
CryptonDL: Encrypted Image Classification Using Deep Learning
Models

Adham Helbawy, Mahmoud Bahaa and Alia El Bolock
German International University, Cairo, Egypt

Keywords: Datasets, Convolutional Neural Networks, Image Classification, Homomorphic Encryption.

Abstract: Deep Neural Networks (DNNs) have surpassed traditional machine learning algorithms due to their superior
performance in big data analysis in various applications. Fully homomorphic encryption (FHE) contributes to
machine learning classification, as it supports homomorphic operations over encrypted data without decryp-
tion. In this paper, we propose a deep learning model, CryptonDL, that utilizes TenSEAL’s CKKS scheme
to encrypt three image datasets and then classify each encrypted image. This model first trains the image
datasets without encryption using a PyTorch convolutional neural network model. Using the weights of the
convolutional neural network model in the encrypted convolutional neural network model, each image will be
encrypted and then only decrypted in the prediction results. TenSEAL implemented the same model, but this
model was optimized to achieve higher accuracy than TenSEAL’s original model. CryptonDL achieved an
encrypted image classification accuracy of 98.32 percent and an F1 score of 0.9832 on the MNIST dataset, an
accuracy of 88 percent and an F1 score of 0.8811 on the Fashion MNIST, and an accuracy of 92 percent and
an F1 score of 0.9207 on the Kuzushiji MNIST. CryptonDL shows that encrypted image classification could
be achieved with high accuracy without using pre-trained models.

1 INTRODUCTION

Image classification is a widely researched area in
computer vision, with deep learning techniques show-
ing significant improvements in accuracy compared to
traditional methods. However, encrypted image clas-
sification is a relatively new area of research aiming
to classify images while they are encrypted. The goal
is to preserve the image’s privacy while still allowing
for its useful information to be extracted. This is a
challenging task as traditional deep learning methods
rely on the ability to process pixel values, which are
not available in an encrypted image. Some encryp-
tion techniques, when utilized with machine learning
or deep learning, do not significantly reduce the func-
tionality and usefulness of the data. These are Homo-
morphic/Paillier Crypto-system, Secure Multi-Party
Computation, Elliptic Curve Cryptography, and Func-
tional Encryption. Additionally, the majority of cur-
rent crypto-based approaches, including (Izabachène
et al., 2019), (Lou and Jiang, 2021), (Wang et al.,
2021), and (Jiang et al., 2018), use homomorphic
encryption (HE) to protect the data; however, these
proposed HE-based approaches only support predic-
tion over encrypted data using existing trained mod-

els rather than training a model over encrypted data.
This is because the computed results of HE are con-
fidential to the server and hence cannot be used for
evaluation with the label during the back-propagation
phase. That is, the machine learning model should
be trained on the plaintext data, and then the trained
model can be applied over encrypted data to make the
prediction. This work aims to train a convolutional
neural network to classify encrypted images using ho-
momorphic encryption. In this paper, we propose the
CryptonDL model where a convolutional neural net-
work model is trained over encrypted images without
existing trained models.

2 BACKGROUND

This paper presents work at the intersection of ma-
chine learning and cryptography. In the following, all
the needed background knowledge is briefly outlined.

2.1 Datasets Selection

1. MNIST Dataset (Deng, 2012). The MNIST
dataset is an acronym that stands for the Modi-

Helbawy, A., Bahaa, M. and El Bolock, A.
CryptonDL: Encrypted Image Classification Using Deep Learning Models.
DOI: 10.5220/0012088000003541
In Proceedings of the 12th International Conference on Data Science, Technology and Applications (DATA 2023), pages 367-374
ISBN: 978-989-758-664-4; ISSN: 2184-285X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

367



fied National Institute of Standards and Technol-
ogy dataset. It consists of a training set of 60,000
examples and a test set of 10,000 examples. Each
example is a small square 28×28 pixel grayscale
image of handwritten single digits between 0 and
9.

2. Fashion MNIST Dataset (Xiao et al., 2017).
Fashion-MNIST is a dataset of Zalando’s article
images—consisting of a training set of 60,000 ex-
amples and a test set of 10,000 examples. Each
example is a 28x28 grayscale image, associated
with a label from 10 classes. We intend Fashion-
MNIST to serve as a direct drop-in replacement
for the original MNIST dataset for benchmarking
machine learning algorithms. It shares the same
image size and structure of training and testing
splits.

