PIUDI: Private Information Update for Distributed Infrastructure

Shubham Raj, Snehil Joshi and Kannan Srinathan

Centre for Security, Theory and Algorithmic Research, International Institute of Information Technology, Hyderabad, India

Keywords:

Abstract:

Privacy, Blockchain, Private Information Retrieval, Private Information Retrieval-Writing, Distributed
Database, Packed Secret Sharing, Privacy Enhancing Technology.

Encrypted data is susceptible to side-channel attacks like usage and access analysis. Techniques like
Oblivious-RAM (ORAM) and privacy information retrieval and writing aim to hide clients’ access pattern
while accessing encrypted data on a distrusted server. However, current techniques are constructed for a single
server model making them unsuitable and inefficient for contemporary distributed architectures. In our work,
we address this problem and provide a solution to private information update using packed secret sharing. Our
protocol, named “Private Information Update for Distributed Infrastructure” PIUDI, aims to mitigate the at-
tacks to which PIR-Writing protocols are more susceptible in a distributed environment. Our scheme is secure
in presence of up to t +k — 1 compromised parties where k is the size of the data set. We also provide an

analysis of our protocol for computational efficiency and gas cost in blockchains.

1 INTRODUCTION

Encryption is one of the primary measures used
to safeguard sensitive data stored in databases(Popa
et al., 2011; Popa et al., 2014; Papadimitriou et al.,
2016). However, inference and log analysis attacks
pose significant threats to the privacy and security of
encrypted data(Grubbs et al., 2017; Lacharité et al.,
2018). For example, an attacker could use traffic anal-
ysis to infer when and how often they parties commu-
nicate, and also distinguish between different types of
encrypted data, such as emails, media files etc. Addi-
tionally, service providers can run analysis on the ac-
cess patterns over a client’s encrypted data to extract
vital information.

Inference based methods involve attempting to ex-
tract sensitive information by observing patterns in
the access and operations over encrypted data. These
kind of attacks are highly dangerous and can of-
ten compromise the privacy of individuals and or-
ganizations. Due to efficiency concerns, a majority
of current protocols unintentionally expose data ac-
cess patterns(Papadimitriou et al., 2016). Log anal-
ysis,meanwhile, exploits database logs to gain unau-
thorized access to sensitive information and find cor-
relations between encrypted columns via frequency
attacks(Zolotukhin et al., 2014). The attackers
use these correlations to get insights about sensi-
tive data based on the type of data stored in the

Raj, S., Joshi, S. and Srinathan, K.
PIUDI: Private Information Update for Distributed Infrastructure.
DOI: 10.5220/0012087900003555

database or mapping the data to publicly available
data-sets(Dwork et al., 2017). Thus attackers can of-
ten gain access to valuable information even without
breaking the encryption.

In this paper, we address the challenges posed by
these attacks. Our focus is majorly on mitigating cor-
relation and frequency attacks. Correlation attacks in-
volve finding correlations between different columns
in the database. By analyzing the correlations, at-
tackers can often infer sensitive information that they
would not otherwise have access to. Frequency at-
tacks, on the other hand, involve analyzing the fre-
quency of particular data values. Attackers can often
infer sensitive information by analyzing the frequency
of different operations as well as the frequency of ac-
cess queries of any type on data values, even if the
data itself is encrypted.

In current cryptography literature, there are
mainly two methods for concealing a client’s access
patterns: Oblivious RAM (ORAM) and Private Infor-
mation Retrieval (PIR). ORAM'’s traditional approach
involves organizing data in a way that ensures that
the client never accesses the same part twice, with-
out an intermediary process that removes the corre-
lation between block locations(Goldreich and Ostro-
vsky, 1996)(Stefanov et al., 2018). While ORAMs
had low communication complexity and do not re-
quire any computation on the server, sometimes the
client may have to download and reorganize the entire

425

In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 425-432

ISBN: 978-989-758-666-8; ISSN: 2184-7711

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

SECRYPT 2023 - 20th International Conference on Security and Cryptography

database, which is not practical.(Islam et al., 2012).
In contrast to ORAM, Private Information Retrieval
(PIR) hides the specific query being made, regardless
of any previous queries. PIR uses homomorphic en-
cryption and does not hide a sequence of accesses,
but instead each access individually. The downside
is that the server needs to compute over the entire
database for each query, which can be impractical for
large databases.

