2184-7711

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

with automated feature engineering. The first cat-
egory of research generally focuses on stand-alone
tools that can automate an aspect of feature engineer-
ing, which will then be used to augment a machine
learning classifier. The second category focuses on
AutoML tools with built-in automated feature engi-
neering. These tools have different methods which are
used as part of the AutoML optimization and model
search. In this section, we aim to give an overview of
the existing research in this area.

2.1 Automated Feature Engineering

Feature engineering is a process of selecting and
transforming raw features to use in a machine learn-
ing model. The automation of feature engineering can
be divided based on if the tool is for generalized fea-
ture engineering, a tool that is able to work with any
input data or specialized for certain problems or data
types.

Automated Feature engineering tools that are tar-
geted or specialized range in many forms and can
range different types of problems and data types.
Some examples of this type of tool include TimeAu-
toML(Jiao et al., 2020) tailored for time series data
with specialized feature generators to tools that target
problems such as bus passenger flow(Liu et al., 2021)
and customer segmentation(Lee et al., 2021). These
tools have a very diverse methodology, from defined
feature generators and neural networks to clustering-
based approaches. Generally, these types of auto-
mated Feature engineering tools are able to generate
features that better leverage the data as they are tools
tailored to the problem.

The generation-selection approach has been used
as part of many automated feature engineering mod-
els, these methods differ in the methods of genera-
tion and selection, but all contain this common aspect.
These models generate transformed features from the
data and then apply a method of selection for the gen-
eration of the final dataset features.

A tool that follows the generation-selection ap-
proach is ExploreKit(Katz et al., 2016) a technique
in which features are generated from input data based
on defined transformation functions, and after all the
features are generated, all features are ranked and then
the highest-ranked features are tested. Features that
pass the predefined threshold are selected and added
to the data to be used to generate new features.

A second tool that follows the generation-
selection approach is AutoLearn(Kaul et al., 2017).
In this approach, each feature is used to predict the
value of other features by applying regression. This
process is performed in four steps. Firstly, prepos-

Automated Feature Engineering for AutoML Using Genetic Algorithms

sessing is done by ranking candidate features using
information gain, then mining correlated features in
which the correlation between features is determined
using distance correlation. The next step of the pro-
cess is feature generation, in which new features are
created by regressing every correlated feature pair and
by taking the difference between one of the correlated
features and the generated feature. Lately, feature se-
lection is applied to all generated features based on
feature stability and information gain.

In the research, (Tran et al., 2016) genetic pro-
gramming is used to create a transformation tree that
is able to create defined feature sets. With the trans-
formed features, the dimensional of the data is able to
be reduced without reducing classifier performance.
Genetic algorithms have also been used to perform
automated feature selection as part of a feature en-
gineering model with manually created features se-
lected and optimized with a genetic algorithm(Khan
and Byun, 2020).

Evolutionary Algorithms have been used to aug-
ment other automated feature engineering approaches
such as in (Parfenov et al., 2020). In this approach, the
feature generation is performed with the first stage of
ExploreKit with genetic optimization being used in
place of the original ranking classifier for the selec-
tion of original and created features to be added to the
output data set.

2.2 Automated Machine Learning
(AutoML)

Automated machine learning aims to automate the
process of creating machine learning pipelines while
requiring minimal human intervention. Current Au-
toML tools are able to automate some of all of the
following steps of the machine learning pipeline: data
pre-processing, feature engineering, model selection
and hyperparameter optimization. Many AutoML
tools focus on model selection and hyperparameter
optimization in which a machine learning classifier
is picked and optimized for the dataset. Some exam-
ples of common AutoML tools include TPOT, auto-
sklearn, FLAML, mljar, AutoKeras, and Autogulon.
Out of the six tools, TPOT, mljar, and Autogulon
have built-in support for automated feature engineer-
ing, while the three other tools lack support and focus
on model optimization. Each of the tools that sup-
port automated feature engineering has different be-
haviours.

TPOT works to automate feature engineering as
part of the automated pipeline. The genetic program-
ming approach can choose to include feature engi-
neering tools from sklearn, such as Polynomial Fea-

451

SECRYPT 2023 - 20th International Conference on Security and Cryptography

tures. These feature engineering steps become part of
the total machine learning pipeline that is optimized
by TPOT.

MLIJAR performs feature engineering as part of its
AutoML optimization process with a module for fea-
ture engineering called golden features. With golden
features, the tool aims to create new features from the
data that have greater predictive power. These fea-
tures are created by generating all possible feature
pairs based on division or subtraction operations and
then testing these features by training them on parts of
the dataset. MLJAR is able to generate new features
as part of its AutoML optimization process.

Autogulon automates feature engineering using
defined feature generators that are automatically ap-
plied based on data type with an included genera-
tor for numeric, categorical, data and text features.
These feature generators are applied to features within
the dataset before the rest of the machine learning
pipeline is optimized.

These three AutoML approaches all support au-
tomated feature engineering but very different im-
plementations with approaches applying feature engi-
neering before, during and as part of the optimization
process.

