
OCScraper: Automated Analysis of the Fingerprintability of the iOS API

Gerald Palfinger1,2 a

1A-SIT Secure Information Technology Center Austria, Seidlgasse 22 / Top 9, 1030 Vienna, Austria
2Institute of Applied Information Processing and Communications (IAIK), Graz University of Technology,

Inffeldgasse 16a, 8010 Graz, Austria
fi

Keywords: Fingerprinting, Smartphones, Apple iOS, Automatic Detection.

Abstract: Tracking has allowed application providers to offer the vast majority of their applications for free as it allows
them to target advertising. However, tracking has proven to be an invasion of user privacy. To counter this,
operating system vendors have removed access to unique identifiers in their APIs. Nevertheless, applications
can still combine other non-unique data from the device to create a unique fingerprint. Until now, it has not
been well understood what kind of information is available to do so on iOS. This paper addresses this gap
by introducing the OCScraper framework, a tool for automatically discovering fingerprintable information
sources on iOS devices. OCScraper does this by systematically crawling the API of the operating system.
In the process, it creates objects on which methods are called and properties are queried. In our evaluation,
we show that OCScraper can successfully invoke a large number of methods and retrieve the majority of
parameters. We discover hundreds of robust information sources that provide distinct bits of information
which can be used to create a cross-application fingerprint.

1 INTRODUCTION

Extensive tracking of users across different mobile
applications is common on both Android and iOS
(Kollnig et al., 2022a). This tracking is used by ap-
plications and their advertisement providers to learn
more about their users and serve better targeted ad-
vertisements. With over 90% of applications being
offered for free, the leading application monetization
method worldwide are such in-application advertise-
ments1. While this allows application vendors to of-
fer their applications for free to the users, the tracking
used to serve relevant advertisements is highly detri-
mental to the users’ privacy (Shklovski et al., 2014).
Furthermore, it may also violate the users’ data pro-
tection rights, such as those mandated by the Gen-
eral Data Protection Regulation (GDPR) of the EU.
In order to combat this, Apple has taken measures
in recent versions of iOS with the intention of limit-
ing the tracking conducted by third-party applications
and their tracking libraries. Developers now have to
request user cosent using the App Tracking Trans-

a https://orcid.org/0000-0001-6633-858X
1https://www.statista.com/topics/983/mobile-app-

monetization/

parency framework2. Additionally, they have to de-
clare what types of information they use to facilitate
tracking. However, while these changes technically
prevent the collection of the unique advertising iden-
tifier if no consent has been given, a recent study by
Kollnig et al. (2022b) has shown that a large num-
ber of applications still collect or even start collecting
other data from the operating system which can be
used to create a fingerprint of the device. With the
restriction on unique identifiers the technique of fin-
gerprinting devices and users thus is becoming more
relevant. For instance, in browsers where there are no
unique advertising identifiers that can be used to iden-
tify users, fingerprinting is already prevalent (Iqbal
et al., 2021). In essence, browser fingerprinting aims
to collect as much unique data about the environ-
ment as possible to distinguish users. Kurtz et al.
(2016) have shown that it is possible to apply this con-
cept to iOS devices by using hand-picked informa-
tion sources from the API to re-identify users. How-
ever, to date there exists no systematic approach to de-
tect such information sources on iOS. To fill this gap,
we present OCScraper, a framework for automatically
detecting fingerprintable information sources on iOS.

2https://developer.apple.com/documentation/
apptrackingtransparency

Palfinger, G.
OCScraper: Automated Analysis of the Fingerprintability of the iOS API.
DOI: 10.5220/0012089600003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 433-441
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

433



By applying it in different case studies, we have iden-
tified hundreds of sources which provide information
suitable for fingerprinting. In addition, our approach
was designed to show that the sources found are ro-
bust across device restarts and reinstallations, and can
be used for cross-application tracking.

1.1 Approach

In order to collect data from the operating system API
and in turn identify robust, fingerprintable informa-
tion sources suitable for tracking across application
vendors, we take the following steps:

1. We create a smartphone application to systemati-
cally collect data that are available to applications
via the API. Making use of reflection, the appli-
cation instantiates all classes on the device. For
each of the created objects, it invokes all instance
methods of the class and stores the return value.
Furthermore, it retrieves every property of the in-
stantiated classes. Finally, using the class descrip-
tor, it calls each class method.