In addition to all the above issues, current tech-
niques have only been proposed for single server
problems and distributed systems have generally been
overlooked. As such, using them for a distributed
database will require direct replication of the tech-
niques at each instance of the database itself. This
makes these techniques inefficient and difficult to
scale, and therefore impractical, in the presence of
a large number of instances. They also do not take
into cognizance data sharding techniques. Moreover,
data sharding is commonly used in large-scale appli-
cations that require the ability to store and process
vast amounts of data in a distributed environment.
Sharding is a technique that involves partitioning a
large database into smaller, more manageable subsets
called shards. Each shard contains a subset of the data
and can be stored on separate servers. This technique
can improve the scalability and performance of the
database by allowing multiple servers to process data
simultaneously. The current PIR-Writing techniques
do not provide an efficient mechanism to handle the
case for data sharding as well. Our work aims to solve
these problems.

1.1 Relevant Work and Motivation

The problem of Private Information Retrieval (PIR)
has been studied extensively in the field of cryptog-
raphy and computer science. PIR protocols allow a
client to retrieve data from a database without reveal-
ing which item was accessed. This is particularly use-
ful when dealing with sensitive information that needs
to be kept private against access pattern analysis. The
first PIR protocol was proposed in the seminal work
of (Chor et al., 1998), and since then, most of the re-
search in this area has been done to develop more ef-
ficient and secure protocols(Gasarch, 2004).

PIR solved the problem of obliviously reading the
data, as it ensured that the client’s privacy was pro-
tected. However, the problem of PIR-writing was still
relevant due to the statistical and inference-based at-
tacks on access patterns and database and system logs.
Such attacks revealed information about the client’s
queries, even if the specific data accessed remains pri-
vate. This posed a significant challenge in the design

426

of PIR systems, as ensuring both data privacy and
query privacy is crucial to protect clients’ sensitive
information.

Boneh et al. proposed the first PIR-Writing proto-
col with sublinear communication complexity, which
uses a bilinear-pairing based cryptosystem(Boneh
et al., 2007). Lipmaa et al. (Lipmaa and Zhang,
2010) then came up two new PIR-Writing proto-
cols. The first PIR-Writing protocol is based on the
cryptocomputing protocol PrivateBDD of Ishai and
Paskin(Ishai and Paskin, 2007). The second protocol
is based on a fully-homomorphic cryptosystem. Both
these approached use computational assumptions de-
pending on the hardness of the underlying problem
upon which the cryptosystem is based. Our proto-
col relies on perfectly secure schemes. Even though
our PIR-Writing scheme is homomorphic, it does not
use homomorphic encryption for the private compu-
tational operations which makes it quite beneficial
when computing happens over expensive environ-
ments like public and permission-less blockchains.

1.2 Contributions

In our paper, we propose a novel protocol, “Pri-
vate Information Update for Distributed Infrastruc-
ture” (PIUDI), that uses a combination of data shard-
ing and secret sharing to mitigate aforementioned at-
tacks as well as improve scalability for practical ap-
plications.

* Our protocol is incredibly communication effi-
cient, utilising packed secret sharing to encode
multiple data elements into a single polynomial.

It is also computation efficient which in the con-
text of blockchains, saves gas costs.

It is also more scalable in a distributed setting :
as the number of the database instance increases,
our protocol makes sure that encoded data set in-
creases by a constant rate.

Our protocol also supports batch updates, which
greatly simplifies the process of updating data
in both blockchain networks and distributed
databases and can lead to significant improve-
ments in efficiency.

