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Abstract: Drowsy driving is one of the leading causes of traffic accidents. Some solution provides feedback when the 
driver is drowsy, however, few tackle the issue in a way that allows for portability and early prevision. This 
study focuses on drowsiness detection during driving. Wearable sensors are used, for a low-cost, portable, 
automated, and non-intrusive solution. The wearable sensors chosen for biosignal acquisition are Empatica's 
E4 wristband for heart activity acquisition and Brainlink Pro for brain activity. Features were mainly in the 
time domain and time-frequency, and algorithms, such as Nearest Neighbours, Radial Basis Function, Support 
Vector Machine, Decision Tree, Random Forest, Multi-layer Perceptron, Naive Bayes, and Logistic 
Regression were trained and validated through the use of a database developed for this study (11 adults with 
normal last-night sleep, and 2 without any last-night sleep). Participants answered Pittsburgh, and Satisfaction, 
Alertness, Timing, Efficiency and Duration questionnaires, after which photoplethysmography and 
electroencephalography physiological signals were acquired during driving in a simulation environment. The 
practice-run discrimination and individual classification had comparable results, both slightly above average 
(70 to 80%). The evaluation metric values showed that the discrimination of sleep-deprived exams yielded 
significantly better. This suggests that the proposed methodology is capable of classifying sleep deprivation 
and surpasses existing ones in its portability. 

1 INTRODUCTION 

In a growing society, sleep restrictions have a 
negative impact and risks from multiple factors. 
Driving activity places highly complex perceptual, 
physical, and cognitive demands on the driver 
(Sawyer et al., 2012). According to the American 
Academy of Sleep Medicine (Moser, 2009), being 
awake for at least 18 hours is the same as someone 
having a blood alcohol content (BAC) of 0.05%, 
while being awake for at least 24 hours is equal to 
having a blood alcohol content of 0.10%. This is 
higher than the legal limit (0.08% BAC) in the USA. 
Therefore, methods for detecting sleepiness in driving 
are under investigation, with promising results. It is 
widely known that monotonous or nighttime driving 
for long periods often lowers driving performance 
significantly. This contributes to it being one of the 
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leading causes of injuries and deaths from traffic 
accidents each year (Lin et al., 2014). Even though a 
third of our life is spent sleeping (Mancia, 1993), 
sleeping disorders are very common. 15 to 35% of the 
adult population complain of sleep quality 
disturbance (Breslau et al., 1996). Sleep disturbances 
are also related to higher rates of depression, anxiety 
disorders, alcohol abuse, or drug abuse. To measure 
sleep quality, subjective methodologies can be used, 
predominately through questionnaires. However, 
these methods are not enough, since they rely on the 
self-awareness and honesty of the subject. Then, 
objective measurements of sleep are required and thus 
enter polysomnography (PSG). These tests tend to be 
made in a specialized facility overnight. To find a 
response to drowsy driving, a change of paradigms is 
necessary, in which methods for sleep evaluation 
need to be substituted for the automatic detection of 
sleep disturbances or chronic sleep deprivation. This 
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can be achieved by integrating algorithms that also 
classify the circadian rhythm of a subject. A low-cost, 
portable, and non-intrusive solution is ideal, to 
facilitate everyday usage. The project Sono ao 
Volante 2.0 (Rodrigues et al., 2021) with the main 
objective of developing a prototype of an integrated 
data system that is non-intrusive and low-cost, allows 
sleep prevision while driving and detects disturbances 
or chronic sleep deprivation.  

2 BACKGROUND 

The contribution from this study focuses on the use of 
wearable sensors and intelligent algorithms, to 
conceive in detail the functional and technical 
architecture of a low-cost, non-intrusive and portable 
system for the detection of drowsy driving episodes. 
Therefore, concepts in sleep evaluation, driving 
monitoring, driving simulation, and signal processing 
practices must be reviewed. 