2. Using the smartphone application, we collect the
data from multiple devices. To simulate two dif-
ferent application vendors collecting the data, we
run the smartphone application twice, using dif-
ferent developer profiles and bundle identifiers.
Afterwards, the framework prepares the gathered
data for cross-device analysis by cleaning and for-
matting it.

3. Finally, the data are analysed to detect fingerprint-
able information sources in the API. First, data
of the same method or property which differ be-
tween the two runs on the same device are dis-
carded, as these are not robust across different ap-
plication vendors. Afterwards, the remaining data
are compared across devices. Data sources which
differ between the devices are considered finger-
printable.

1.2 Contributions

The contributions of this paper are as follows:

1. We have created a framework called OCScraper
which systematically iterates through the iOS
API and automatically creates objects, reads their
properties, invokes instance and class methods
and stores the received return values.

2. We evaluate the framework in terms of its cover-
age of the operating systems API. We show that
the framework covers a large number of the meth-
ods and properties.

3. Using OCScraper, we dump the information from
the API on different devices. By applying our au-
tomatic analysis framework, we evaluate which
information sources can be used to fingerprint a
device. Afterwards, although it is not necessary
to use the discovered information sources for fin-
gerprinting, the identified methods and properties
are categorised to illustrate what kind of informa-
tion sources are available.

2 BACKGROUND

In the following section, we will discuss the differ-
ences between the two main programming languages
available on the iOS operating system that are rele-
vant to our approach. Subsequently, we will discuss
related work.

2.1 Swift vs. Objective-C

Swift, the newer option for developing applications
on iOS, has very limited support for reflection. This
support is provided by the Mirror API3. While it is
possible to introspect values stored in objects, structs,
and similar types, the API does not allow to create
such objects or invoke methods on them. Therefore,
Swift does not provide the tools necessary to create
a comprehensive framework for querying data from
the operating system. Objective-C, on the other hand,
has a rich reflection API, which allows to query in-
formation about the API itself, dynamically create
class objects, and invoke methods on those objects at
runtime. Most of the reflection functionality is pro-
vided by the Objective-C runtime and its root class
NSObject4. Due to this feature richness, we opted
to use Objective-C to create our framework. Fortu-
nately, both languages are interoperable, meaning it
is possible to call Swift code from Objective-C and
vice versa. To support this, the @objc qualifier has
to be added to the Swift class. When this qualifier is
present, the compiler will automatically generate the
required headers.

2.2 Related Work

Mayer (2009) showed that it is possible to identify
users by leveraging the “quirkiness” of browsers. This
principle, now known as browser fingerprinting, was
investigated by Eckersley (2010), who conducted a
large-scale study showing that browser fingerprinting

3https://www.swift.org/blog/how-mirror-works/
4https://developer.apple.com/documentation/objectivec

SECRYPT 2023 - 20th International Conference on Security and Cryptography

434



is feasible. Since then, various features of modern
browsers were exploited to track users. For instance,
it was shown that extensions (Starov and Nikiforakis,
2017), or fonts (Fifield and Egelman, 2015) provide
fingerprintable information. For a broader picture of
the plethora of browser fingerprinting methods, we re-
fer to a survey by Laperdrix et al. (2020).

Unlike browsers, smartphone fingerprinting has
received less scrutiny, largely because unique iden-
tifiers were more readily available until recent ver-
sions of iOS and Android. In particular, most of the
existing work has either relied on manually select-
ing a small number of information sources to finger-
print devices, or has focused on the Android operat-
ing system. Kurtz et al. (2016) manually selected 29
information sources from which they collected data.
Their experiments showed that by combining them
it was possible to re-identify devices with high accu-
racy. Similar to this study, Wu et al. (2016) found that
uniquely identifying a device using a combination of
38 non-unique identifiers is also possible on Android.
To re-identify users they used and compared different
algorithms.

In contrast to the previous two studies, where a
set of information sources was chosen by the authors,
Torres and Jonker (2018) looked at the types of infor-
mation used by tracking libraries on Android. To find
these libraries, they used the sources in (Wu et al.,
2016) and extended it by extracting the sources used
by two known fingerprinting libraries. Based on these
sources, they used static analysis to find six similar
libraries.