We also provide a detailed analysis of our pro-
posed solution, including a formal security proof
and a comparative analysis with existing protocols,
thereby demonstrating the effectiveness of our proto-
col.

1.3 Organization of the Paper

The first section begins with an introduction, moti-
vation of our work and the literature survey. It also
outlines contributions of our work. The second sec-
tion defines the the communication and adversarial
models, cryptographic assumptions,and underlying
schemes we have utilized in our work. This provides
the reader with the necessary background knowledge
and technical details for our protocol. The third sec-
tion describes our proposed protocol in detail, and its
variations. In the fourth section, we provide formal
definitions of security and present a detailed proof
of our protocol’s security guarantees against differ-
ent attacks. The next section presents a performance
evaluation of our protocol and a comparative analysis
against existing protocols. The next section describes
potential use cases of our protocol in practical sce-
narios. Finally, the conclusion summarizes the contri-
butions of our research and provides a discussion of
the limitations of our study and suggestions for future
research.

2 PRELIMINARIES

2.1 Communication and Adversary
Model

In this paper, we will be examining the stand-alone
setting, which is characterized by a synchronous net-
work and perfectly private channels between all par-
ties involved in the protocol. The stand-alone setting
restricts our analysis to only a single protocol execu-
tion, as opposed to a repeated execution of the proto-
col with changing participants.

Furthermore, we assume static corruptions in
which the set of corrupted parties is fixed ahead of
time and remains constant throughout the execution
of the protocol as well as semi-honest adversaries,
i.e., those who follows the protocol correctly, but may
attempt to learn information outside their purview
without actually deviating from the protocol in any
way. All parties also have a probabilistic polytime
bound on their computational power.

2.2 Shamir Secret Sharing

Shamir Secret Sharing (SSS)(Shamir, 1979) is a cryp-
tographic technique that allows a secret to be split
into multiple shares and distributed among a group of
participants in such a way that only a predetermined
number of shares are required to reconstruct the orig-
inal secret. This technique has found widespread use

PIUDI: Private Information Update for Distributed Infrastructure

in a variety of applications, including secure commu-
nication, key management, and data storage.

2.3 Packed Secret Sharing

The Packed Shamir secret sharing scheme proposed
in 1992(Franklin and Yung, 1992) is an extension of
the original Shamir secret sharing scheme introduced
by Shamir in 1979. This variant enables the sharing
of a group of secrets using a single Shamir sharing,
which is a more efficient and convenient approach.
Specifically, if we have a vector x in a finite field Fg,
then we can create a degree-d packed Shamir sharing
denoted as [x]4, where d is a value between k — 1 and
n— 1. To reconstruct the original sharing, at least d +
1 shares are required, and any d — k + 1 shares are
independent of the underlying secrets. The packed
secret sharing has linear homomorphism as well has
multiplicative properties.

Consider a field F and let ay,...,0, be n dis-
tinct elements in F. Let pos = (p1, p2, ..., px) be an-
other k distinct elements in F. Suppose we wish
to share a vector x = (xy,...,x;) € F; among k par-
ties such that each party receives a share of the vec-
tor. We can achieve this by constructing a degree-
d (d > k— 1) packed Shamir sharing of x, which is
a vector (wy,...,wy) satisfying the following condi-
tions:

There exists a polynomial f() € F[X] of degree at
most d such that f(p;) =x; foralli € 1,2, ...,k. Forall
i €1,2,...,n, f(o;) = w;, where the i — th share w; is
held by party P;. In other words, the polynomial f() is
used to encode the vector x and the shares wy,...,w,
are used to distribute the encoded vector among the
parties. This allows each party to reconstruct their
share of the vector using their share and the shares of
other parties.

2.3.1 Packed Secret Sharing Protocol (PSS)

Let x be a vector that we want to share such that x
= (x1,...,X¢) € F such that the protocol can tolerate
up to ¢ adversaries. Let pos = (ij, ..., i) be other field
element such that pos € F and they are the index to
encode the secret vector x.