3. Kuzushiji MNIST Dataset (Clanuwat et al.,
2018). Kuzushiji-MNIST is a drop-in replace-
ment for the MNIST dataset (28x28 grayscale,
70,000 images, a training set of 60,000 examples
and a test set of 10,000 examples.), provided in
the original MNIST format as well as a NumPy
format. Since MNIST restricts us to 10 classes,
we chose one character to represent each of the
10 rows of Hiragana when creating Kuzushiji-
MNIST.

2.2 Homomorphic Encryption

Homomorphic encryption is a form of encryption
that permits users to perform computations on its en-
crypted data without first decrypting it. These re-
sulting computations are left in an encrypted form
which, when decrypted, results in an identical output
to that produced had the operations been performed
on the unencrypted data. Homomorphic encryption
can be used for privacy-preserving outsourced storage
and computation. This allows data to be encrypted
and outsourced to commercial cloud environments for
processing, all while encrypted. For sensitive data,
such as health care information, homomorphic en-
cryption can be used to enable new services by re-
moving privacy barriers inhibiting data sharing or in-
creasing security to existing services.

2.3 Cheon, Kim, Kim and Song Scheme
(CKKS)

The CKKS scheme (Cheon et al., 2017) is a vari-
ant of the well-known fully homomorphic encryption
(FHE) scheme that is based on the LWE (Learning
With Errors) problem. It allows for arbitrary com-

putations to be performed on encrypted data using a
technique called ”approximate homomorphism.” The
CKKS scheme is designed to work with real num-
bers, making it suitable for various applications such
as machine learning, data analysis, and cryptography.
Moreover, in the CKKS scheme, the encryption pro-
cess uses a polynomial ring over a finite field and a
specific set of parameters. The decryption process
uses a secret key and a set of ”noise” parameters to re-
construct the original plaintext. The scheme also uses
a technique called ”relinearization” to ensure that the
correct result is obtained from the computations on
the ciphertext.

3 RELATED WORK

Lots of previous approaches investigated applying ho-
momorphic encryption techniques to preserve the pri-
vacy of data while training and applying machine
learning and deep learning models.

3.1 Homomorphic Encryption and
Machine Learning

Researchers have proposed different approaches to
secure cloud-based artificial intelligence while pre-
serving privacy. Kristin E. Lauter(Wood et al., 2020)
used homomorphic encryption (HE) and machine
learning (ML) to encrypt client data before upload-
ing it to the cloud, Edward et al.(Chou et al., 2020)
developed a privacy-preserving approach, Alexan-
der Wood et al.(Wood et al., 2020) encrypted pa-
tients’ data in bioinformatics, Xiaoqiang Sun(Sun
et al., 2020) proposed a fully homomorphic encryp-
tion scheme, K Muhammad(Muhammad et al., 2018)
showed that one machine learning model could pro-
duce an encrypted output with the same key, Sang-
wook Kim(Kim et al., 2018) proposed a privacy-
preserving Naive Bayes classifier model, and Yoshiko
Yasumura proposed a secure Nave Bayes classifica-
tion protocol.

3.2 Homomorphic Encryption and
Deep Learning

Ehsan Hesamifard et al.(Hesamifard et al., 2019), Ma-
lika Izabachène et al.(Izabachène et al., 2019), Qian
Lou and Lei Jiang(Lou and Jiang, 2021), Yichuan
Wang et al., and Takumi Ishiyama et al.(Ishiyama
et al., 2020) have all proposed methods to improve
the classification accuracy of CNN inference over ho-
momorphic encryption. Ehsan Hesamifard et al. used

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

368



deep neural network algorithms on the encrypted data
by taking advantage of Homomorphic Encryption
schemes and achieved efficient, accurate, and scalable
privacy-preserving predictions. Malika Izabachène et
al. proposed an algorithm to classify encrypted ob-
jects by means of a fully encrypted neural network
with practically relevant timings and accuracy on a
face recognition application. Qian Lou and Lei Jiang
propose a homomorphic encryption-friendly, privacy-
preserving mobile neural network architecture called
HEMET. Yichuan Wang et al.(Wang et al., 2021)
combined deep learning with a homomorphic en-
cryption algorithm to design a deep learning network
model based on secure MPC to ensure better security
of users’ private data in AIoT.