Other AutoML approaches, such as Pycaret, have
support for featuring engineering steps built into the
tool but do not automatically apply these feature engi-
neering steps. For these tools, the user must manually
enable the built-in functions.

Overall support for feature engineering in Au-
toML can be best broken down into three categories
automated, manual and without. For automated tools,
the scope and impact of feature engineering can be ex-
panded, while for AutoML tools with manual support
or without support, an approach that can automate au-
tomatic feature engineering such as this research can
improve the automation of the creation of the whole
machine learning pipeline. External tools that incor-
porate different types of AutoML tools allow for au-
tomated feature engineering to support more AutoML
tools versus an add-on developed for a singular tool.
This approach has also been seen in literature, such
as running an automated feature extraction tool be-
fore the AutoML system for a limited degree of suc-
cess(Eldeeb et al., 2021).

2.3 Data Augmentation

Data augmentation is any technique that changes the
input data such that there is an increase in data size
or the quality of the data. These approaches are
commonly used for image processing but data aug-
mentation can also be applied to any type of data.

452

DeltaPy(Snow, 2020) is a framework for tabular data
augmentation, which is a process that allows for mod-
ular feature engineering. DeltaPy provides 50 pre-
built augmentation functions from the following cat-
egories: transforming, interacting, mapping, extract-
ing, and synthesising. Transforming is the process in
which a single input feature produces new features.
Interacting is the process in which more than one
feature is required to create new features. Mapping
functions aim to remove noise from the data or high-
light signals improving the overall quality of the data.
Overall, DeltaPy provides many functions that can as-
sist with the process of feature engineering for tabular
data and allows for a modular approach to feature en-
gineering.

3 METHODOLOGY

Automated Feature Engineering

Genetic Feature
Algorithm Generators

I

False

If Exit
Condition

Evaluation

True
|

Figure 1: Automated Feature Engineering System Design.

The automated feature engineering system is
shown in figure 1. The system follows an iterative
approach where each iteration is composed of three
main phases: genetic algorithm, feature generators,
and AutoML. The genetic algorithm’s role is to pro-
vide the settings for the feature generators; this in-
cludes the type of feature generator and the target
features and modifiers to be used. With each itera-
tion, the genetic algorithm works to optimize these
settings for the best performance. The feature genera-
tors using the setting from the genetic algorithm apply
the chosen transformation to the dataset and creates
the new candidate feature. The AutoML step takes
the candidate feature and the base data and trains an
AutoML that will be evaluated based on its accuracy
score. The score is used for ranking the generated
feature within the genetic algorithm. A portion of
the data is held out at the start of the process, which
will be used to evaluate overall system performance.
Next, we describe each of the main phases in detail

below. This approach, as presented, differs from the
currently available AutoML feature engineering ap-
proaches. Firstly this approach can augment any Au-
toML tool as it is not limited to a single tool. Sec-
ondly, unlike the approaches presented by AutoGluon
and mljar, this approach is iterative and works to op-
timize for the best possible generated features, ver-
sus only running feature generation at the start of the
process and a single time as part of the AutoML pro-
cess, respectively. This approach is similar to TPOT
as both are evolutionary algorithm-based approaches,
but more flexibility in feature generators is possible in
the presented approach.

3.1 Feature Generation

Normal feature generation is performed using feature
generation functions. These generation functions can
be best split into binary and unary operators. The bi-
nary operators are either arithmetic (addition, subtrac-
tion, multiplication and division) or boolean operators
(less than, is equal and greater than). The unary oper-
ators have three categories, scaler, clustering and bin-
ning. All binary operators are targeted to two features
from the genetic algorithm, while unary operators are
targeted at one feature. The modifier value is used to
influence the generation function, such as for binning
and clustering, as well as picking the arithmetic op-
erator. Each generation function uses the features as
input and outputs a new feature to be appended to the
input data.

3.1.1 DeltaPy

For feature generation using DeltaPy all transform-
ing, interaction and mapping functions were utilized
except the following functions due to incompatibility
and issues in the functions: transform triple exponen-
tial smoothing, transform naive dec, interact autore-
gression, interact decision tree disc, interact tech, in-
teract genetic feat, mapper cross lag, mapper a chi,
mapper encoder dataset. In total 19 functions were
utilized with 13 transforming, 2 interaction and 4
mapping. The genetic algorithm was used to select
which functions were chosen as well as the target fea-
ture or features and modifier if needed.

3.2 Genetic Algorithm

A genetic algorithm is utilized to search the possible
features as there can be multiple best features based
on the models used. We also aim to avoid using a
brute force approach due to the total possible num-
ber of generated features. In the sections below, the

Automated Feature Engineering for AutoML Using Genetic Algorithms

configuration of the individual sections of the genetic
algorithm is described.

3.2.1 Population

Each chromosome in the genetic algorithm represents
a generated feature in the normal case or the selected
features for the genetic feature selection case. For the
normal case the chromosome (see table 1) is four in
length with the first two values representing the cho-
sen features of the raw data, the third value represent-
ing the selected transformation function and the last
value representing the modifier for the transformation
function. For the genetic feature selection case, the
chromosome is a binary array with a size equal to the
total number of raw and transformed features, with a
”1” representing a chosen feature and a 0" an unse-
lected feature.