1. Let dealer select a random polynomial f;() “of de-
gree atmostd =k—1+¢

2. Encode x; € x in the polynomial f() as f;(i;) = x;
Vi=1,..,k

3. Distribute f;(w;) to n parties such that w; € F Vi =
1,...,n

Lemma 2.1. Suppose we have a secret vector x and
a random polynomial f;, as defined previously. If we

427

SECRYPT 2023 - 20th International Conference on Security and Cryptography

select a subset of shares, containing no more than t
shares, then the distribution of those shares is unre-
lated to x. On the other hand, if we gather at least
k+t shares, we can use them to recover Xx.

Proof. To prove the first statement, let’s consider the
shares f;(1) through f;(r), without loss of generality.
Using Lagrange interpolation, we can create a poly-
nomial 4 with a maximum degree of d = k— 1 +1¢,
such that (w) through h(w,) are all zero, and h(i;)
= -x; for j = 1 through k. This means that for each
polynomial f;() that shares the secret vector x, there
is exactly one polynomial f;(x)+ h(x) that shares the
all-zero vector and generates the same first ¢ shares.
Since the choice of polynomials is random and uni-
form, we can conclude that the distribution of the ¢
shares is the same for all secret vectors, namely the
distribution resulting from sharing the all-zero vector.
The last statement on reconstruction is straightfor-
ward and follows from Lagrange interpolation. O

2.3.2 (PSS) Notations

Let x be the vector of secrets we want to share using
polynomial f,. Let y be the vector we want to securely
add to vector x and we share y using polynomial f;,.

« ENCODE(X, f,) : [, fala = (faW1), s fa(wy))
* ENCODE(Y, f5) : [y, fola = (f(W1)s s fo(Wn))

* ADD(x,y): [xafa]d+ [Y7fb]zl = [x+y7fa +fb]d

We can define the multiplicative properties of the
share in the same way

* MUL(X, y) : [x, fala * [y, fola = ey, fa* fbl2a
We will only focus only on the additively homomor-
phic property of the packed secret sharing scheme to
keep the details of our protocol simple for analysis.

2.4 Sharding

Data sharding is a technique used to partition a large
database into smaller, more manageable chunks. Each
such chuck of data is called a shard. Sharding can
help distribute the load of database queries across
multiple servers, allowing for faster and more ef-
ficient retrieval of data. This is particularly im-
portant for large-scale databases that require high
performance and low latency(Bagui and Nguyen,
2015)(Luu et al., 2016).

Sharding can be implemented in various ways, in-
cluding range-based sharding, hash-based sharding,
and directory-based sharding. In range-based shard-
ing, data is partitioned based on a specific range of
keys, such as timestamps or alphabetical characters.
In hash-based sharding, data is partitioned based on a

428

hashing function, which distributes data evenly across
shards. Directory-based sharding involves using a
central directory to map data to specific shards.

In this paper, we will shard a set of database fields
into smaller subsets such that every subset contains at
least one field which has a higher access rate.

3 PROTOCOL

3.1 Overview

We propose three variations of our protocol to cover
the different kinds of use-cases as the efficiency will
differ widely depending on their applications in dif-
ferent cases. While the basic structure of the proto-
col will remain largely similar, there will be modifica-
tions to it to make it more efficient for each scenario.
Accordingly, our security definition will also vary for
each case.

All our cases assume a client who wants to maintain
a database DB protected by a PIR-Writing protocol
which has N records of C columns each, to be repli-
cated across m servers in some capacity. It is assumed
that up to ¢ servers can collude with a semi-honest ad-
versary to learn more information about the files that
have been accessed by the client in DB. We have three
different scenarios:

1. Column Hiding : The client wants to hide the col-
umn that was updated in a record. The adver-
sary can learn which record was updated but it
can not tell the specific column in that record that
was changed. An example would be the engage-
ment metrics for a YouTube channel where the ad-
versary will know that some values were updated
about the channel, but not the exact fields.