2.1 Sleep Evaluation 

Sleep evaluation typically involves monitoring and 
assessing an individual’s sleep patterns and quality. 
This can be done using subjective and objective 
measures. Alertness and reaction time vary according 
to the circadian rhythm, which makes it an important 
factor in this study. Living cells in animals have 
rhythmic variations in their function on a circadian 
cycle (Barret et al., 2019). If they are entrained, this 
process usually coincides with day-night light cycles 
in the environment. If they are not entrained, they 
become asynchronous from the light-dark cycle. The 
entrainment process is dependent on the 
suprachiasmatic nuclei, located above the optic 
chiasm, bilaterally. The sleep-wake cycle and the 
secretion of the pineal hormone melatonin are reliant 
on neurohormonal signals that participate in this 
entrainment. According to (Leung and Martinez, 
2020), circadian rhythm biomarkers include cortisol 
levels, peak expiratory flow, blood lipids, DNA 
damage, lipid peroxidation, protein oxidation, 
antioxidants, white blood cell counts, estradiol, 
progesterone, follicle-stimulating hormone, body 
temperature, blood pressure, and muscle strength. 
Cellular responses include inflammatory response 
and cellular trafficking, while some affected 
molecular processes include oxidative stress 
responses, DNA methylation, and histone 
modification. Only signals which are measured 
during polysomnography exams are considered. 

2.1.1 Subjective Methods  

Pittsburgh Quality Index (PSQI) Questionnaire is one 
of the most used questionnaires for sleep quality 
assessment (Mollayeva et al., 2016). The PSQI 
insides on sleep quality during the previous month 
(Buysse et al., 1989). This provides information about 
the night-to-night variations occurring in sleep 
quality, as well as the duration, frequency, and 
severity of abnormal behaviour duration and 
frequency over a long period. The PSQI is constituted 
of 19 self-rated questions and 5 questions rated by the 
bed partner or roommate. The self-rated questions 
focus on a vast quantity of factors relating to sleep 
quality, such as sleep duration, latency, frequency, 
and severity estimated for each specific sleep issue. 
The 19 items are grouped into 7 component scores, 
each weighted from 0 to 3. The seven scores are then 
added to each other to obtain the global PSQI score, 
with a range of 0-21. Higher scores are associated 
with worse sleep quality. The 7 components of the 
PSQI are subjective sleep quality, sleep duration, 
sleep latency, usual sleep efficiency, sleep 
disturbances, use of sleeping medications, and 
daytime dysfunction. Satisfaction, Alertness, Timing, 
Efficiency and Duration (SATED) Questionnaire is a 
more recent and reliable approach to subjective sleep 
quality assessment, SATED evaluates five 
dimensions of sleep health: 1) satisfaction, 2) 
alertness while awake, 3) timing, 4) efficiency, and 5) 
duration. Objective measures can be obtained from 
every level, excluding satisfaction (Benítez et al., 
2020). The total score ranges from 0 to 10 points, 
from worst to best sleep quality, respectively. 

2.1.2 Polysomnography and 
Electroencephalography 

Polysomnography (PSG) plays a critical role in 
confirming suspicions found in more subjective 
exams and helps guide further diagnosis of sleep 
disorders (Chokroverty and Bhat, 2014). PSG 
consists of the overnight recording of various 
physiological characteristics during sleep. These 
recordings allow evaluation of sleep stages, alertness, 
cardio-circulatory functions, respiration, and body 
movements. Electroencephalography (EEG), 
electrooculography (EOG), and electromyography 
(EMG) applied to the chin area are of particular 
interest for sleep staging (Berry, 2012). 
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2.2 Wearable Signal Acquisition 