3.2.2 Evaluation and Selection

To evaluate the performance of members of the popu-
lation, each individual member is chosen and an Au-
toML model is fitted to that member, this resulting ac-
curacy when optimizing for the accuracy or the AUC
when optimizing for error reduction is assigned as the
score of the chosen member. If any member of the
population is unable to be successfully trained and
tested due to an invalid chromosome that member is
assigned a score of 0. After all members of the pop-
ulation and been trained and evaluated, all members
of the population are sorted based on their scores.
The top 50% of the population is selected to create
the population for the next generation and the bottom
50% is discarded.

3.2.3 Crossover and Mutation

Crossover and mutation are applied to selected mem-
bers of the population in order to generate the pop-
ulation for the next generation. Crossover requires a
pair of chromosomes called parents, which are used
to generate two new chromosomes called children;
this is done by using data from parents and switch-
ing which parent’s data is used after each crossover
point. This process generates two new chromosomes
that are mirrors of each other based on the data of
the parents. After the new members are generated by
the crossover operation, the mutation is then applied.
Mutation allows for changes in that data, not from the
parents, to maintain genetic diversity. For each value
in the chromosomes, if the mutation is triggered, that
value is replaced with a random value from the allow-
able range of values.

453

SECRYPT 2023 - 20th International Conference on Security and Cryptography

3.2.4 Stopping

The genetic algorithm will stop when one of two con-
ditions is met: the set number of generations has
passed, or early stopping is triggered. On initiation of
the genetic algorithm, the maximum number of gen-
erations is set which is the maximum number of gen-
erations the genetic algorithm can search. Early stop-
ping this triggered if a set number of generations pass
without any improvement to the maximum score.

Table 1: Feature chromosome. N: number of raw features,
M: number of transformation functions, C: Max allowed
modifier.

Feature A | Feature B Transforrpatlon Modifier
Function
0-N 0-N 0-M 0-C

3.3 Generation Approaches

We evaluate five approaches of the methodology that
differ in the number of generated features and the
method of their generation.

3.3.1 Singular Generation

Singular generation follows the approach presented
previously and generates a single feature optimized
by the genetic algorithm.

3.3.2 Group Generation

In group generation, the genetic algorithm’s chromo-
somes are changed to represent a group of features
instead of a single feature. This is done by extending
the length of the chromosome and having each fea-
ture sequentially represented by the chromosome. No
other changes are made to the overall methodology.

3.3.3 Pool Generation

In pool generation, before the evaluation stage, all
members of the population are split randomly into
groups that do not persist between generations. The
groups are evaluated and selected based on the over-
all group performance. The best performing group is
recorded and acts in place of the optimized feature.
No other changes are made to the overall methodol-

ogy.
3.3.4 Incremental Generation

In incremental generation, the approach from singular
generation is followed, but at the end of each genera-
tion, if a feature is found to increase the overall per-
formance of the dataset, that feature is appended to

454

the dataset, and this appended dataset is used for the
next generation. The process continues until there is
no improvement, then the population is randomized,
and the system continues until the set number of gen-
erations or early stopping is reached. This approach
slowly builds the final feature set adding at most a
single feature per generation that improves the over-
all feature set.

3.3.5 Selection

In selection, an initial set of features of a predefined
size is generated. The generated set of features, as
well as the original set of features, is selected by the
genetic algorithm. In this approach, the chromosome
is a bit string the size of combined generated and orig-
inal features. If the bit value corresponding to a fea-
ture is ’1” that feature is added to the evaluated fea-
ture set, while if the bit value is ’0” that feature is dis-
carded. The genetic algorithm in this approach aims
to optimize which features should be selected from
the combined set of features to create a final feature
set. No other changes are made to the overall method-

ology.

3.4 AutoML

The AutoML tool that was chosen to be augmented
with automated feature engineering was Fast Library
for Automated Machine Learning (FLAML). This
AutoML tool focuses on fast automatic turning of ma-
chine learning models which is done using a cost ef-
fective hyperparameter optimization algorithm. The
algorithm used by FLAML is based on the random-
ized direct search method FLOW2 which starts from
a low cost region exploring the search space while
focusing on moving quickly toward the low-loss re-
gion while avoiding high cost regions unless neces-
sary. This approach allows FLAML to quickly find
suitable configurations for machine learning models.

3.5 Datasets

For evaluations of the automatic feature engineering
tool, five datasets from the domain of cybersecurity
were selected. These datasets as seen in table 2 repre-
sent different domains of cybersecurity from malware
detection to spam.

3.5.1 CIC-AndMAL2017

This dataset contains malware samples from four cat-
egories: Adware, Ransomware, Scareware and SMS
Malware. Following the method described by Noor-
behbahani et al.(Noorbehbahani et al., 2019), only the

Automated Feature Engineering for AutoML Using Genetic Algorithms

Table 2: Cybersecurity Datasets.