4 APPROACH OVERVIEW

As shown in figure 1, this is the whole pipeline for
the proposed model CryptonDL. The pipeline has two
parts. The first part takes an image dataset, which is
then classified using a convolutional neural network
model either with 3 or with 4. Then the convolu-
tional neural network makes image predictions, and
the classification accuracy is calculated with the pre-
dictions. The second part takes the weights and biases
of the first convolutional neural network. It inputs
them to the encrypted convolutional neural network
to make the encrypted image predictions, which, with
the images still encrypted, will only decrypt the image
predictions to calculate the accuracy of the encrypted
convolutional neural network.

Figure 1: Pipeline of CryptonDL.

Figure 2 is the first convolutional neural network
pipeline. This was used in TenSEAL’s original model
and was tested on three different image datasets to test
the accuracy of this model

Figure 2: TenSEAL.

Figure 3 is CryptonDL’s optimized convolutional
neural network pipeline. This second pipeline was
used in classifying the MNIST and the Kuzushiji
MNIST datasets which increased their accuracy and
f1 score compared to the first pipeline.

Figure 3: CryptonDL1.

Figure 4 is CryptonDL’s optimized convolutional
neural network pipeline. This third pipeline was used
in classifying the Fashion MNIST dataset which in-
creased its accuracy and f1 score compared to the first
pipeline and second pipeline.

Figure 4: CryptonDL2.

5 DEEP LEARNING MODELS

Table 1 shows the summary of all the convolu-
tional neural network inputs for the three datasets.
The TenSEAL-MNIST, TenSEAL-Fashion-MNIST
and the TenSEAL-Kuzushiji MNIST will follow
TenSEAL’s convolutional neural network pipeline.
The layer inputs are shown in figure 2 and they use 10
train epochs with optimizer Adam and learning rate of

CryptonDL: Encrypted Image Classification Using Deep Learning Models

369



0.001. The CryptonDL-MNIST, CryptonDL-Fashion
MNIST are an optimized version of TenSEAL’s con-
volutional neural network which have different layer
inputs shown in figure 3 and they use 5 train epochs
with optimizer RMSprop and learning rate of 0.001.
Finally, the CryptonDL-Kuzushiji MNIST also use
the same training epochs, optimizer and learning rate
as the other two optimized convolutional neural net-
works but with different layer inputs as shown in fig-
ure 4.

Table 1: DL Training Inputs.
2D convolution Layer Fully-connected layer1 Fully-connected layer2 Optimizer Train Epochs

TenSEAL-MNIST Input Channels 1, Output Channels 4,
Kernel Size 7, Padding 0, Stride 3 Input Features 256, Output Features 64 Input Features 64, Output Features 10

corresponding to 10 classes of the MNIST database
Adam with Learning
Rate 0.001 10

CryptonDL-MNIST Input Channels 1, Output Channels 12,
Kernel Size 7, Padding 0, Stride 3 Input Features 768, Output Features 64 Input Features 64, Output Features 10

corresponding to 10 classes of the MNIST database
RMSprop with
Learning Rate 0.001 5

TenSEAL-Fashion MNIST Input Channels 1, Output Channels 4,
Kernel Size 7, Padding 0, Stride 3 Input Features 256, Output Features 64

Input Features 64, Output Features 10
corresponding to 10 classes of the
Fashion MNIST database

Adam with Learning
Rate 0.001 10

CryptonDL-Fashion MNIST Input Channels 1, Output Channels 12,
Kernel Size 3, Padding 0, Stride 3 Input Features 972, Output Features 64

Input Features 64, Output Features 10
corresponding to 10 classes of the
Fashion MNIST database

RMSprop with
Learning Rate 0.001 5

TenSEAL-Kuzushiji MNIST Input Channels 1, Output Channels 4,
Kernel Size 7, Padding 0, Stride 3 Input Features 256, Output Features 64

Input Features 64, Output Features 10
corresponding to 10 classes of the
Kuzushiji MNIST database

Adam with Learning
Rate 0.001 10

CryptonDL-Kuzushiji MNIST Input Channels 1, Output Channels 12,
Kernel Size 7, Padding 0, Stride 3 Input Features 768, Output Features 64

Input Features 64, Output Features 10
corresponding to 10 classes of the
Kuzushiji MNIST database

