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The development of communication technologies in edge computing has fostered progress across various
applications, particularly those involving vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) com-
munication. Enhanced infrastructure has improved data transmission network availability, promoting better
connectivity and data collection from IoT devices. A notable IoT application is with the Intelligent Transporta-
tion System (ITS). IoT technology integration enables ITS to access a variety of data sources, including those
pertaining to weather and road conditions. Real-time data on factors like temperature, humidity, precipitation,
and friction contribute to improved decision-making models. Traditionally, these models are trained at the
cloud level, which can lead to communication and computational delays. However, substantial advancements
in cloud-to-edge computing have decreased communication relays and increased computational distribution,
resulting in faster response times. Despite these benefits, the developments still largely depend on central
cloud sources for computation due to restrictions in computational and storage capacity at the edge. This
reliance leads to duplicated data transfers between edge servers and cloud application servers. Additionally,
edge computing is further complicated by data models predominantly based on data heuristics. In this paper,
we propose a system that streamlines edge computing by allowing computation at the edge, thus reducing
latency in responding to requests across distributed networks. Our system is also designed to facilitate quick
updates of predictions, ensuring vehicles receive more pertinent safety-critical model predictions. We will
demonstrate the construction of our system for V2V and V2I applications, incorporating cloud-ware, middle-
ware, and vehicle-ware levels.

1 INTRODUCTION

Edge computing is an approach that involves sit-
uating computational resources near the device in
use, allowing for real-time updates and expedited
decision-making (ISO/IEC, 2020),(Satyanarayanan
et al., 2009). This method leverages edge network
resources alongside cloud networks to facilitate in-
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formation exchange between local edge devices and
global data trends at the cloud. When managing vast
amounts of data, efficient distribution between edge
and cloud networks is crucial for the transmission and
processing of that data.

In Vehicle-to-Infrastructure (V2I) networks, a ma-
jority of vehicles can exchange crucial safety infor-
mation with Road Side Units (RSU), which are infras-
tructure devices situated along the road (Barrachina
et al., 2013). These RSUs, as components of the
edge infrastructure, transmit data to cloud servers
for centralized computing and cache the results at
the edge network to provide response to edge de-
vices. This process results in redundant data transfers,
increased computational complexity, communication
relays, and the under-utilization of edge resources
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which are often only used for replicating results or
conducting partial computations. Additionally, these
devices may have limited deployment along roads,
leading to gaps in network coverage. These factors
highlight the necessity for an improved architectural
setup in edge computing that can seamlessly connect
with cloud networks.

Connected autonomous vehicles would obtain
more pertinent information regarding road conditions
(Tang et al., 2021), enhancing decision-making for
speed planning. IoT devices, such as security cam-
eras, would perform more effectively by conducting
real-time video analytics at the edge (Mendki, 2018)
rather than relying on communication with a central
repository.

Our approach to implementing this architecture
aims to address two specific challenges: i) reducing
response time when handling edge device requests,
and ii) providing higher throughput of request rates
compared to a central cloud repository. The perfor-
mance evaluation benchmarks taken into account in-
clude assessing the influence of longer road lengths
on the variability of response times and examining the
consequences of a higher number of vehicle requests
on the response rates delivered.

The paper is organized as follows: Section 2 dis-
cusses existing architectural designs and the concept
of data reduction, addressing related work in current
architecture implementation. Section 3 delves into
the architectural components and the associated setup.
Section 4 presents experimental performance results
and analysis of the work. Finally, Section 5 concludes
the paper and outlines directions for future work.

2 RELATED WORK

2.1 IoT Cloud Computing

Autonomous vehicles, which facilitate driving and
make decisions based on road conditions, heavily rely
on sensor data and are equipped with numerous sen-
sors that generate vast amounts of data (Van Rij-
menam, 2017). This locally generated data may be
corrupted due to faulty sensors or insufficient road
area coverage, necessitating estimation in conjunc-
tion with data from other devices to accurately assess
road conditions. When processing this data at a cen-
tral server, both the data volume and communication
distance significantly impact the response time. The
transfer of substantial amounts of data leads to con-
siderable delays, even with minor increases in dis-
tance.

In the current cloud server processing setup, the
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Figure 1: Cloud and Edge processing.

large volume of data stored in the server results in de-
lays in data insertion, processing, and response pro-
vision. Real-time updates of road conditions are nec-
essary to deliver accurate information to IoT devices,
but outdated information may be received due to these
delays. Overcoming such delays can be achieved by
employing edge server computing, which gathers in-
formation for its corresponding range of IoT devices
(Wang et al., 2016).