Reference Dataset Name Cybersecurity Problem Domain | Number of Features | Number of Samples
(Lashkari et al., 2018) CICAndMal2017 Malware Detection 84 10854
(Anderson and Roth, 2018) EMBER2018 Malware Detection 2381 50000
(Moustafa and Slay, 2015) UNSW-NBI15 Intrusion/Anomaly Detection 47 2540044
(?) Phishing Websites Phishing Detection 30 11055
?) Spambase Email Spam Detection 58 4601

ransomware datasets of 10 ransomware families and
benign samples were used from the CICAndMal2017
as an evaluation dataset.

3.5.2 Ember 2018

This dataset contains malware features from one mil-
lion portable execution files after performing static
analysis. For evaluation as described in (Galen and
Steele, 2020), 25000 benign and malicious samples
were selected from both the January and February pe-
riods for the training dataset. The testing dataset con-
tains 25000 begin and malicious samples from March
to December.

3.5.3 UNWS-NBI15

This dataset consists of nine types of attacks: Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Recon-
naissance, Shellcode and Worms. For evaluation, all
four data files were combined to create one dataset no
other changes to the data were performed.

3.5.4 Spambase

This dataset consists of spam and non-spam emails.
No additional processing was required for this
dataset.

3.5.5 Phishing Websites

This dataset consists of legitimate and phishing web-
sites. No additional processing was required for this
dataset.

4 EXPERIMENT

4.1 Experiment Setup

In this section, we describe both the hardware
and software configuration used to test all of the
automated feature engineering approaches with all
datasets, experiment data generation is shown in fig-
ure 2. Experiments were run on Ubuntu 20.04 LTS
on a workstation with 12 cores of 3.7Ghz with 96GB
of ram. Python version 3.8 with FLAML version
1.0.7 was used. All data without predefined training
and testing datasets were tested with a 75-25 training

Dataset Split Data Hold %ﬂf Data
%

Workig Data
5%

Automated Feature Engineering

Genetic Feature
Algorithm Generators

[AutoML
False

If Exit Evaluation
Condition Met
\

True
L Chosen Features —E‘me
Generators

Final Dataset

Figure 2: Experiment Data Generation.

to testing split. The maximum training times were
set to 600 seconds for Spambase and Phishing Web-
sites, 1800 seconds for CIC-AndMAL2017 and 3600
seconds for Ember and UNWS-NB15. The generic
algorithm was set to a maximum of 20 generations
with early stopping set to 3, crossover and mutation
rates were set to 0.3. The population size for Singu-
lar, Group and Incremental was 32, and a group size
of 8 was used for Group and Pool generation. The
population size for Pool was 256, and the number of
generated features for selection was set to 100. For
AutoML, within the feature generation process, the
maximum time was set to 120 seconds and 10 max
iterations.

For comparison between the AutoML (FLAML)
and traditional machine learning models, Catboost
and three models from scikit-learn, Random Forest,
Naive Bayes and Decision Tree were used, with all
models set as default. Three evaluations are run for
each model, a baseline without any feature engineer-
ing, singular generation, and incremental generation.

455

SECRYPT 2023 - 20th International Conference on Security and Cryptography

4.1.1 Maetrics

For the evaluation, three metrics are used to measure
the performance of the automated feature engineering
approaches. The first metric used is accuracy which
provides a summary of the given AutoML on the gen-
erated feature set by calculating the number of cor-
rect predictions divided by the total number of pre-
dictions as shown in equation 1. Accuracy is a metric
that can be used to show the performance of any given
model but has limitations when the data is highly un-
balanced.

(TP+TN) 1
TP+FN+FP+TN M
The second metric used was balanced accuracy
as another metric to measure the performance of ML
models created by the models and tested approaches.
Balanced accuracy is a better metric to measure the
performance of ML models with imbalanced data.
The balanced accuracy is the mean of sensitivity and
specificity as shown in equation 2

accuracy =

P, N
2(TP+FN) ' 2(TN+FP)
(2)

The third metric used in the experiment was error
reduction. This metric shows the relative reeducation
in error from each of the tested models, which is cal-
culated from the original error minus the new error
divided by the original error as shown in equation 3.

balanced_accuracy =

(1 _AUCoriginal) - (1 - AUCnew)
(1 - AUCoriginal)

error reduction =

3)
4.2 Experiment Results

4.2.1 Generation Approach Comparison

Overall from the experiment results, as seen in ta-
ble 3, the automated feature engineering tool was
able to improve the accuracy of the trained model
in the majority of cases, with 26 seeing improve-
ment and 9 with regression in performance. Both the
dataset tested and the generation approach of the au-
tomated feature engineering tool had major impacts
on its performance. Out of the five datasets, two (CI-
CMAL. UNSW) showed improvement with any gen-
eration approach, while Phishing Websites improved
will all generation approaches except selection. For
the Spambase and EMBER datasets, only three gen-
eration approaches were able to produce an improve-
ment, with Delta working for Spambase and pool for