RMSprop with
Learning Rate 0.001 5

5.1 TenSEAL-MNIST Model

5.1.1 Convolutional Neural Network

As shown in 2. First, train a convolutional neural net-
work model with the following description. 2D con-
volution layer (Input Channels 1, Output Channels
4, Kernel Size 7, Padding 0, Stride 3). Then comes
Fully-connected layer 1 (256 input features, 64 out-
put features). Fully-connected layer 2 (Input Features
64, Output Features 10 corresponding to 10 classes of
the MNIST database). There are (25664)+(6410) =
17.024 weights parameter and 64 + 10 = 74 biases pa-
rameter that can be optimized in the training process.
Afterward, using the square function as the activation
function, Train the model with the criterion CrossEn-
tropyLoss and the optimizer Adam at a learning rate
of 0.001 and 10 epochs.

5.1.2 Testing Phase

Testing the model using the Full 10000 Test images
with a batch size of 64 and giving a Test Accuracy of
97 percent and F1 Score of 0.977900.

5.2 CryptonDL1-MNIST Model

5.2.1 Convolutional Neural Network

As shown in Fig. 3. First, train a convolutional neu-
ral network model with the following description. 2D
convolution layer (Input Channels 1, Output Channels
12, Kernel Size 7, Padding 0, Stride 3). Then comes
Fully-connected layer 1 (768 input features, 64 output
features). Fully-connected layer 2 (Input Features 64,
Output Features 10 corresponding to 10 classes of the
MNIST database). There are (768 × 64) + (64 × 10) =

49.792 weights parameter and 64 + 10 = 74 biases pa-
rameter that can be optimized in the training process.
Afterward, using the square function as the activation
function, Train the model with the criterion CrossEn-
tropyLoss and the optimizer Adam at a learning rate
of 0.001 and 5 epochs.

5.2.2 Testing Phase

Testing the model using the Full 10000 Test images
with a batch size of 64 and giving a Test Accuracy of
98 percent and F1 Score of 0.983300.

5.3 TenSEAL-Fashion MNIST Model

5.3.1 Convolutional Neural Network

As shown in 2. First, train a convolutional neural net-
work model with the following description. 2D con-
volution layer (Input Channels 1, Output Channels
4, Kernel Size 7, Padding 0, Stride 3). Then comes
Fully-connected layer 1 (256 input features, 64 out-
put features). Fully-connected layer 2 (Input Features
64, Output Features 10 corresponding to 10 classes of
the MNIST database). There are (256 × 64) + (64 ×
10) = 17.024 weights parameter and 64 + 10 = 74 bi-
ases parameter that can be optimized in the training
process. Afterward, using the square function as the
activation function, Train the model with the criterion
CrossEntropyLoss and the optimizer Adam at a learn-
ing rate of 0.001 and 10 epochs.

5.3.2 Testing Phase

Testing the model using the Full 10000 Test images
with a batch size of 64 and giving a Test Accuracy of
86 percent and F1 Score of 0.869000.

5.4 CryptonDL2-Fashion MNIST
Model

5.4.1 Convolutional Neural Network

As shown in 4. First, train a convolutional neural
network model with the following description. 2D
convolution layer (Input Channels 1, Output Channels
12, Kernel Size 3, Padding 0, Stride 3). Then comes
Fully-connected layer 1 (972 input features, 64 output
features).Fully-connected layer 2 (Input Features 64,
Output Features 10 corresponding to 10 classes of the
MNIST database). There are (972 × 64) + (64 × 10) =
62.848 weights parameter and 64 + 10 = 74 biases pa-
rameter that can be optimized in the training process.
Afterward, using the square function as the activation

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

370



function, Train the model with the criterion CrossEn-
tropyLoss and the optimizer Adam at a learning rate
of 0.001 and 5 epochs.

5.4.2 Testing Phase

Testing the model using the Full 10000 Test images
with a batch size of 64 and giving a Test Accuracy of
88 percent and F1 Score of 0.880800.

5.5 TenSEAL-Kuzushiji MNIST Model

5.5.1 Convolutional Neural Network

As shown in 2. First, train a convolutional neural net-
work model with the following description. 2D con-
volution layer (Input Channels 1, Output Channels
4, Kernel Size 7, Padding 0, Stride 3). Then comes
Fully-connected layer 1 (256 input features, 64 out-
put features). Fully-connected layer 2 (Input Features
64, Output Features 10 corresponding to 10 classes of
the MNIST database). There are (256 × 64) + (64 ×
10) = 17.024 weights parameter and 64 + 10 = 74 bi-
ases parameter that can be optimized in the training
process. Afterward, using the square function as the
activation function, Train the model with the criterion
CrossEntropyLoss and the optimizer Adam at a learn-
ing rate of 0.001 and 10 epochs.