User-acceptable and reliable EEG devices for real-
time monitoring are still a challenging proposition 
(Lin et al., 2014). Data acquisition from most EEG 
recording techniques requires skin preparation and 
conductive gel to reach optimal electrical 
conductivity at the interface. These procedures can be 
slow at the time of application and uncomfortable. 
Also, the gel may have to be reapplied, since the 
reading decays in quality as the gel dries out. 
Therefore, the EEG system needed must be a dry-
electrode, both wearable and wireless, facilitating 
prolonged and portable use. The system must also be 
able to capture the required brain signals for assessing 
wakefulness and sleep stages. According to (LaRocco 
et al., 2020), some promising consumer EEG 
wearable headsets with Bluetooth compatibility 
include InteraXon Muse, Neurosky Mindwave, 
OpenBCI, Emotiv Epoc and Insight. Even though 
there is a decent amount of commercial headsets 
available in the market, a large portion of them lacks 
the number of electrodes since they are more targeted 
for focus, relaxation, or gaming purposes. The ones 
with the better characteristics are Emotiv EPOC and 
Open BCI, but the price of the latter exceeds most 
consumer capabilities. Therefore, Emotiv EPOC 
seems to be the best candidate, as it offers a wide 
range of electrodes, which allow the recording of 
signals from different brain regions, all at an 
accessible price counting that the shipping taxes do 
not increase the cost too much. Regarding Brainlink 
Pro, it can be of interest to the proposed solution, 
since the Fp1-Fp2 channel has been used in literature 
for sleep stage scoring, nominally (Lucey et al., 
2016). This study obtained a poor sensitivity of 0.2 
for stage N1 due to the lack of occipital electrodes. 
The study also found that sleep latency and REM 
onset latency readings were compromised relatively 
to the PSG diagnosis, as well as sleep disturbance 
detection (e.g., sleep apnea). However, a strong and 
substantial agreement ratio with PSG measurements 
of 67% was verified overall, having particularly 
found that REM assessment, combined with N2 and 
N3 sleep and frontal slow wave activity can be well 
assessed through single-channel means. However, 
this study did not use automatic means for sleep 
classification, which introduced subjective factors, 
due to the use of a limited number of human EEG 
scorers, biased for standard PSG analysis. The 
Empatica E4 wristband has been the target of study 
for ECG applications that depend on heart rate (HR) 
measurements, with promising results (Ollander et 
al., 2016) (Milstein and Gordon, 2020) (McCarthy et 

al., 2016). The wristband derives heart rate variability 
(HRV) from Blood Volume Pressure (BVP), which is 
another designation for PPG. These studies also 
include electrical conductivity in the skin, peripheral 
skin temperature, and motion-based activity. 
Additionally, the E4 possesses internal memory that 
allows for recording of up to 36 hours, with a USB 
connection to a device needed to recover the data; or 
a Bluetooth streaming mode that allows for 
visualization of data in real-time. After recording, the 
data can be uploaded to the Empatica cloud service 
and visualized or imported through a web dashboard. 

2.3 Signal Processing 

The general structure found in Machine Learning 
(ML) systems for automatic sleep staging follows the 
phases of pre-processing, feature extraction, and 
classification. Initially, the user’s biosignals are 
recorded, followed by, a pre-processing stage, which 
includes filtering and artefact removal for signal 
enhancement. The resulting signals finally suffer 
feature extraction to return useful attributes for the 
classification stage (Aboalayon et al., 2016) (van 
Wouwe et al., 2011) (Guillodo et al., 2018). Some 
systems also include dimension reduction and feature 
selection, to generate new features with low 
dimensions derived from the input features. 

3 METHODOLOGY 

The proposed solution can provide human driver 
interaction with digital devices in the vehicle by 
translating the different biosignals into a diagnosis of 
sleep deprivation. The system flow consists of signal 
acquisition, followed by data processing, which 
includes pre-processing, feature extraction, feature 
selection and classification.  

3.1 Experimental Setup and Procedure 

The study was non-probabilistic and conducted 
during the morning, throughout two work weeks. 
Subjects were young adults and a driver’s license was 
mandatory. In the first session, subjects are asked 
how many hours of sleep they had the previous night. 
Non-sleep-deprived participants are asked if they 
want to leave their contact information for the 
scheduling of a non-mandatory second session, in 
which they are sleep-deprived. Participants answer 
both the Pittsburgh and SATED questionnaires 
during the first session. Volunteers read and sign an 
agreement of consent.  
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Figure 1: Experimental setup. 