As a more systematic approach, Palfinger and
Prünster (2020) designed a framework to collect data
from the Android API. The framework obtains data
from fields, methods, and the Android-specific con-
tent providers. They showed that a large number of
the detected sources provide fingerprintable informa-
tion. However, the framework is only applicable to
the Android operating system. As a result, the ques-
tion of which information sources are available for
fingerprinting on iOS remained unanswered. In this
paper we seek to answer this question by designing
an automated framework adapted to the specificities
of iOS. The following chapter describes the method-
ology.

3 METHODOLOGY

OCScraper systematically traverses the iOS API to
retrieve information from the operating system. The
framework is divided into three main components, the
backend, the smartphone application, and the analy-

sis component. Essentially, the smartphone applica-
tion retrieves information about the API via reflection,
automatically calling methods and reading properties.
However, due to the low-level nature of Objective-C,
failed invocations can lead to the termination of the
smartphone application. To alleviate this issue, we de-
signed a backend application which restarts the smart-
phone application if necessary. In addition, it also re-
trieves some specific information in advance that is
not available during runtime. Finally, the backend
transfers the collected data from the smartphone ap-
plication for analysis. Once the collection process is
complete, the analysis component sanitises and struc-
tures the collected data and analyses it across devices
to identify fingerprintable information sources.

3.1 Backend

Parser. Even though Objective-C provides a very
powerful reflection API, as outlined earlier, it lacks
one capability to successfully invoke some of the
methods which require parameters. While it is pos-
sible to get a list of the available methods of a class,
their names and, unlike Android, even the names of
parameters, it is not possible to get the exact type of
objects. Therefore, the framework cannot detect what
type of object it needs to create in order to success-
fully invoke a method. To solve this problem, we
gather the required information from the header files
of the SDK. We created a small parser that collects
the types of all method parameters. In particular, it
traverses all the header files. When it encounters an
interface or a protocol, it collects all the defined in-
stance and class methods. For each of the methods it
encounters, it parses all of the parameters, including
their name, position, and type. This information is fi-
nally stored in a structured list. The list is then used
by the smartphone application to create an object of
the correct type. The parsing only needs to be done
once for each new SDK release to account for new
methods in the API.

Control Application. The data collection uses a
tethered approach, meaning that the collection pro-
cess is started and controlled by the control appli-
cation on the desktop. This is necessary because,
although Objective-C nowadays has automatic refer-
ence counting (ARC) for objects, it is not a fully man-
aged language like Java or Kotlin on Android. For ex-
ample, while some methods of the API throw an ex-
ception which can be caught by the smartphone appli-
cation, others just terminate the application. Further-
more, instantiating private classes or calling private
methods may cause the application to be terminated

OCScraper: Automated Analysis of the Fingerprintability of the iOS API

435



by the operating system. Therefore, class instantia-
tions, method invocations, or property retrievals made
by the smartphone application could create a state
from which it cannot recover itself. Thus, the con-
trol application on the desktop monitors the execution
state of the smartphone application.

To control the device, the control application uses
the open-source libimobiledevice library5. Before
starting the collection process, the control application
first installs the latest version of the smartphone ap-
plication on the device. Afterwards, it starts mon-
itoring the output of the system log of the attached
device. Once this setup is complete, the control ap-
plication launches the smartphone application. Using
the library, the control application can detect when the
application has been closed by the operating system.
If this happens, the control application checks which
class instantiation, retrieval of a property, or method
invocation was the cause. It extracts this informa-
tion from the monitored system log by searching for
the last instantiated class, invoked method, or queried
property. It then adds the offending class, method, or
property to a blocklist. This updated blocklist is re-
trieved by the smartphone application the next time
it is launched. Finally, the control component restarts
the smartphone application and continues its monitor-
ing of the output via the system log.

In addition to force closures, the control applica-
tion detects whether or not the smartphone applica-
tion is still reading properties and invoking methods
correctly. If this is not the case for a predefined pe-
riod of time, the control application restarts the smart-
phone application. This can happen when the smart-
phone application invokes a method which waits for
something. For example, this method could be wait-
ing for user input, network packets, or simply trying
to acquire a lock. Therefore, before the application is
restarted, the control application adds the last invoked
method to the blocklist. This prevents the offending
method from being called again and allows the smart-
phone application to proceed with the next method.