5.5.2 Testing Phase

Testing the model using the Full 10000 Test images
with a batch size of 64 and giving a Test Accuracy of
89 percent and F1 Score of 0.891100.

5.6 CryptonDL1-Kuzushiji MNIST
Model

5.6.1 Convolutional Neural Network

As shown in 3. First, train a convolutional neural
network model with the following description. 2D
convolution layer (Input Channels 1, Output Channels
12, Kernel Size 7, Padding 0, Stride 3). Then comes
Fully-connected layer 1 (768 input features, 64 output
features). Fully-connected layer 2 (Input Features 64,
Output Features 10 corresponding to 10 classes of the
MNIST database). There are (768 × 64) + (64 × 10) =
49.792 weights parameter and 64 + 10 = 74 biases pa-
rameter that can be optimized in the training process.
Afterward, using the square function as the activation
function, Train the model with the criterion CrossEn-
tropyLoss and the optimizer Adam at a learning rate
of 0.001 and 5 epochs.

5.6.2 Testing Phase

Testing the model using the Full 10000 Test images
with a batch size of 64 and giving a Test Accuracy of
91 percent and F1 Score of 0.919700.

6 ENCRYPTED DEEP LEARNING
MODELS

Figure 5 shows the pipeline of the encrypted deep-
learning model, and all of the next models use this
pipeline.

Figure 5: Encrypted convolutional neural network Pipeline.

6.1 TenSEAL Model

6.1.1 ENC-Convolutional Neural Network

As shown in 5. The process starts by initializing the
weights and biases for the three convolutional layers
in the network, using weights and biases from the pre-
vious model’s Conv1 layer and FC1 and FC2 layers.
The forward function is then called to process the in-
put data. The first step in this function is to convert
all input data items into CKKS vectors, a format that
allows for efficient computations on encrypted data.
Then, the function squares each channel in each data
item and combines them using a matrix multiplication
operation, creating a single output data item. Finally,
all three layers are combined using a simple addition
operation to produce the final output value for this ex-
ample. The final step in this process is the call() func-
tion, which executes the forward() function on each
input data point.

6.1.2 Encryption Parameters

Set the global scale of the context to 2, which means
that every number in the context will be doubled. It
is necessary because when encrypting or decrypting
data, you need to keep track of both the original value
and its encrypted counterpart. Then Constructing the
TenSEAL context: The first argument specifies the
scheme type as CKKS and sets the polynomial mod-
ulus degree to 8192, which determines the size of the
plaintext and ciphertext data that can be encrypted and
decrypted using the context. The ”coefficient mod bit

CryptonDL: Encrypted Image Classification Using Deep Learning Models

371



sizes” argument is a list of integers, with the first and
last elements being 31 and all others equal to the bit
scale. The context object will store the encryption pa-
rameters for the CKKS scheme. The next step is to
set the global scale for the TenSEAL context. This
scale controls how precisely the fractional part of the
data will be encrypted or decrypted. Finally, the Ga-
lois keys function generates keys required to perform
ciphertext rotations. These keys allow the library to
perform operations on the encrypted data without de-
crypting it first.

6.1.3 Testing Phase

Start by creating an encoding matrix using the
ts.im2col encoding. This encoding process protects
against unauthorized access to the data set. It al-
lows us to compare different models on different
datasets without worrying about differences in how
those datasets are represented in memory. This ma-
trix will be used to encode each data set column into
a different format and then create the encoding ma-
trix; it iterates through each column of data in turn and
encodes it using the ts.im2col encoding. Then the en-
crypted model inputs the encoded and encrypted val-
ues to perform the encrypted evaluation and then de-
crypts the results after the evaluation is finished. This
is performed on the 10,000 test images with a batch
size of one.