2.2 Edge Limitation

When handling large amounts of data, the edge
servers need to handle excessive throughput and rig-
orous computation. When processing information
like friction estimates, which depend hugely on his-
toric data (Panahandeh et al., 2017), the storage and
computational limitation of the edge server restrict the
prediction ability to provide estimates. Along with
data processing, a simple SELECT query to fetch the
relevant information is delayed. This delay becomes
more pronounced when combined with increased re-
quests from IoT devices.

With the existing edge servers, the mobile edge
servers provide caching and transfer required in-
formation between the servers (Li et al., 2018).
This load-balancing data transfer among edge servers
causes increased data duplicity of stored data and
increased amount of data transfers between edge
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servers. Works are also performed to reduce node
communication by using multi join query processing
(Kurunji et al., 2013) with all the available data.

We develop our architecture to incorporate data
reduction, aiming to decrease the data required for
generating timely friction estimates (figure 1). The
distributed processing network of edge servers re-
duces the amount of data processed at each edge
server while increasing the availability of servers to
handle requests from edge devices.

2.3 Allan Variance

Friction estimates rely on both current and histori-
cal friction data supplied by vehicles. The compu-
tation of friction estimation is directly proportional
to the amount of data used during processing, result-
ing in increased computational latency as data storage
grows. This computation can be simplified by deter-
mining the relevance of the data in providing friction
estimates at the present time.

We build on our previous work on the granu-
lation of large temporal databases (Sinanaj et al.,
2022), which employed the Allan variance tech-
nique (Allan, 1966) to assess the variation level in
friction data. This approach determined the opti-
mal window length of similarity for segmenting the
data into batches, generating friction estimates while
preserving the overall friction variation distribution
(Figure 2). This method proved to be less time-
consuming than heuristic-based clustering algorithms
(Kodinariya and Makwana, 2013). As the influx of
new data from edge devices grows, the friction vari-
ation over time cannot be estimated using a constant
window length. Our previous work on optimal mov-
ing average estimation (Haeri et al., 2022) addresses
this issue by proposing a dynamic Allan variance ap-
proach to determine the optimal window length. We
employ the R* tree data representation (Beckmann
et al., 1990) to extend this work in a multidimensional
space involving spatial and temporal attributes. The
resulting aggregation window length is used to select
the level of the node in the R* tree. This technique
enables the granulation of all records referenced by a
tree node, thereby generating hyper-rectangles known
as granules.

Each granule encompasses a friction attribute,
which is calculated as the average of all data points
contained within it. Over time, these granules are re-
generated as a function of the recently received edge
device data and previously existing granules, forming
new granules. The most recent granules in time are
utilized to provide friction estimation responses to the
edge devices.
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Figure 2: Data granulation using Allan variance. Adapted
from (Sinanaj et al., 2022).

3 SYSTEM ARCHITECTURE

This section presents the components and architecture
setup for a cloud-edge coordinated system. The archi-
tectural design is illustrated using vehicle communi-
cation with edge and cloud servers to query neces-
sary road path information. The edge servers serve
as an immediate source for providing vehicles with
required road information and are connected to the
cloud for maintaining data relevancy, as well as han-
dling failures at the middleware level. All commu-
nication between edge devices, edge servers, and the
cloud is assumed to occur over internet protocol (IP).

3.1 Edge Device

Edge devices are remote systems with less computa-
tional power and depend on the data insights that are
provided to them to help with their course of action.
In turn, these edge devices provide the required data
that it collects to edge and cloud servers (Velmuru-
gadass et al., 2021). In applications such as vehicu-
lar systems, the edge device is a vehicle traveling on
a roadway. For safety-critical planning of speed and
trajectory, the vehicle needs information pertaining to
road friction on the upcoming roadway. This infor-
mation may be obtained from edge server infrastruc-
ture positioned on the roadside. Based on the work
proposed by (Gao et al., 2022) the minimum preview
distance for the vehicle is determined and the edge
device generates requests with location points, which
are responded to by the edge server with the friction
estimates, enabling safe vehicle operation. In turn,
vehicles transmit the friction experienced on the road
and are used to update the estimates.