This process is repeated until all classes of the
API have been instantiated and all their properties re-
trieved and methods called. Thereafter, the results of
the invocations are collected from the monitored sys-
tem log.

3.2 Smartphone Application

The data collection is performed using an application
on the smartphone. It collects the data provided by
the operating system API, which is available with-
out requiring any user interaction or permission. In

5https://libimobiledevice.org/

particular, the data collection application runs with-
out any special entitlements6 or permissions. For this
purpose, methods are called and the return values are
collected. The contents of the properties of the class
are also retrieved and stored.

Initialisation. Once the application has been started
by the control application, it fetches and parses the
blocklists for classes, methods, and properties. In ad-
dition, it retrieves the name and index of the class
at which to continue recording. The first time it
runs, the blocklists are empty and it begins at the first
class. After this initialisation procedure, it starts the
actual recording process. First, it gets all the avail-
able classes. For each of the classes derived from
NSObject, an object is allocated and initialised. This
object is then used to read all the properties and then
invoke all the instance methods on it.

Property Retrieval. To retrieve the properties of
the object, a list of all properties is first retrieved. For
each property descriptor in the list, the name of the
property is fetched. To read the property by its name,
the method valueForKey is called on the class ob-
ject. The return value of this method is the value of
the property. This value is then stored for the anal-
ysis. To store it in a readable form, the type of the
property is required. This type is determined using
property_getAttributes and then converted into
the form required for the output. The value is finally
written to the system log.

Method Invocation. Once all the properties have
been retrieved, the methods of the class are called. For
this purpose, similar to the properties, the list of meth-
ods of the class is retrieved. This list contains method
descriptors. These allow to subsequently retrieve the
selector of the method which is in turn used to get
the method signature object. The method signature is
then used to create an NSInvocation object. Further-
more, if the method takes parameters, these are cre-
ated first. To create these objects, the type of the pa-
rameter must first be determined. This is done by re-
trieving the type encoding of each parameter from the
previously created method signature. For instance,
the type encoding for the primitive type integer is i,
for an integer array with three integers [3i], and for
an Objective-C class object @. While most arguments
can be created using this description, we need more
information to successfully create an object type. For
this purpose we use the information previously parsed

6https://developer.apple.com/documentation/
bundleresources/entitlements

SECRYPT 2023 - 20th International Conference on Security and Cryptography

436



by the parser component. Thus, when the application
encounters a class object, it queries the pre-parsed in-
formation using the method signature and the parame-
ter index. As the pre-parsed information includes the
object type, the smartphone application can proceed
to create the correct object instance for the argument.
Each of the created arguments is finally added to the
NSInvocation.

Before the NSInvocation is used to invoke the
method, the target must be set. Depending on the type
of method, a different target has to be specified. In
Objective-C, there are two types of methods — in-
stance methods and class methods. Instance methods,
as their name suggests, require an instance object of
the class to be invoked on. In contrast, class methods
can be invoked on the class descriptor directly and
therefore do not require an instance object. Thus, de-
pending on the type of the method, we set either the
instance object or the class itself as the target of the
invocation. Finally, the NSInvocation is used to in-
voke the method. Afterwards, the return value is writ-
ten to the system log. As with the properties, the type
of the return value is required. The type is retrieved
using the method_getReturnType method and then
converted to the required form. This process is re-
peated for each method. Once all of the methods of
the current class have been invoked, the framework
continues with the next class.

The smartphone application does not invoke meth-
ods that return nothing, i.e. have a void return type.
It also skips certain methods which are detrimental
to the collection process. These include methods that
deallocate the current object. In addition, it also skips
methods which would cause undefined behaviour by
re-allocating the current class. Finally, it also skips
methods that are part of the reflection API, or meth-
ods inhibiting the collection process, for example, the
method lock.

3.3 Data Analysis

Preprocessing. While the data is collected by the
smartphone application, all results are written to the
system log. The control application stores this out-
put unchanged. In the stored log, all output from the
smartphone application is retained, including, for ex-
ample, output from called methods. Therefore, the
collected data has to be cleaned before the analysis.
This is done by our analysis application. It collects
the return values from the system log and discards su-
perfluous output. Additionally, it converts the results
into a predefined format. These steps allow the results
to be compared automatically.