The Logitech G27 driving wheel, gearbox, and 
pedals are connected via USB to the main computer, 
with Logitech’s Gaming Software Profiler running 
the default calibration sequence (Figure 1). The wheel 
provides proprioceptive feedback during simulation. 
A dual display screen is set up (Figure 2), with the 
larger one presenting the simulation environment to 
the volunteer and technician, and the smaller one 
presenting the script and a real-time raw EEG signal 
graph to the technician. The secondary screen is 
connected to the main computer via HDMI. 

 

Figure 2: Experimental scenario setup. 

Sequentially, a practice run and an exam run are 
performed, both with a 10-minute duration and within 
the same route. The practice run serves as a way for 
the volunteers to get used to the simulation-specific 
conditions, such as controls, as well as the route itself. 
Signal acquisition is performed during both runs. For 
both runs, the City Car Driving simulation software is 
run, and the free driving option and European Union 
traffic regulations are selected. To reduce the number 
of stressful situations presented to the subjects as well 
as sources of distraction, the optional settings are set 
to low traffic density (20%), quiet traffic, 0% 
pedestrian density, default vehicle, spring, clean 
weather, daytime, violation pop-ups disabled, fuel 
consumption, radio, and emergencies disabled. The 
view is locked in the first person. The route is the 

same for every run, to limit route-dependent 
variables, such as the number of turns and stops the 
volunteer would be required to make. It is also 
designed to last more than the acquisition’s 10-minute 
duration, as well as to provide a wide range of driving 
situations to volunteers (e.g., roundabouts, traffic 
lights, highway segments). The run finishes when 
Brainlink Pro’s script ended, regardless of where the 
subject is in the route. E4 wristband acquisition is 
finished manually soon after.  

3.2 Data Acquisition 

Before initializing the exams, Brainlink Pro’s 
acquisition is tested, to guarantee connection and 
stable acquisition. The technician inputs the desired 
label, with the following 30 seconds corresponding to 
the preparation stage, in which no signal is acquired 
nor recorded. Afterwards, the 10-minute acquisition 
is initiated (Figure 3), with a sampling rate of 60Hz, 
in which the timestamp, raw EEG, blink, attention, 
meditation, delta, high-alpha, high-beta, low-alpha, 
low-beta, low-gamma, mid-gamma and theta are 
recorded into a .csv file. For this study, only the raw 
EEG signal is used, due to the low frequency found 
in other possibly useful signals. Upon the end of the 
10 minutes, the new label is appended into a 
Labels.csv file, with both the filename and the 
corresponding label.  

 

Figure 3: Acquisition sequence for each run (2 times, for 
practice and exam). The white blocks represent simulation-
related activities, the dark-grey blocks represent Brainlink 
Pro script-based activities, and the light-grey block 
represents E4 wristband activity. 

Regarding E4 wristband acquisition, this is 
performed via E4’s inbuilt recording feature. The 
acquisition is initiated during Brainlink Pro script’s 
preparation stage. At the end of Brainlink Pro’s script, 
the acquisition is stopped manually. Later, the E4 
wristband is connected to a computer via USB, where 
recorded sessions are uploaded to Empatica’s cloud 
via the E4 manager software. Synced sessions can be 
searched by date, time and duration, as well as 
visualized and imported from the E4 connect website. 
The imported .zip file, corresponding to the desired 
session, contains a .csv for each of Empatica’s 
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recorded signals: accelerometer, blood volume 
pressure (BVP), electrodermal activity, heart rate, 
interbeat interval and temperature. Each file also 
includes the sampling rate for the respective signal in 
the first line. For the purposes of this study, only 
BVP, with the PPG signal, is used. 