2. Row Hiding : The client wants to hide the record
that was updated. The adversary can learn which
column was updated but it can not tell the spe-
cific record that was changed. A useful scenario
would be updating an employee’s salary so ad-
versary will know that someone’s salary changed
but will not know for how many employees or for
whom.

3. Database Hiding : The client wants to hide any
kind of update information. The adversary should
neither learn the record nor the column that was
updated. This can be the case of extremely sen-
sitive data like healthcare data that can be used
to draw inferences about both an individual or a
wider population.

3.2 Base Protocol

We first present the base version of our protocol. The
variations are all derived from it and maintain the
same level of security.

Consider D to be a database that follows a tabular
structure and x = (x1,...,x¢) as a set of values that
is a part of one of the columns of this database.
The individual elements of x are owned by different
clients. The objective of this protocol is to ensure that
in case any element from x is updated, no entity can
obtain information about which particular element
has been updated. This ensures that privacy of the
individual elements in x is maintained.

PIUDI - PIR-Writing Protocol:

Common Input. A distributed database with n
instances.

Database Initialization. The database instances
have been initialised with shares of zero such that
[0, fula +— ENCODE(0, f,)

Client’s Input. n shares of a vector x of size k
Database Output. Updated database

1. Client chooses a random polynomial f;, of degree
d such that d = k — 1+t where k is the size of
vector x

2. [x,fpla +— ENCODE(x, fp) such that n «—
size([x, fp]a)

3. Client distributes the shares to the n instances of
the database and adds to every initialised element
at the respective database instance : [0, fz]s +
[x, fola +— ADD(0,x)

PIUDI - PIR-Writing Batch Update Protocol:
Common Input. A distributed database with n in-
stances.

Database State. The database instances have shares
of a vector x such that [x, f,]; +— ENCODE(x, f,)
Client’s Input. n shares of a vector y of size k such
that a client wants to add each element of y to each
element of x at the respective vector positions: [y, fp]4
+— ENCODEy, fp)

Database Output. Updated database after perform-
ing the following operation: ADD(X, y) «— [x, fa]qa +
[, fola =[x+, fa+ fbla

1. Client chooses a random polynomial f;, of degree
d such that d = k— 1+t where k is the size of
vector y

2. [x,fp]la +— ENCODE(y, fp) such that n «—
size([y, fila)

3. Client distributes the shares to the n instances of
the database and adds to every initialised element

PIUDI: Private Information Update for Distributed Infrastructure

at the respective database instance :
[%fb}d — ADD()C,y)

[x7fa]d +

3.3 Protocol Variations
3.3.1 Column-Hiding PIUDI Protocol

The adversary should not learn which at-
tribute/column was updated for a particular record in
the database.

Common Input. Same as base protocol
Database Initialization. Same as base protocol
Client’s Input. Same as base protocol
Database Output. Same as base protocol

1. Client chooses a random polynomial f;, of degree
d such that d = k+t where the vector x is a vec-
tor containing a row of the table and k = c is the
number of columns in the database.

2. To update a value, [x, fp]qs +— ENCODE(X, f3)
such that n <— size([x, f3]4)

3. Client distributes the shares to the n instances
of the database and adds to every initialised
element at the respective database instance :
%, fala + [, fola <— ADD(x,y)

This results in all record values in our updated row
being refreshed with new shares across all the servers,
while the other rows will remain unchanged. Adver-
sary can not guess which value change caused this
change in the row.

3.3.2 Row-Hiding PIUDI Protocol

This protocol ensures that the adversary can not learn
which row/record was updated corresponding to a
particular attribute/column update in the database.

Common Input. Same as base protocol
Database Initialization. Same as base protocol
Client’s Input. Same as base protocol
Database Output. Same as base protocol

1. Client chooses a random polynomial f;, of degree
d such that d = k+ 1 where the vector x is the
column to be updated and k = c is the number of
rows/records in the database.