Data Sanitisation. Similar to the approach of
Palfinger and Prünster (2020), the data collection pro-
cess is performed twice on each smartphone. In be-
tween, the smartphone application is removed and
the device is restarted. After removal of the appli-
cation, it is reinstalled with a different signing cer-
tificate and bundle identifier. The second collection
phase is then started. This elaborate process is per-
formed to simulate the collection of data by applica-
tions from different developers. This eliminates those
sources of information that are different between two
distinct applications and therefore not suitable for cre-
ating a cross-application fingerprint. For instance,
this eliminates false positives such as the applica-
tion’s installation directory, which contains a random
value that is different for each application. Addition-
ally, developer-specific identifiers, such as the prop-
erty UIDevice.identifierForVendor7 are also ex-
cluded using this approach. Finally, this measure also
eliminates all temporary values that could change due
to an application restart or a device restart. All re-
maining values, i.e. those that do not differ between
the two runs on the same device, are then stored.
These are collected for all devices examined and com-
pared in the next step, the analysis.

Analysis. The collected, cleaned and ordered val-
ues of a device are compared with all other examined
devices using the analysis framework from Palfinger
and Prünster (2020). Methods that could only be in-
voked on one device, or properties which could only
be retrieved on one device, are removed as no com-
parison value is available. All remaining values, i.e.
those that could be retrieved on at least two devices,
are then automatically compared. All values that are
identical on all analysed devices are removed. All val-
ues that differ on at least one device are retained and
their source is flagged as potentially fingerprintable.
These are then manually reviewed and categorised for
illustrative purposes the next chapter.

4 EVALUATION

In the following section, we show how many prop-
erties can be retrieved and how many methods can be
successfully invoked using our approach. Afterwards,
we illustrate our evaluation design. Finally, we show
the results we obtained using OCScraper in our case
studies.

7https://developer.apple.com/documentation/uikit/
uidevice/1620059-identifierforvendor

OCScraper: Automated Analysis of the Fingerprintability of the iOS API

437



4.1 API Coverage Analysis

Since our framework is fully automated, the number
of successfully invoked methods is important to eval-
uate its effectiveness. To investigate the coverage we
used an iPhone 11 running iOS 16.3.1 (latest at time
of writing).

Methods. In total, the device has 14,381 classes
which can be detected via reflection. These classes
contain 263,104 instance and class methods. Some of
these methods had to be skipped. In particular, 9,363
were omitted as these methods would deallocate the
current class object, making it impossible to invoke
any further methods on that object. 124 methods
were not invoked because they would lock a synchro-
nisation primitive or sleep the current thread, which
would halt the collection process. Another 365 meth-
ods were ignored as they would just cast the current
object to a different type. Additionally, 13,841 meth-
ods were not called because they would re-allocate or
re-initialise the current class, which would potentially
lead to memory problems. 150 methods were skipped
since they are part of the reflection API. 1,796 occur-
rences of the method copyWithZone were omitted as
they are deprecated in modern Objective-C using au-
tomatic reference counting. Finally, another 79,351
methods were not called due to them providing no re-
turn value. This leaves a total of 158,114 methods
that are potentially relevant and could return finger-
printable information. This therefore represents the
base number of methods that OCScraper will attempt
to call.

Of the 158,114 relevant methods, 437 could not be
invoked because the corresponding class does not de-
rive from NSObject. Therefore, these classes lack im-
portant reflection functionality. 6,982 methods were
omitted because the associated class object could not
be created, and have therefore been blocklisted. Rea-
sons for this include missing parameters or super-
classes that are not intended to be instantiated directly.
A further 12,463 methods could not be invoked be-
cause an exception was thrown while the correspond-
ing object was created. Additionally, 3,396 methods
were skipped as the created class object was null. A
total of 6,473 methods were skipped because they
caused problems and were hence blocklisted by the
controller, for example due to missing entitlements or
memory issues. In addition, exceptions were thrown
by 4,218 of the invoked methods. Finally, 14,919
methods failed to be invoked because arguments were
not created successfully. This can occur, for example,
if the class name was not known because the class
was not part of the SDK header files. This results

in a total of 109,226 methods being invoked success-
fully, representing approximately 69% of the relevant
methods.