3.3 Signal Processing Methods 

For this study, the signal processing algorithms were 
performed through Python 3.7, with the PyCharm 
IDE and proper libraries for data pre-processing, 
feature extraction, feature selection, classification 
and evaluation metrics. Three optional classification 
experiment modes were selected: Practice Run 
Discrimination (in which the labels are “Practice” or 
“Exam”), Individual Classification (in which the 
labels are “Individual” or “Other”) and Sleep 
Deprivation Detection (in which the labels are “Exam 
SD”, for sleep-deprived exams, or “Exam”, for non-
sleep deprived exams). 

3.3.1 Pre-Processing 

Before pre-processing can be applied, the data from 
obtained from the two sensors (BVP/PPG from the E4 
wristband and raw EEG from Brainlink Pro) must be 
synced time-wise. Following time syncing, the 
signals are divided into 30-second duration epochs, in 
order to obtain more samples from the limited dataset, 
as well as samples that are more manageable for 
analysis. In a preliminary state, 10-second duration 
epochs were applied, but this would limit wavelet and 
heart rate feature extraction further on. Therefore, 
from an intersecting pair of signals with roughly 9.5-
minute duration, roughly 19 (9.5×2) epochs can be 
obtained. It is worth noting that labels are given to 
each epoch according to the file from which the epoch 
originates. Due to unexpected acquisition issues (low 
sampling frequency) for some Brainlink Pro sessions, 
pairs of epochs in which raw EEG frequencies below 
30Hz are dominant are discarded. Then, the 
remaining raw EEG epochs are resampled to 30Hz. 
After syncing and epoching, the actual pre-processing 
can be performed for each epoch. Firstly, the raw 
EEG mean is set to zero. Bandpass filters are applied 
to both the BVP and EEG signals, with ranges 
0.6875-10Hz and 4- 30Hz, respectively. No 
movement-noise filtering is performed at the current 
iteration. 

3.3.2 Feature Extraction and Selection 

After extraction, the complete feature matrix was 
normalized column-wise, to the range 0-1. A custom-

made function for 1-valued statistic extraction from a 
1D array is implemented in several stages of data 
processing. This function includes the sum of all 
values, the value closest to the mean, values closest 
to the quartiles, zero-crossings, standard deviation, 
kurtosis, range and entropy. The statistics function is 
first applied to the pre-processed EEG and BVP. 
Wavelet feature extraction is also performed in both 
pre-processed epochs. Two main types of wavelet 
transform are computed: a three-level DWT and a 
morlet CWT. For the three-level DWT, types cycle 
between Daubechies 4, Daubechies 20, Coiflet 3, 
Haar, Symlet 4, and Discrete Meyer. Boundry 
conditions cycle between zero-padding, 
symmetrization and smooth padding. For the morlet 
CWT, widths cycle between the values 10, 15, 48, 72, 
80 and 120. The wavelet transforms output 
coefficient arrays, which are then passed through the 
1D statistics function. For the extraction of the heart 
rate from the pre-processed BVP, the signal is 
initially inverted, and peaks are found with a distance 
higher than 37. Peaks are then counted for the 30-
second interval. Power Spectral Density feature 
extraction is per- formed in the pre-processed BVP 
and EEG signals. Welch, periodogram, and 
multitaper is extracted, all using the default function 
parameters. Afterwards, statistics are extracted from 
the array of powers. For the entropy feature 
extraction, functions are applied to the pre-processed 
epochs, which allows for the extraction of sample, 
Shannon, and spectral entropy, with default function 
parameters. The selected feature matrix is converted 
to a data frame. The correlation matrix is then 
obtained, consisting of a matrix in which each value 
is the absolute correlation between the row feature 
and the column feature. If any correlation value in a 
column is inferior to 0.95, that column’s index is 
added to a list. The corresponding columns are 
dropped from the initial data frame. Afterwards, from 
this matrix, the 30 best features are selected through 
the Chi-squared test. Thus, the 1893 extracted 
features were reduced to the 30 best. 