3.2 Middleware

Middleware are the edge servers placed nearby the
edge devices. These are the roadside unit computer



that can send and transmit data over radio (Ou et al.,
2019) or wireless networks(Cai and Lin, 2008) The
transmitting unit of the middleware has high band-
width and uses Dedicated Short Range Communica-
tion (DSRC). Middleware contains a local database
and are equipped with processing power. These mid-
dleware servers when placed alongside the highway
or at traffic signaling, are useful to exchange friction
information with the vehicles traveling on road. The
middleware performs computations that combine his-
torical data with the latest friction data collected from
vehicles. The revised roadway friction estimates can
then be queried by the same or other vehicles on the
roadway.

3.3 Cloud Server Repository

Cloud server acts as a data repository for the data col-
lected by edge servers from edge devices and medi-
ates when the edge server are not functional. Cloud
server collects data from all the edge server middle-
wares and performs the granulation (Sinanaj et al.,
2022), (Haeri et al., 2022). The generated granules
with each individual estimated friction cover the en-
tire path of the road, while in comparison each edge
server handles a part of the road path. The peri-
odic data collection by cloud server from edge servers
helps to identify the operational state of middleware
and would coordinate with other edge servers in case
of failure of any middleware.

a ’/ —

\
\

y
N y ‘=@
[\‘./‘-/ W

I
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With the architectural components dis-
cussed(figure 3), the architecture is designed to
show the presence of a single edge server for collect-
ing the data from edge devices and also providing
responses to edge device requests. When such edge
servers are paired together their connectivity is shown
for multi-edge server setup.

3.4 Single Middleware Setup

An edge server comprises a local database that serves
as a repository for data gathered from edge devices.
The collected data is processed through granulation
algorithms to form granules, which are then stored in
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alocal database. Additionally, the edge server period-
ically transmits the data it has collected from the edge
devices to a cloud server through a high-bandwidth
network connection. Edge devices communicate with
the middleware through a wireless IP network. They
collect road friction information and generate net-
work packets of a constant length, which contain the
location coordinates and friction readings. The IP ad-
dresses of all edge servers are pre-configured in the
edge devices. For a single middleware system, the
edge devices transmit the network packets to the cor-
responding IP address.

Upon receipt of the information, the edge server
performs two actions: (i) it creates granules and pro-
vides friction estimates from its local database and
(ii) it sends the information collected by the edge de-
vice to the cloud, where the granulation process is run
on the data collected from the entire road path. At
the middleware, granules are generated with hyper-
rectangular boundaries and an estimated friction value
for all locations within those boundaries. Reduction
of the data is seen by using a granule record with
boundaries in alternative to a set of actual records cov-
ered in it. These granule boundaries, also provide an
estimation for location points that are in the vicinity of
actual data received from the edge device and happen
to be covered by the granule coordinates. Granules
are updated in time and maintain relevancy with data
received from edge devices.

Figure 4: Single middleware setup to generate friction esti-
mates and send friction response.

When the middleware receives a packet request
from an edge device, it extracts the location coordi-
nates from the request and queries its database for
granules. The estimated friction value of the gran-
ule that contains the location point is determined, and
all such estimated friction values are grouped together
by the middleware to form a response network packet
that is sent back to the edge device.(figure 4). Upon
receipt of the friction estimates, the edge device uses
the information to plan its speed and generates subse-
quent requests for the remainder of its road journey.
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3.5 Multi Middleware Setup

When multiple edge servers perform the task of pre-
diction, it is crucial for them to determine the scope of
their operations. This enables the edge device to effi-
ciently interact with the relevant edge server to trans-
mit collected data and request information computed
by the edge server. For example, in the case of a vehi-
cle on the road that is receiving and transmitting infor-
mation on friction, the road path is divided into multi-
ple segments based on its length. These segments are
then assigned to the edge server middleware, and the
vehicle’s transmitted information is divided accord-
ingly and passed on to the corresponding edge server.

The road network is divided into segments, each
of which is assigned a unique identifier that is given
to an edge server. When the middleware receives a
packet request that includes the location and segment
details, it filters the location point based on the as-
signed segment identifier. The middleware then col-
lects friction data from vehicles in the designated lo-
cation points and generates granules to provide fric-
tion estimates. Each edge server generates granules
for its designated segment locations and also sends
the received friction data to the cloud server.
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Figure 5: Multiple middleware setup to handle edge device
requests.