Properties. A total of 74,166 class and instance
properties were found using reflection. 7,168 of the
instance properties could not be retrieved because the
corresponding class object could not be created. Sim-
ilar to the method invocations, this could be due to
exceptions during object creation, because the class
is blocklisted, because the instanced object is null,
or if the class does not support reflection. Another
2,568 properties were omitted because an exception
was thrown during retrieval of the property. Further
856 properties were blocklisted. Finally, for 2,489
properties, reading the value of the property was not
possible. Thus, in total, 61,085 of the 74,166 prop-
erties were successfully retrieved, which corresponds
more than 82% of the discovered properties.

4.2 Evaluation Design

To perform the experiments, our automation frame-
work was executed on different iOS devices. The
test devices were running iOS 16. The smartphone
application collected data from properties and meth-
ods that did not require additional user consent when
they were invoked or accessed. As no entitlements
were requested by the application, protected meth-
ods would either throw an exception or terminate the
smartphone application (which would then blocklist
the method). If a method still triggered a user con-
sent prompt (such as accessing certain local network
details), the request was denied.

To demonstrate the effectiveness of our frame-
work, we conducted two different case studies. In
the first study, we compared the results of devices of
the same model. In particular, this allows us to de-
tect differences resulting from user adjustments, such
as changes to the device settings. In the second case
study, we collected data from different device mod-
els, allowing us to identify differences between these
models. To avoid reporting the same source twice, the
methods and properties which have been reported in
the first case study were not included in the second.

4.3 Findings

Same-Model Study. When analysing the results
across devices of the same model, our framework
found a total of 642 sources of information that dif-
fered between them. Specifically, these sources in-
clude 368 methods and 274 properties. The major-
ity of the information sources are the result of user

SECRYPT 2023 - 20th International Conference on Security and Cryptography

438



Table 1: Information sources identified analysing devices of
the same model. (M = Methods, P = Properties).

Category # M # P
Network Information (Unstable) 4 -
Boot Time (Unstable) 2 -
UI Size & Screen Resolution 114 139
Language & Locale 83 28
Keyboard Settings 54 33
Various Accessibility Settings 39 22
Date & Time Format 16 21
UI Colour & Style 7 4
Model Number 5 5
User Persona & other Identifier 6 4
Currency Settings 5 5
Number Format 4 3
Carrier Name & MMS Setting 5 2
Input Method 6 -
Removed System Apps 6 -
Various Settings 4 -
Device Enclosure Colour 1 3
App Information - 3
Uncategorised 2 1
First Week Day 2 -
Personalised Advertising allowed 1 -
UI Effects 1 -
System Sound 1 -
User-defined Device Name - 1
Sum 368 274

customisation of the device. The categorisation of
the results is shown in Table 1. The results were
divided into unstable (i.e. changing in the medium
term) and stable fingerprintable information sources.
The unstable information sources include network de-
tails, such as the gateway IP and domain name, and
the boot time. This information is marked as unsta-
ble because it changes when connecting to a different
network. Nevertheless, they can still provide some
details, for example, about frequently used networks.
Furthermore, the boot time is also counted as an un-
stable source, as it changes each time the device is
restarted.

More relevant to the creation of a fingerprint are
stable sources of information, which make up the vast
majority of detected sources. These include the dis-
play size of elements selected by the user, the screen
dimensions, and the size of the toolbar. In addition,
information about the colour space and various other
settings concerning the user interface can be retrieved.
These include the style of the status bar and the use of
blurring. The selected language and the system lo-
cale can also be accessed via various methods. The
programming interface also permits fetching the time
zone. In addition, information about the currency

Table 2: Information sources identified analysing devices of
a different model. (M = Methods, P = Properties).

Category # M # P
OS Version 42 24
Model Information 27 20
UI Size & Screen Dimensions 6 25
UI Style 12 4
Keyboard Settings 12 4
Hardware Differences 9 6
Screen Resolution 2 7
Uncategorised 5 4
Model-Specific UIDs 4 1
Screen Corner Radius 1 3
Versions 1 3
Physical Memory Size 2 2
Biometrics Supported 2 2
Home Button Type 1 2
Audio Support 3 -
Audio Latency 2 -
Device Size 2 -
Sum 133 107