3.3.3 Classification Algorithms and 
Evaluation 

The classifiers used are Nearest Neighbors, Radial 
Basis Function (RBF) SVM, Gaussian Process, 
Decision Tree, Random Forest, Multi-layer 
Perceptron, AdaBoost, Naive Bayes, QDA, and 
Logistic Regression. The defined constant initial 
conditions are the RBF kernel and one vs one decision 
function shape for the SVM, alpha equal to 1 and a 
maximum number of iterations of value 2000 for the 
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Multi-Layer Perceptron, the random state value of 0 
for the AdaBoost, and binary class mode (one versus 
rest) for the Logistic Regression. The data is split into 
train and test sets, after which a hyperparameter grid 
search is performed. Finally, each model is trained, 
and fitting to the test data is performed, to obtain a 
vector of predicted labels for each model. The report 
includes precision, recall and F1-score for each given 
class, as well as the accuracy of the classifier. The 
macro average (averaging the unweighted mean per 
label) and weighted average (averaging the support-
weighted mean per label, i.e., the mean considering 
the real difference between class sample sizes) of the 
previous four values are then calculated. The ROC-
AUC score is computed and added to the 
corresponding final report. 

4 RESULTS 

All the participants were young adults with driver’s 
licenses, aged 21 to 24 years old. For the non-sleep 
deprived group, there were 11 participants in total, 9 
male and 3 female. The education level was mostly 
graduates, 8 out of 11, with the 3 remaining having 
completed high school. None of the participants were 
previously diagnosed with any chronic sleep diseases. 
Approximately half of the volunteers with good sleep 
quality claimed to have drunk coffee less than 12 
hours before the experiment. The normal sleep group 
presented a PSQI mean value of 6.73 and a standard 
deviation of 2.34, while SATED scores had a mean 
value of 5.68 and a standard deviation of 1.94. At 
their extremes, these values are within the range of 
average sleep quality found in (Manzar et al., 2016) 
and (Dalmases et al., 2018), for PSQI and SATED 
scores respectively. The amount of sleep during the 
night previous to the exams had a mean value of 7 
hours, with a standard deviation of 1.5 hours. 
Regarding the sleep-deprived dataset, data was 
obtained from 2 young adults, a female with PSQI of 
12 and SATED score of 1.5, and a male with PSQI of 
7 and SATED score of 3. As expected from bad sleep 
quality individuals, PSQI was higher than normal and 
SATED was below the normal in the female subject, 
while the male subject had normal PSQI and bad 
SATED. Both individuals were awake for more than 
24 hours. None of these individuals drank coffee 12 
hours previously to the experiment. Due to the low 
amount of sleep-deprived subjects, 10 exams were 
performed by the male individual: 5 under sleep 
deprivation and 5 under a normal sleep schedule. 
Normal sleep sessions were used for the classification 
performed in a single individual. This classification 

served as a comparison to the classification 
performed with the complete non-sleep-deprived 
group versus the sleep-deprived group. 

4.1 Classification Experiments 

Regarding the practice (“Practice”) vs exam 
(“Exam”) classification nearly all classifiers reached 
65% averages and 70% ROC AUC, excluding 
Decision Tree and QDA. The best classifier was 
AdaBoost, with averages and accuracy above 70%, 
and 76% ROC AUC value. Closely behind were the 
MLP, Random Forest and Gaussian Process, all with 
the same ROC AUC of 76%, but worse means and 
accuracy, slightly below 70%. The Decision Tree 
classifier was the worst performing in this 
classification, with the most discrepancy between 
classes. The values of precision, recall and F1-score 
were, respectively, 71%, 26% and 38% for the exam 
data, and 56%, 90% and 69% for the practice data. 
The macro averages were 63%, 58% and 53% with 
the weighted averages being nearly identical. The 
accuracy and ROC AUC for this classifier had a value 
of 59%. For all classifiers, the “Individual” class had 
more precision than recall, with the opposite being 
found in the “Other” class. F1-scores were better for 
the “Individual” class (except in Naive Bayes). The 
best-performing classifier was Random Forest, with 
84% AUC and 78% accuracy and averages. MLP, 
Gaussian Process, Logistic Regression and Nearest 
Neighbors all attained ROC AUC of 80%, accuracy 
of 70-76% and averages in the range 70-78%. The 
worst performing classifier was QDA, with 68 ROC 
AUC, accuracy and averages between 65-70%. 