456

EMBER. Two generation approaches, Singular and
Incremental, were able to improve the accuracy of the
data in all tested cases. The balanced accuracy re-
sults match the accuracy results except Incremental
generation was not able to improve in all cases while
Singular generation was able

Looking at the baseline AUC and error reduction
as seen in table 4, the automated feature engineering
was able to reduce the error of the trained model in
the majority of cases for four datasets and reduce the
error of the other dataset EMBER in three out of the
seven total cases. In total, the tool was able to re-
duce error in 26 cases and could not, in 9 cases, the
same number as the accuracy results. As with accu-
racy, performance on EMBER was weak, but in this
case, Spambase was able to improve in six of the total
seven approaches. Delta incremental had the greatest
average error reduction of 32% but was only able to
provide an error reduction in three of the five datasets.
Both singular and group generation were able to re-
duce error in all five tested datasets, with singular
generation having a higher average error reduction of
16% compared to 9%. The dataset that resulted in
the most error reduction was CICMAL, with an av-
erage of 31%. Unlike with the accuracy results, no
dataset resulted in error reduction with all approaches
tested, with the best being six out of the seven total
approaches. Overall applying the automated feature
engineering tool was able to reduce the error in the
large majority of tested cases.

The automated feature engineering times are in ta-
ble 5. The fitting time of the feature engineering tool
was impacted by the dataset tested. The effects can
be best broken down into two parts feature generation
time and AutoML training time. There was no notable
impact on overall times for the basic feature genera-
tion, with only one case using basic feature generation
having a time of greater than one hour. Feature gen-
eration using DeltaPy did have an effect on training
times for the larger datasets, but this effect depended
on which feature generators were chosen, as seen in
the difference of time for Delta versus Delta incre-
mental generation for EMBER. As well, feature gen-
eration using DeltaPy resulted in increased training
time for all datasets except Spambase. Unlike feature
generation, the AutoML training time has a fixed up-
per bound of 120 seconds, this limits the maximum
impact of the training time, but the training time still
has a major effect on the feature engineer time, es-
pecially for the smaller datasets. The generation ap-
proach with the lowest average training time was se-
lection which was the least consistent generation ap-
proach, only providing improvements in 2 out of 5
datasets. This was then followed by Singular and In-

cremental, the approach with the lowest average per-
formance improvements. In this research, the auto-
mated feature engineering process aimed to produce
new features quickly. It is possible to increase the
genetic algorithm’s population, the number of itera-
tions, and the maximum training time for the AutoML
tool, which would increase feature engineering times,
but it would be expected that higher-performing fea-
tures would be found. The settings from this study
should not be seen as optimized settings for this tool
but taken as a possible set of settings to show this
proof of concept. It is not the aim of this research
to optimize the approach demonstrated.

4.2.2 AutoML and Traditional Machine
Learning Comparison

The results can be found in table 6 for accuracy and
balanced accuracy. Starting with the accuracy metric,
before applying feature engineering, AutoML had the
highest accuracy in 2 datasets, UNSW and EMBER,
and tied Catboost in Spambase. Catboost leads Phish-
ing Websites and Random Forest had the highest ac-
curacy in CICMAL. While for balanced accuracy lead
in 3 datasets Spambase, UNSW and EMBER, while
Catboost lead Phishing Websites and random forest
lead CICMAL. After applying feature engineering,
the changes were that Catboost leads Phishing Web-
sites for accuracy and Random Forest leads for both
metrics in UNSW. The method with the highest av-
erage accuracy and balanced accuracy was Catboost
with singular feature engineering, followed by other
Catboost approaches and then the random forest ap-
proaches. The Naive Bayes approaches had the lowest
average accuracy and balanced accuracy, but feature
engineering resulted in the greatest average improve-
ment of 0.076 and 0.055 for balanced accuracy with
incremental generation. The approach with the sec-
ond highest average improvement was AutoML with
incremental generation. The AutoML approaches
were also the most consistent achieving an accuracy
improvement in all ten tested cases for accuracy and 9
out of the 10 cases for balanced accuracy. The random
forest and Naive Bayes models archived improvement
ins 7 out of the 10 cases for both metrics.

Exploring the error reduction results as seen in
table 7, the AutoML approach has the highest start-
ing AUC in 3 of the datasets, Spambase. UNSW
and Ember with the random forest model leading in
2, Phishing Websites and CICMAL. After applying
feature engineering, the AutoML approach with the
incremental generation now leads CICMAL. Look-
ing at the average error reduction, the average perfor-
mance with AutoML greatly exceeds any other tested
approach with almost 16% average error reduction for

Automated Feature Engineering for AutoML Using Genetic Algorithms

both singular and incremental generation. The second
best approach, random forest singular generation, was
only able to achieve and 2.29% average error reduc-
tion. The AutoML approach also tied random forest
for the most consistent error reduction, reducing the
model error in 9 out of the 10 tested cases. The Naive
Bayes approaches had poor consistency in error re-
duction with singular generation resulting in 2 out of
5 and incremental resulting in 1 out of 5 models with
error reduction. As well, the Naive Bayes approaches
no longer had the greatest average improvement, only
achieving an error reduction of 1.24% for singular and
1.64% for incremental.