used and its format settings can also be accessed.
Likewise, various format settings, such as date and
time formats and number formats, can be retrieved.
Many of the user-defined accessibility settings are
also accessible to applications. These include, for ex-
ample, the setting to minimise movements, certain ex-
clusion areas in the user interface, the preference for
scaled content, the disabling of sliders or the use of
the device’s dictation function. Additionally, the in-
put method as well as the input application including
its bundle identifier can be found. Depending on the
input method used, the supported input languages also
differ. The size of fonts used in the user interface are
also retrievable. Furthermore, using some possibly
private APIs, the framework found unique identifiers,
such as the users’ persona identifier. Additionally, it
was possible to query whether or not the user allows
personal advertising. The API also holds information
about the network operator and whether the MMS ser-
vice is enabled. Information about removed system
applications included in iOS could also be found in
the results. In addition, the device name defined by
the user can be determined via a property. Finally, al-
though we used the same version of iPhones in this
case study, we found some differences in the model
number and information about the colour of the de-
vice itself.

Cross-Model Study. In the cross-model study, our
framework identified a total of 240 sources of in-
formation that allow us to infer differences between
these device models. These sources consist of 133

OCScraper: Automated Analysis of the Fingerprintability of the iOS API

439



methods and 107 properties. They allow for the de-
tection of variations between different device models.
Our categorisation of the detected sources is depicted
in Table 2.

The largest number of sources report information
pertaining the version of the operating system, includ-
ing the version string and build numbers. This cate-
gory is followed by sources that provide information
about the device model. Similar to the previous study,
we also found methods and properties that report dif-
ferences in the size of user interface elements and the
screen dimensions. Additionally, we detected sources
which report variations in the style of the user inter-
face. Furthermore, our framework found varying in-
formation about the keyboard. Variations in the hard-
ware used, such as SoC generation, hardware model
numbers, and hardware support for certain features,
can be identified between the device models. The API
also provides information about the different screen
resolutions and sizes of the devices. Various other
differences between the models can be queried, such
as the type of biometrics supported, physical memory
sizes, screen corner radius, or the type of home but-
ton. In addition, model-specific identifiers can be re-
trieved. Finally, differences in support for some audio
features and different specified output latencies have
been identified.

5 DISCUSSION

In our work, we identified a large number of infor-
mation sources that can be used to fingerprint a de-
vice. As our search was automated, we were able to
find a larger number of sources than have been previ-
ously published. We anticipate that the list of proper-
ties and methods that provide this information can be
leveraged to improve the detection of fingerprinting
behaviour in applications. In particular, we envisage
that the detected sources can be utilised to perform
static and dynamic code analysis. The vast number of
sources should allow for better detection of such be-
haviour, especially when applications try to hide their
intentions by using less obvious sources of informa-
tion to construct a fingerprint.

Our framework is based on Objective-C as Swift
has only very limited support for reflection. While
most of the APIs are available for both languages,
some of the most recent frameworks such as Cryp-
toKit or SwiftUI are only available to Swift-based ap-
plications. As Swift does not have extensive enough
support for reflection, a different approach has to be
found to analyse these APIs. However, as new APIs
are increasingly designed with privacy in mind (Ole-

jnik et al., 2017), we decided to first focus on the ex-
isting APIs.

Some of the sources found may be considered
private and thus cannot be used in applications dis-
tributed through the official store. However, in con-
trast to Android8, this means that there are no tech-
nical measures in place on the smartphone to prevent
applications from using these sources. Thus, the se-
curity of the users is only subject to proper vetting of
the submitted applications by Apple and its tight con-
trol over the ecosystem. In particular, any use of these
methods, either directly or via reflection, must be de-
tected by their static and dynamic analyses. Further-
more, this tight control over the distribution channel
may be challenged in the future, as new EU legisla-
tion9 requires the provisioning of application stores
to be opened up to third parties. In addition, appli-
cations that are not subject to the application store
guidelines, such as Apple’s own applications (Kollnig
et al., 2022b) or corporate applications, have access to
these sources.