4.2 Sleep Deprivation Detection 

For the sleep-deprived exam (“Exam SD”) vs non- 
sleep deprived exam (Exam) classification, the 
discussed results are shown in Table 1. Overall, the 
“Exam SD” class achieved better recall than 
precision, with the opposite happening to the “Exam” 
class. F1-scores were overall better in the “Exam” 
class. The obtained results for this classification were 
the best of all three datasets and labels. The best 
classifier was Random Forest, with 95% ROC AUC, 
and accuracy and averages in the range of 87-89%. 
Closely behind were Naive Bayes, AdaBoost, MLP 
and Logistic regression, with ROC AUC 90- 94%, 
accuracy and averages between 78% and 89%. The 
worst classifier was the Decision Tree, with 78% 
ROC AUC and 76-79% accuracy and averages. 
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Table 1: Sleep deprivation detection results. 

 

5 DISCUSSION 

Volunteers found the experience was close to reality 
regarding control and perception, and the sensors 
were comfortable to use. The main complaints 
presented were about the sensibility of the wheel 
being too high and the pedals being difficult to step 
on, compared to real vehicles. The low amount of 
volunteers pose a threat to the statistical validity, 
mainly when it comes to gender inequality and age 
range, as well as the very low amount of sleep-
deprived individuals. Further work should invest in 
obtaining more volunteers. The sleep questionnaire 
results support that nearly study participants have 
sleep habits corresponding to a young adult 
population, with some scoring worse than the norm. 
Regarding classification results, the practice-run 
discrimination and individual classification had 
comparable results to each other, both slightly above 
average (70 to 80%) regarding their evaluation metric 

values. When it comes to the practice discrimination, 
results proved that while the simulation environment 
had some impact on the performance of at least some 
subjects, this was somewhat reduced by the 10-
minute practice sequence. Regarding the individual 
classification, results do not allow for completely 
discarding the effect of the low sample size in the 
sleep-deprived population. However, the results 
found in the discrimination of sleep-deprived exams 
were significantly better than other dataset-label 
experiments, which leads us to believe that sleep 
deprivation classification is possible with the 
proposed methodology with very good evaluation 
metrics to back them up (above 90%). The best-
performing classifiers were Random Forest, Naive 
Bayes, AdaBoost, MLP and Gaussian Process.  

6 CONCLUSIONS  

Polysomnography and marketed solutions for drowsy 
driving assessment have validated objective results, 
some of which are derived from physiological 
signals. However, these solutions lack the portability 
that a solution integrating wearable devices offers. 
The proposed system integrates commonly used 
algorithms in PPG and EEG-based Machine 
Learning, obtaining promising results when it comes 
to the detection of last-night sleep deprivation. The 
sensors are costly, particularly the E4 wristband, but 
it is expected that they become cheaper as research in 
the field progresses. Overall, the proposed solution 
far surpasses the current solutions in portability and 
day-to-day applicability. Future work should apply to 
other kinds of sleep deprivation, such as chronic sleep 
deprivation. Also, it should implement the prediction 
of the sleep-deprived state through monitoring of the 
circadian rhythm. Integration of the sleep 
questionnaires with the objective sleep evaluation 
methods may be of interest for a future circadian 
rhythm monitoring system. Also, movement noise 
removal must be applied in the PPG signal, to provide 
a good basis for the interbeat interval, heart rate, and 
heart rate variability computation. 
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