Overall, for all of the configurations tested and the
different metrics used using an AutoML tool resulted
in the most consistent improvement, bust as seen form
these results the feature engineering tool is able to be
applied to other machine learning model with smaller
and less consistent improvements possible.

The automated feature engineering generation
times are in table 8. Depending on the dataset used
and the machine learning model, the automated fea-
ture engineering process can be completed in a num-
ber of seconds to over an hour. The model used signif-
icantly affected the generation time, with approaches
such as Catboost requiring more time than any other
approach 4812 seconds for singular and 6820 seconds
for incremental generation on average. Naive Bayes
required the least amount of time on average only 201
seconds for singular and 608 seconds for incremen-
tal generation. The only models that required less
training time than the original AutoML approach are
Naive Bayes and random forest singular generation.
This means that the AutoML approach is able to train
ten models per candidate in less time than other ap-
proaches needed to train one. It would be possible
to optimize Catboost for better training time as done
with the AutoML approach, but this may impact per-
formance.

S CONCLUSION AND FUTURE
WORK

In this research, we have shown that by utilizing ge-
netic algorithms and feature generators along with
AutoML tools, new features can be generated that can
boost the performance of classifiers in most tested
cases. We have explored different generation ap-
proaches as well as different feature generators. From
the experiment, we found it is possible to limit the
training time of the feature engineering process so
that it has an acceptable time requirement. While the
impact of certain feature generators can have a much

457

SECRYPT 2023 - 20th International Conference on Security and Cryptography

Table 3: Generation Approach Accuracy and Balanced Accuracy Comparison.