With all the collected information, the cloud
server generates granules(figure 5) for the entire road
network and compares these results with those gener-
ated by the middleware. The cloud server computa-
tion mediates to provide feedback to the edge server
when necessary. Feedback achieves similarity of local
estimates with cloud friction estimates and relativity
of estimates at the shared segment boundary between
adjacent edge servers. The distributed computation of
edge device data and data reduction using granulation
provides less computational and response latency at
the edge server. Also, failure for data transmission
from the edge server to the cloud server is monitored,
to handle failed edge server.
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3.6 Handover Between Middleware

The edge device is equipped with a list of IP addresses
for the middleware network, and as it travels along its
route, it broadcasts packets that contain information
about detected friction along with a unique segment
ID to all edge servers. The edge servers then use the
segment ID to filter the packets, with only one edge
server collecting the information for a given segment
ID and sending a response back to the edge device.

Upon receipt of the response, the edge device uses
the IP of the responding middleware to direct its sub-
sequent requests as it moves through the segment.
The handover between middlewares as the edge de-
vice transitions from one segment to another is facil-
itated by the implementation of a threshold for the
segment boundary. This threshold area signifies the
start or end of the segment, and the edge device broad-
casts a request as it enters or leaves this area, allow-
ing it to identify nearby middleware servers and es-
tablish a connection. The below time flow figure 6
describes the various states of the vehicle when trav-
eling through segments 1 and 2.

Threshold
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() () () ()
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Figure 6: Handover between middleware when the vehicle
travels to adjacent segment.

Considering middleware M1 and M2 operating for
segments 1 and 2, the vehicle broadcasts its request at
time t1, indicating its start of the journey. Identifying
the threshold, the middleware M1 assigns a threshold
flag to vehicle response at time t1 and also at time t4
when the vehicle reaches the threshold while exiting
segment 1. This allows the vehicle to broadcast the
request at time t2, which is responded by M1 with
flag OFF, indicating vehicle to connect with M1 at t3
for segment 1 and use M1 IP to request data, while
travelling in segment. The vehicle uses the response
received from broadcast request at t5 to connect the
middleware M2 at t6 and use its IP for subsequent
requests while traveling in segment 2.

3.7 Unresponsive Edge Server

In a multi-edge server system, the consistent updates
provided to the cloud by the edge server at equal



intervals facilitate the cloud’s ability to identify any
anomalies with the edge server. In the event of an
edge server failure, the cloud mediates communica-
tion with neighboring edge servers to manage the op-
erations previously handled by the failed node.

In such cases, estimated friction values for the
edge device are provided by the adjacent node as the
edge device approaches the failed node. Once the
edge device travels through the failed edge server seg-
ment and reaches the next segment, the detected fric-
tion of the failed node is passed on to the next node.
The cloud which mediates these middlewares updates
the initial edge server with the latest information. The
below figure 7, 8 shows a road segment divided into
three segments s1, s2, s3 which are handled by M1,
M2, M3. When M2 goes unresponsive, the cloud does
not receive the time interval updates and detects an
anomaly. The cloud server which generated its own
granules for segment s2 are passed to edge server M1.

s1 : s2 : s3

X m

M1 M3

D

Figure 7: Initial Middleware providing estimated friction
for next segment.
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Figure 8: Later Middleware receiving friction experienced
from vehicle.

For the edge device entering s2 from s1, M1 de-
tects the threshold flag and sends the estimated fric-
tion from s2 granules to the edge device. These fric-
tion values are used by edge devices for speed plan-
ning while traveling through s2. Once the edge device
enters the next adjacent road segment s3, the detected
friction for s2 is passed on to edge server M3. M3
sends this information to the cloud, which are con-
verted to as granules of segment s2 and are updated in
M1 by the cloud.
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4 PERFORMANCE

This section shows the experimental results of using
edge server architecture over the cloud network ar-
chitecture. The performance metrics are evaluated for
i) computational latency with increasing road length
and ii) effect of increasing edge device requests.

4.1 Experimental Setup

The proposed experiments are developed with python
3.11 and performed on a windows 10 Enterprise ma-
chine with 32 GB RAM and clock speed of 3.20GHz.
Dataset: A simulated road friction data is generated
that shows variation in friction values in different road
locations and contains attributes of East, North, time,
friction estimate, and friction true (Gao et al., 2022).
The location of the vehicle is provided by East and
north attributes and the time attribute in seconds pro-
vides the simulation time from zero seconds. The fric-
tion true is actual friction on road, while estimate fric-
tion is vehicle-measured friction which is actual fric-
tion added with the white noise of magnitude of 0.3.
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Figure 9: Friction Variation - a) with White Noise b) True
Friction.