6 CONCLUSIONS

This paper introduced OCScraper, a framework for
the automatic discovery of fingerprintable informa-
tion sources on the iOS operating system through the
methods and properties of its API. It is able to auto-
matically create objects of classes, instantiate param-
eters, invoke methods, and retrieve properties. Our
evaluation has shown that it can successfully call a
large proportion of the methods and query a major-
ity of the properties. By analysing the collected data
across different devices, it finds information sources
that differ across them. Using the framework, we
have identified hundreds of methods and properties
that can be used to create a fingerprint which is robust
between application and device restarts and is appli-
cable across application vendors. The results improve
the understanding of what kind of information is still
available to applications on iOS that can be leveraged
to create a fingerprint. Furthermore, we believe that
the identified sources can be used in static and dy-
namic code analysis to enhance the detection of fin-
gerprinting behaviour in applications.

8https://developer.android.com/guide/app-
compatibility/restrictions-non-sdk-interfaces

9https://competition-policy.ec.europa.eu/dma en

SECRYPT 2023 - 20th International Conference on Security and Cryptography

440



REFERENCES

Eckersley, P. (2010). How Unique Is Your Web Browser? In
Privacy Enhancing Technologies – PET 2010, volume
6205 of LNCS, pages 1–18. Springer.

Fifield, D. and Egelman, S. (2015). Fingerprinting Web
Users Through Font Metrics. In Financial Cryptog-
raphy – FC 2015, volume 8975 of LNCS, pages 107–
124. Springer.

Iqbal, U., Englehardt, S., and Shafiq, Z. (2021). Fingerprint-
ing the Fingerprinters: Learning to Detect Browser
Fingerprinting Behaviors. In IEEE Symposium on Se-
curity and Privacy – S&P 2021, pages 1143–1161.
IEEE.

Kollnig, K., Shuba, A., Binns, R., Kleek, M. V., and Shad-
bolt, N. (2022a). Are iPhones Really Better for Pri-
vacy? A Comparative Study of iOS and Android
Apps. Proc. Priv. Enhancing Technol., 2022:6–24.

Kollnig, K., Shuba, A., Kleek, M. V., Binns, R., and Shad-
bolt, N. (2022b). Goodbye Tracking? Impact of iOS
App Tracking Transparency and Privacy Labels. In
Conference on Fairness, Accountability, and Trans-
parency – FAccT 2022, pages 508–520. ACM.

Kurtz, A., Gascon, H., Becker, T., Rieck, K., and Freiling,
F. C. (2016). Fingerprinting Mobile Devices Using
Personalized Configurations. PoPETs, 2016:4–19.

Laperdrix, P., Bielova, N., Baudry, B., and Avoine, G.
(2020). Browser Fingerprinting: A Survey. ACM
Trans. Web, 14:8:1–8:33.

Mayer, J. R. (2009). Any person... a pamphleteer”: Inter-
net anonymity in the age of web 2.0. Undergraduate
Senior Thesis, Princeton University, 85.

Olejnik, L., Englehardt, S., and Narayanan, A. (2017). Bat-
tery Status Not Included: Assessing Privacy in Web
Standards. In Workshop on Privacy Engineering –
IWPE@S&P, volume 1873 of CEUR Workshop Pro-
ceedings, pages 17–24. CEUR-WS.org.

Palfinger, G. and Prünster, B. (2020). AndroPRINT:
analysing the fingerprintability of the Android API.
In Availability, Reliability and Security – ARES 2020,
pages 94:1–94:10. ACM.

Shklovski, I., Mainwaring, S. D., Skúladóttir, H. H., and
Borgthorsson, H. (2014). Leakiness and creepiness
in app space: perceptions of privacy and mobile app
use. In Conference on Human Factors in Computing
Systems – CHI 2014, pages 2347–2356. ACM.

Starov, O. and Nikiforakis, N. (2017). XHOUND: Quan-
tifying the Fingerprintability of Browser Extensions.
In IEEE Symposium on Security and Privacy – S&P
2017, pages 941–956. IEEE Computer Society.

Torres, C. F. and Jonker, H. (2018). Investigating Finger-
printers and Fingerprinting-Alike Behaviour of An-
droid Applications. In European Symposium on Re-
search in Computer Security – ESORICS 2018, vol-
ume 11099 of LNCS, pages 60–80. Springer.

Wu, W., Wu, J., Wang, Y., Ling, Z., and Yang, M. (2016).
Efficient Fingerprinting-Based Android Device Iden-
tification With Zero-Permission Identifiers. IEEE Ac-
cess, 4:8073–8083.

OCScraper: Automated Analysis of the Fingerprintability of the iOS API

441