6.1.4 ENC-Convolutional Neural Network

As shown in 5. The process starts by initializing the
weights and biases for the three convolutional layers
in the network, using weights and biases from the pre-
vious model’s Conv1 layer and FC1 and FC2 layers.
The forward function is then called to process the in-
put data. The first step in this function is to convert
all input data items into CKKS vectors, a format that
allows for efficient computations on encrypted data.
Then, the function squares each channel in each data
item and combines them using a matrix multiplication
operation, creating a single output data item. Finally,
all three layers are combined using a simple addition
operation to produce the final output value for this ex-
ample. The final step in this process is the call() func-
tion, which executes the forward() function on each
input data point.

6.1.5 Encryption Parameters

Set the global scale of the context to 2, which means
that every number in the context will be doubled. It
is necessary because when encrypting or decrypting
data, you need to keep track of both the original value

and its encrypted counterpart. Then Constructing the
TenSEAL context: The first argument specifies the
scheme type as CKKS and sets the polynomial mod-
ulus degree to 8192, which determines the size of the
plaintext and ciphertext data that can be encrypted and
decrypted using the context. The ”coefficient mod bit
sizes” argument is a list of integers, with the first and
last elements being 31 and all others equal to the bit
scale. The context object will store the encryption pa-
rameters for the CKKS scheme. The next step is to
set the global scale for the TenSEAL context. This
scale controls how precisely the fractional part of the
data will be encrypted or decrypted. Finally, the Ga-
lois keys function generates keys required to perform
ciphertext rotations. These keys allow the library to
perform operations on the encrypted data without de-
crypting it first.

6.1.6 Testing Phase

Start by creating an encoding matrix using the
ts.im2col encoding. This encoding process protects
against unauthorized access to the data set. It al-
lows us to compare different models on different
datasets without worrying about differences in how
those datasets are represented in memory. This ma-
trix will be used to encode each data set column into
a different format and then create the encoding ma-
trix; it iterates through each column of data in turn and
encodes it using the ts.im2col encoding. Then the en-
crypted model inputs the encoded and encrypted val-
ues to perform the encrypted evaluation and then de-
crypts the results after the evaluation is finished. This
is performed on the 10,000 test images with a batch
size of one.

7 CryptonDL EVALUATION

In this chapter, the performance of CryptonDL will be
evaluated and discussed. This will include a compar-
ison of the model’s performance with other state-of-
the-art models and with TenSEAL’s original model,
as well as a discussion of any factors that may have
affected the model’s performance

7.1 CryptonDL Against Other
State-of-the-Art Models

As shown in the table 2, most models have a high
prediction accuracy of the MNIST dataset the pro-
posed model CryptonDL has higher accuracy com-
pared to the other papers. These papers implemented
a different approach to preserving privacy. Their ap-

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

372



proach was using the same encryption type and the
tests were done on the same image dataset but the im-
ages were encrypted from the beginning of the model.
Although this approach would preserve the privacy of
the dataset which would be classified, the computa-
tional complexity is much bigger and the accuracy is
not always better than CryptonDL. This makes Cryp-
tonDL much greater than most other models at classi-
fying encrypted images.

Table 2: Results vs Other Papers.
Paper Title Dataset Encryption Type Accuracy
CryptonDL[1] MNIST Homomorphic Encryption(CKKS) 98.32%
K Muhammad et al.(Muhammad et al., 2018) MNIST Homomorphic Encryption(PHE) 92.92%
Xiaoqian Jiang et al.(Jiang et al., 2018) MNIST Homomorphic Encryption(CKKS) 98.1%
Anamaria Vizitiu et al.(Vizitiu et al., 2019) MNIST Homomorphic Encryption(FHE) 98.3%
Runhua Xu et al.(Xu et al., 2019) MNIST Homomorphic Encryption 92.5%
Ehsan Hesamifard et al.(Hesamifard et al., 2017) MNIST Homomorphic Encryption 99.25%

7.2 Results Comparison

As shown in the three tables below, the results of our
CryptonDL model are better than TenSEAL’s original
model. The testing was done using three image
datasets MNIST, Fashion MNIST and Kuzushiji
MNIST, and the results were that the accuracy and
f1 score of CryptonDL model on each of the three
datasets outperformed TenSEAL’s original model.