4.2 Computational Latency for
Increasing Road Length

4.2.1 Dual Edge Server Setup

Considering a road path, whose friction information
is operated by two edge servers, we divide the road
path into two segments, allocating equal area paths for
both edge servers. With friction information received
from vehicles traveling along the road path, both edge
servers generate granules in their defined road length.

We simulate the constant rate of vehicle requests
that are traveling on different locations of the road and
calculate the time taken by the edge server to respond
with friction estimate. Time taken is averaged among
multiple runs for better estimate. Further, we re-
place edge servers with a single data repository server,
which handle the granulation and friction response for
entire road path and compute response time of data
repository server to respond to same amount of re-
quests handled by each edge server.

403



DATA 2023 - 12th International Conference on Data Science, Technology and Applications

From the plot figure 10, when the data repository
server and dual edge servers handle 24000 queries,
we see with the increase in road length, the average
data repository response time is larger than the edge
server. With the increase of road length, the response
time by data repository extended by 1.864% per unit
road length, while the dual edge server response time
increased by 0.943%

Dual Edge server - Effect of increased road length on 24k requests

—— Edge server
Data Repo server

4.5

Response Time(sec)

4.0

T T T T T T T
0 5 10 15 20 25 30
Road Length(km)

Figure 10: Dual edge server Query response with variance
scale.

4.2.2 Dynamic Edge Server Allocation

For the dual edge server, with the increasing road
length the range of the edge server is extended. For
our next experiment, we set the edge servers to oper-
ate on a fixed length of the road. For the equal incre-
mental road length range, we calculate the response
time of a data repository server handling entire road
path and edge server handling constant road path.

Multi Edge server - Effect of increased road length on 24k requests
6.0 1

—— Edge server
Data Repo server

Response Time(sec)
» o
) o

>
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L e

T T T T T T T
[ 5 10 15 20 25 30
Road Length(km)

Figure 11: Dynamic Middleware Query response with vari-
ance scale.

From the plot figure 11, we see that average re-
sponse time increases with road length when com-
pared with the edge server. When such edge servers
are placed along the road network, the overall re-
sponse time is greatly reduced improving speed plan-
ning. With the implementation of a dynamic middle-
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ware system, the increase in response time for the data
repository server is 1.84%, and per unit road length
increase in response time for the dynamic edge server
system is 0.25%

4.3 Effect of Increasing Edge Device
Requests

When more number of vehicles travel on the road net-
work, the increased vehicle requests adds more de-
lay in query response by the computing server. To
check the effect of increasing incoming requests on
the server, we consider a multi-edge setup, where the
entire road path is divided among 30 edge servers.

We simulate the increasing range of vehicle re-
quests by equal amounts in the edge server and cloud
server. The response time is considered from fetch-
ing relevant granules that cover the location point and
computing the average from friction attribute of the
fetched granules. These response times are added
up for all the queried location points provided as re-
sponse time for a query set. Such response times are
evaluated multiple times to provide a better average
friction estimate.

From the plot figure 12, the increase in response
time is drastic in the cloud server when compared
to the edge server. For increased vehicle requests
to 40000, the multi-edge server achieved a 42.358%
reduction in response time, in comparison with the
cloud server.

Effect on Increased Vehicle Request

—— Edge server
Data Repo server

Response time(sec)

T T T T T T T T T
0 5000 10000 15000 20000 25000 30000 35000 40000
Request count

Figure 12: Effect of Increased Vehicle requests.

S CONCLUSION

In this paper, we present a distributed edge-cloud
model that collaborates with mobile edge devices,
such as vehicles on the road.

Utilizing the Allan variance averaging technique,
which determines the optimal split for reducing data
to be processed, we maintain accurate friction estima-
tion results while processing on the edge server. Our



proposed architecture demonstrates that a coordinated
edge server system delivers continuous responses as
vehicles travel along the road. The edge server’s fail-
ure handling mechanism effectively addresses real-
time communication breakdowns. We illustrate that
the coordinated edge server system enables faster data
processing, lower latency, and higher throughput for
requests compared to the cloud-mediated transmis-
sion model.

In future work, we aim to expand our research on
the feedback system between cloud and edge servers.
We plan to adapt the cloud to identify variations in
friction estimates generated over time and use this in-
formation to determine the feedback interval with the
edge servers.
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