458

Metric Accuracy Balanced Accuracy
Dataset Spambase | PhishingWebsites | CICMAL | UNSW | EMBER | Average | Spambase | PhishingWebsites | CICMAL | UNSW | EMBER | Average
Baseline 96.09 96.82 49.92 99.6 93.39 87.164 95.8 96.62 50.4 99.05 93.61 87.096
Singular 96.35 96.89 55.57 99.69 93.5 88.4 95.95 96.71 55.99 99.26 93.7 88.322
Group 95.92 96.89 59.62 99.68 93.15 89.052 95.92 96.64 60.01 99.26 93.38 89.042
Pool 95.74 96.89 59.01 997 934 | 88.948 9534 96.67 594 993 03.62 | 88.866
Incremental 96.52 96.85 57.85 99.69 93.4 88.862 96.13 96.62 57.77 99.26 93.62 88.68
Selection 95.57 96.09 59.46 99.65 92.96 88.746 95.19 95.85 59.85 99.19 93.19 88.654
Delta 97.91 97.07 59.01 99.7 93.33 89.404 97.69 96.83 59.4 99.29 93.55 89.352
Delta Incremental 96 98.84 59.73 99.7 93.32 89.518 95.72 98.72 60.11 99.29 93.53 89.474
Average 96.2625 97.0425 57.5213 | 99.6763 | 93.3063 95.991429 96.86285714 58.9329 | 99.2643 | 93.5129
Table 4: Generation Approach Comparison AUC Error Reduction.
Spambase | PhishingWebsites | CICMAL | UNSW | EMBER | Average
Baseline 0.9909 0.9964 0.8475 0.9999 0.9867 0.9643
Singular 4.84% 15.60% 41.45% 17.73% | 0.11% 15.95%
Group 5.97% 4.35% 25.90% 5.03% 1.62% 8.57%
Pool 2.93% 13.65% -4.70% 7.63% -0.27% 3.85%
Incremental 3.27% 14.17% 66.56% -4.69% 0.33% 15.93%
Selection -24.97% 5.86% 37.09% 1691% | -12.50% | 4.48%
Delta 73.12% 1.12% 9.72% -6.04% | -7.15% 14.15%
Delta Incremental | 78.07% -3.27% 74.35% 8.49% 0.00% | 31.53%
Average 17.91% 6.44% 31.30% 5.63% -2.23%
Table 5: Generation Approach Comparison Feature Engineering Times (seconds).
Spambase PhishingWebsites CICMAL UNSW EMBER Average
Singular 142.0343898 54.7885598 863.4260866 | 641.6705883 | 1970.88141 734.560207
Group 261.404541 114.6803781 1712215061 | 3868.684788 | 2443.341906 | 1680.065335
Pool 204.7417284 49.2225681 2143.900624 | 2250.823053 | 1802.228511 | 1290.183297
Incremental 286.8734678 83.3469802 2009.662164 | 1347.980646 | 1841.885889 | 1113.949829
Selection 87.9470995 29.2978291 685.3757697 | 1479.616277 | 688.2061595 | 594.088627
Delta 106.6486528 108.726423 1734.906475 | 10244.63185 | 1869.085556 | 2812.799792
Delta Incremental | 143.2637108 353.8791434 2853.830053 | 34302.44831 | 22799.88297 | 12090.66084
Average 176.1305129 113.4202688 1714.759462 | 7733.693645 | 4773.644629
Table 6: AutoML and Traditional Machine Learning Accuracy and Balanced Accuracy Comparison.
Metric Accuracy Balanced Accuracy
Model Method Spambase | PhishingWebsites | CICMAL | UNSW | EMBER | Average | Spambase | PhishingWebsites | CICMAL | UNSW | EMBER | Average
FLAML Baseline 96.09 96.82 49.92 99.6 9339 | 87.164 95.8 96.62 504 99.05 | 93.61 | 87.096
FLAML Singular 96.35 96.89 55.57 99.69 93.5 88.4 95.95 96.71 55.99 99.26 93.7 88.322
FLAML Incremental 96.52 96.85 57.85 99.69 93.4 88.862 96.13 96.62 57.77 99.26 93.62 88.68
Catboost Baseline 96.09 96.85 74.61 99.46 91.88 91.778 95.73 96.64 74.62 98.71 92.08 91.556
Catboost Singular 96.26 97.07 7479 99.41 | 91.94 [91.894 95.91 96.85 7479 9857 | 92.14 | 91.652
Catboost Incremental 96.18 96.78 74.56 99.47 91.82 91.762 95.78 96.59 74.57 98.72 92.03 91.538
Random Forest Baseline 95.57 96.67 76.65 99.59 88.1 91.316 95.07 96.42 76.65 99.04 88.58 91.152
Random Forest | _Singular 95.74 96.71 76.75 99.65 | 88.02 | 91374 95.25 96.49 76.75 99.2 8851 91.24
Random Forest | Incremental 95.48 96.71 76.83 99.7 87.75 91.294 94.96 96.49 76.84 99.34 88.26 91.178
Naive Bayes Baseline 82.71 58.25 50.11 83.27 50.95 65.058 84.5 63.48 50.55 84.48 54.18 67.438
Naive Bayes Singular 83.32 66.32 50.17 82.84 50.95 66.72 85.08 70.54 50.61 84.55 54.18 68.992
Naive Bayes | Incremental | 82.97 90.74 50.16 8849 | 5095 | 72.662 84.75 90.86 50.6 8438 | 5418 | 72954
Decision Tree Baseline 92.18 95.48 74.04 99.49 82.73 88.784 92 95.3 74.04 98.86 83.09 88.658
Decision Tree Singular 90.18 95.66 73.98 99.49 82.38 88.338 90.01 95.52 73.98 98.86 82.77 88.228
Decision Tree | Incremental 91.31 95.48 74.07 99.49 82.48 88.566 91.01 95.36 74.07 98.86 82.87 88.434
Table 7: AutoML and Traditional Machine Learning Comparison AUC Error Reduction.
Model Method Spambase | PhishingWebsites CICMAL UNSW EMBER Average
FLAML Baseline 0.9908689 0.996400354 0.847515322 | 0.999915559 | 0.9867202 | 0.964284058
FLAML Singular 4.84% 15.60% 41.45% 17.73% 0.11% 15.95%
FLAML Incremental 3.27% 14.17% 66.56% -4.69% 0.33% 15.93%
Catboost Baseline 0.9885191 0.997650741 0.846164499 | 0.999827772 | 0.9788337 | 0.962199151
Catboost Singular 2.61% -2.39% 0.06% -5.96% 2.73% -0.59%
Catboost Incremental 5.45% 0.09% -0.52% -1.17% 2.77% 1.32%
Random Forest Baseline 0.9859878 0.997714392 0.85519875 | 0.999854094 | 0.9654172 | 0.960834441
Random Forest Singular 1.91% 3.21% 3.07% 0.65% 2.62% 2.29%
Random Forest | Incremental 7.22% 2.33% 0.74% -10.05% 0.20% 0.09%
Naive Bayes Baseline 0.9468869 0.970074923 0.52782945 | 0.887433898 | 0.6608854 | 0.798622115
Naive Bayes Singular 2.26% 3.94% 0.00% 0.00% 0.00% 1.24%
Naive Bayes Incremental -0.01% 8.14% 0.00% 0.00% 0.00% 1.62%
Decision Tree Baseline 0.915775 0.977057193 0.739819588 | 0.988409814 | 0.8296209 | 0.890136486
Decision Tree Singular 1.82% -3.00% 0.31% 0.55% 0.51% 0.04%
Decision Tree | Incremental -2.44% -6.58% 0.43% 3.48% 0.65% -0.89%

Table 8: AutoML and Traditional Machine Learning Comparison Feature Engineering Times (seconds).