Table 3 shows all the deep learning models’,
the three original models of TenSEAL and the three
CryptonDL optimized models test accuracy. Table

Table 3: DL MODELS.
Test F1 Score Test Accuracy Test Time

TenSEAL-MNIST 0.977900 97% (9779/10000) 869 ms
CryptonDL-MNIST 0.983300 98% (9833/10000) 856 ms
TenSEAL-Fashion MNIST 0.869000 86% (8690/10000) 841 ms
CryptonDL-Fashion MNIST 0.880800 88% (8808/10000) 1.14 s
TenSEAL-Kuzushiji MNIST 0.891100 89% (8911/10000) 7.66 s
CryptonDL-Kuzushiji MNIST 0.919700 91% (9197/10000) 7.71 s

4 shows all the encrypted deep learning models’,
the three original models of TenSEAL and the three
CryptonDL optimized models test accuracy.

Table 4: ENC MODELS.
Encrypted Test F1 Score Encrypted Test Accuracy Encrypted Test Time

TenSEAL-MNIST 0.977400 97% (9744/10000) 2h 51min 43s
CryptonDL-MNIST 0.983200 98% (9832/10000) 5h 53min 8s
TenSEAL-Fashion MNIST 0.869900 86% (8699/10000) 3h 12min
CryptonDL-Fashion MNIST 0.881100 88% (8811/10000) 6h 52min 7s
TenSEAL-Kuzushiji MNIST 0.889900 88% (8899/10000) 2h 52min 4s
CryptonDL-Kuzushiji MNIST 0.920700 92% (9207/10000) 5h 54min 12s

Table 5 shows the accuracy of the deep learning
models and the encrypted deep learning models to-
gether. As shown below, the accuracy of CryptonDL’s
optimized models is higher than TenSEAL’s original
model.

Table 5: TenSEAL’s models against the proposed optimized
models.

Unencrypted Test Accuracy Unencrypted F1 Score Encrypted Test Accuracy Encrypted F1 Score Encrypted Test Time
TenSEAL-MNIST 97% (9779/10000) 0.977900 97% (9744/10000) 0.977400 2h 51min 43s
CryptonDL-MNIST 98% (9833/10000) 0.983300 98% (9832/10000) 0.983200 5h 53min 8s
TenSEAL-Fashion MNIST 86% (8690/10000) 0.869000 86% (8699/10000) 0.869900 3h 12min
CryptonDL-Fashion MNIST 88% (8808/10000) 0.880800 88% (8811/10000) 0.881100 6h 52min 7s
TenSEAL-Kuzushiji MNIST 89% (8911/10000) 0.891100 88% (8899/10000) 0.889900 2h 52min 4s
CryptonDL-Kuzushiji MNIST 91% (9197/10000) 0.919700 92% (9207/10000) 0.920700 5h 54min 12s

7.3 Discussion

CryptonDL final MNIST, Fashion MNIST, and
Kuzushiji MNIST models, which used the optimized
convolutional neural network 3 or 4 and encrypted
convolutional neural network 5 had higher image
classification accuracy and encrypted image classifi-
cation as shown in table 5. Increasing the output and
kernel sizes and changing the optimizer from Adam to
RMSprop enabled the convolutional neural network
to learn more complex features in the images, which
were clearly shown in the Kuzushiji MNIST increase
in encrypted accuracy from 88 percent to 92 percent.
Furthermore, the accuracy of CryptonDL, when used
with the MNIST dataset in 2, achieved higher image
classification accuracy than most of the other mod-
els, as all the other models use an existing pre-trained
model. Using pre-trained models is not always bene-
ficial, as they are typically trained on a large dataset,
but the data may not be representative of the specific
problem or domain to which the model is being ap-
plied to. This can lead to poor performance when the
model is used on new data. Also, pre-trained mod-
els are often complex and challenging to understand,
making it hard to determine how the model is making
its predictions. This can make it difficult to identify
errors or biases in the model.

8 CONCLUSION

In the domain of computer vision, the classification of
images is a highly researched topic, with deep learn-
ing algorithms significantly outperforming more con-
ventional approaches in terms of accuracy. The goal
of the relatively new field of study known as ”en-
crypted image classification” is to categorize images
even while they are encrypted. Most approaches used
homomorphic encryption to tackle this goal; how-
ever, most used existing trained models to achieve
encrypted image classification. In this paper, the
proposed model CryptonDL achieved encrypted im-
age classification without the use of existing trained
models. The model’s performance evaluation against
other models shows that CryptonDL achieves high ac-
curacy with less computational complexity than most
other models.