Automated Feature Engineering for AutoML Using Genetic Algorithms

Type Approach Spambase | PhishingWebsites CICMAL UNSW EMBER Average
FLAML Singular 142.0343898 54.7885598 863.4260866 | 641.6705883 | 1970.88141 | 734.560207
FLAML | Incremental | 286.8734678 83.3469802 2009.662164 | 1347.980646 | 1841.885889 | 1113.949829
Catboost | Singular | 286.7277985 1084.675602 4903.853139 | 9465.920835 | 8318.547868 | 4811.945049
Catboost | Incremental | 323.6878317 2189.710747 5479.15481 | 18088.45976 | 8020.990814 | 6820.400792

RF Singular 25.6818658 37.241105 514.3558151 | 2183.534547 | 278.2760238 | 607.8178714
RF Incremental | 35.674479 39.5919785 771.8287661 | 9963.641372 | 513.4612354 | 2264.839566
NB Singular 1.1899117 4.7808542 81.4093617 | 754.2586317 | 160.8956941 | 200.5068907
NB Incremental | 2.7123099 4.4873749 140.2050486 | 2982.596857 | 186.0150966 | 663.2033374
DT Singular 5.6072376 3.8393552 494.7855521 | 1823.740664 | 6042.433405 | 1674.081243
DT Incremental | 6.7526271 3.9819257 1820.335759 | 1653.910428 | 5636.691553 | 1824.334459

greater impact on overall feature engineering time.
We show that this approach is also able to support
traditional machine learning models, but the AutoML
tool benefits more from automated feature engineer-
ing. We also show that with the correct optimization,
the feature engineering time for AutoML can be less
on average than the traditional machine learning mod-
els.

The research, as presented, aims to present a proof
of concept of using genetic algorithms for feature en-
gineering with AutoML tools. Possible future work
areas include custom feature generators tailored to
each dataset or problem type. In addition, the in-
clusion of training time into the genetic search scope
would involve allowing the genetic algorithms to set
the training time of the AutoML tool while also in-
cluding the resting training as part of the fitness func-
tion. Finally, it would be possible to expand this re-
search by utilizing multiple tools in the training pro-
cess.

REFERENCES

Anderson, H. S. and Roth, P. (2018). EMBER: An Open
Dataset for Training Static PE Malware Machine
Learning Models. ArXiv e-prints.

Eldeeb, H., Amashukeli, S., and El Shawi, R. (2021). An
Empirical Analysis of Integrating Feature Extraction
to Automated Machine Learning Pipeline, pages 336—
344.

Galen, C. and Steele, R. (2020). Evaluating performance
maintenance and deterioration over time of machine
learning-based malware detection models on the em-
ber pe dataset. In 2020 Seventh International Confer-
ence on Social Networks Analysis, Management and
Security (SNAMS), pages 1-7. IEEE.

Jiao, Y., Yang, K., Dou, S., Luo, P., Liu, S., and Song,
D. (2020). Timeautoml: Autonomous representation
learning for multivariate irregularly sampled time se-
ries.

Katz, G., Shin, E. C. R., and Song, D. (2016). Explorekit:
Automatic feature generation and selection. In 2016
IEEE 16th International Conference on Data Mining
(ICDM), pages 979-984.

Kaul, A., Maheshwary, S., and Pudi, V. (2017). Autolearn
— automated feature generation and selection. In
2017 IEEE International Conference on Data Mining
(ICDM), pages 217-226.

Khan, P. W. and Byun, Y.-C. (2020). Genetic algorithm
based optimized feature engineering and hybrid ma-
chine learning for effective energy consumption pre-
diction. IEEE Access, 8:196274-196286.

Lashkari, A. H., Kadir, A. F. A., Taheri, L., and Ghor-
bani, A. A. (2018). Toward developing a system-
atic approach to generate benchmark android malware
datasets and classification. In 2018 International Car-
nahan Conference on Security Technology (ICCST),
pages 1-7. IEEE.

Lee, Z.-J., Lee, C.-Y., Chang, L.-Y., and Sano, N. (2021).
Clustering and classification based on distributed au-
tomatic feature engineering for customer segmenta-
tion. Symmetry, 13(9).

Liu, Y., Lyu, C, Liu, X., and Liu, Z. (2021). Automatic
feature engineering for bus passenger flow prediction
based on modular convolutional neural network. /IEEE
Transactions on Intelligent Transportation Systems,
22(4):2349-2358.

Moustafa, R. and Slay, J. (2015). A comprehensive data
set for network intrusion detection systems. School of
Engineering and Information Technology University
of New South Wales at the Australian Defense Force
Academy Canberra, Australia, UNSW-NBI5.

Noorbehbahani, F., Rasouli, F.,, and Saberi, M. (2019).
Analysis of machine learning techniques for ran-
somware detection. In 2019 16th International ISC
(Iranian Society of Cryptology) Conference on Infor-
mation Security and Cryptology (ISCISC), pages 128—
133. IEEE.

Parfenov, D., Bolodurina, 1., Shukhman, A., Zhigalov, A.,
and Zabrodina, L. (2020). Development and research
of an evolutionary algorithm for the formation of a
feature space based on automl for solving the prob-
lem of identifying cyber attacks. In 2020 Interna-
tional Conference Engineering and Telecommunica-
tion (En&T), pages 1-5.

Snow, D. (2020). Deltapy: A framework for tabular data
augmentation in python. Available at SSRN 3582219.

Tran, B., Xue, B., and Zhang, M. (2016). Genetic program-
ming for feature construction and selection in classifi-
cation on high-dimensional data. Memetic Computing,
8(1):3-15.

459