CryptonDL: Encrypted Image Classification Using Deep Learning Models

373



9 FUTURE WORK

9.1 Datasets Scalability

Exploring the model’s capacity to handle bigger
datasets without performance problems is one direc-
tion for the future. Techniques like parallel process-
ing, distributed computing, and effective data storage
and retrieval methods can be used to accomplish this.

9.2 Convolutional Neural Network
Scalability

Prediction accuracy can be improved by altering the
convolutional neural network model’s design or pa-
rameters. The convolutional neural network model
can also be modified to handle datasets other than im-
age datasets, such as audio and text datasets, by alter-
ing the architecture or preprocessing approaches.

REFERENCES

Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Ho-
momorphic encryption for arithmetic of approximate
numbers. In Takagi, T. and Peyrin, T., editors, Ad-
vances in Cryptology – ASIACRYPT 2017, pages 409–
437, Cham. Springer International Publishing.

Chou, E. J., Gururajan, A., Laine, K., Goel, N. K., Bertiger,
A., and Stokes, J. W. (2020). Privacy-preserving
phishing web page classification via fully homomor-
phic encryption. In ICASSP 2020 - 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2792–2796.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A.,
Yamamoto, K., and Ha, D. (2018). Deep learning for
classical japanese literature.

Deng, L. (2012). The mnist database of handwritten digit
images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142.

Hesamifard, E., Takabi, H., and Ghasemi, M. (2017). Cryp-
todl: Deep neural networks over encrypted data.

Hesamifard, E., Takabi, H., and Ghasemi, M. (2019). Deep
neural networks classification over encrypted data. In
Proceedings of the Ninth ACM Conference on Data
and Application Security and Privacy, CODASPY
’19, page 97–108, New York, NY, USA. Association
for Computing Machinery.

Ishiyama, T., Suzuki, T., and Yamana, H. (2020). Highly
accurate cnn inference using approximate activation
functions over homomorphic encryption.

Izabachène, M., Sirdey, R., and Zuber, M. (2019). Prac-
tical fully homomorphic encryption for fully masked
neural networks. In Mu, Y., Deng, R. H., and Huang,
X., editors, Cryptology and Network Security, pages
24–36, Cham. Springer International Publishing.

Jiang, X., Kim, M., Lauter, K., and Song, Y. (2018). Se-
cure outsourced matrix computation and application
to neural networks. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’18, page 1209–1222, New York,
NY, USA. Association for Computing Machinery.

Kim, S., Omori, M., Hayashi, T., Omori, T., Wang, L., and
Ozawa, S. (2018). Privacy-Preserving Naive Bayes
Classification Using Fully Homomorphic Encryption:
25th International Conference, ICONIP 2018, Siem
Reap, Cambodia, December 13-16, 2018, Proceed-
ings, Part IV, pages 349–358.

Lou, Q. and Jiang, L. (2021). HEMET: A homomorphic-
encryption-friendly privacy-preserving mobile neural
network architecture. CoRR, abs/2106.00038.

Muhammad, K., Sugeng, K. A., and Murfi, H. (2018).
Machine learning with partially homomorphic en-
crypted data. Journal of Physics: Conference Series,
1108(1):012112.

Sun, X., Zhang, P., Liu, J. K., Yu, J., and Xie, W. (2020).
Private machine learning classification based on fully
homomorphic encryption. IEEE Transactions on
Emerging Topics in Computing, 8(2):352–364.

Vizitiu, A., Niţă, C. I., Puiu, A., Suciu, C., and Itu, L. M.
(2019). Towards privacy-preserving deep learning
based medical imaging applications. In 2019 IEEE
International Symposium on Medical Measurements
and Applications (MeMeA), pages 1–6.

Wang, Y., Liang, X., Hei, X., Ji, W., and Zhu, L. (2021).
Deep learning data privacy protection based on homo-
morphic encryption in aiot. Mobile Information Sys-
tems, 2021:1–11.

Wood, A., Najarian, K., and Kahrobaei, D. (2020). Homo-
morphic encryption for machine learning in medicine
and bioinformatics. 53(4).

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
mnist: a novel image dataset for benchmarking ma-
chine learning algorithms.

Xu, R., Joshi, J. B. D., and Li, C. (2019). Cryptonn:
Training neural networks over encrypted data. CoRR,
abs/1904.07303.

DATA 2023 - 12th International Conference on Data Science, Technology and Applications

374