2. To update a value, [x, fp]s ¢<— ENCODE(x, f3)
such that n +— size([x, f3]4)

3. Client distributes the shares to the n instances
of the database and adds to every initialised

429

SECRYPT 2023 - 20th International Conference on Security and Cryptography

element at the respective database instance :
[xvf(l}d + [,Y7fh]d — ADD(X,y)

This results in all column values corresponding to
our column change being refreshed with new shares
across all the servers, while the other columns will
remain unchanged. Adversary can not guess which
value change caused this change in the column.

3.3.3 Cell-Hiding PIUDI Protocol

This protocol ensures that the adversary can not learn
which column was updated for a particular record in
the database. This is achieved by keeping the vec-
tor x as the entire database of size r x c. The rest of
the protocol is the same as the base protocol. This
results in all the columns for all the records being re-
freshed with new shares across all the servers. While
this is more inefficient than the other two variations,
cell-hiding protocol is still more efficient than previ-
ous PIR-Writing protocols in a distributed setting.

4 PROOF OF SECURITY

While our protocol variations differ in the number of
shards and secret shares, their security is dependent
on the base protocol. WLOG, we define our security
as the following game between a challenger and an
adversary for the base protocol: Let there be a chal-
lenger running the protocol over n servers in the pres-
ence of an adversary A such that up to ¢ servers can be
compromised by A. Given this setup:

1. A selects a database of N = r X ¢ records and sends
it to the challenger.

2. Challenger processes the database through the
protocol and distributes the shares across n servers
such that each share contains a vector x of k se-
crets.

3. A now selects two subsets of columns Sy and S
from the same row of the database to be modified.
The new updated values are also selected by A. A
sends these subsets along with their indices and
new values to be updated to the challenger. The
choice of the subsets is restricted based on the hid-
ing variation of the protocol we have chosen.

4. Challenger decides to randomly choose one of
the two subsets S, and only modifies that in the
database according to the protocol.

5. A observes the modified database and outputs its
guess for the value for b =0, 1.

Let P, be the probability with which A outputs 1 given
b=0,1.

430

4.1 Definition

The database update (k—t — N,S}) is private, if for
all semi-honest PPT adversaries A, we have Py — P; as
being negligible i.e., A is not able to guess the column
that the client modified.

Proof. To prove our protocol’s security we will show
how it can be reduce to the packed secret sharing
(PSS) protocol mentioned in section 2.4.

For the given database, the client first distributes the
database values using a (PSS) scheme with the packed
secret represented with a vector x of size k for each
shard. For example, in row-hiding protocol, the client
will have |c| number of vectors each of size k = |r|
to represent the values in the database as packed se-
crets. In the game with the adversary, the client then
chooses one subset for updating and converts it into
secret vectors x''" of size k. These secret vectors will
depend on the protocol variation. For example in case
of row hiding, our subset values will represent parts
of some columns and all those columns will be used
as secret vectors.

Now for each such vector x;?ew, the client pro-
duces a polynomial f; and creates shares s;; for
each database hosting node db; hosting corresponding
database shards shards, using PSS such that all shares
for that vector are updated across the distributed sys-
tem. For any node db;, give its current share value
for the vector, sf‘”’e’” , its new share will be updated to
ST = s§UTe ;5. The updated shares when recon-
structed using (PSS) will result in the updated values
as had been demanded by the adversary A. But, since
all the shares for the entire vector have been modi-
fied, from the adversary’s view, it will not be able to
guess with more that negligible probability, which of
the given subsets was actually had its values changed.
Additionally, since we are following the (PSS) pro-
tocol to distribute and update the shares across the
servers, the security definition will hold, i.e., the ad-
versary with control of only up to r +k — 1 servers
will not be able to learn anything about the new val-
ues from its shares alone. O

For simplicity, the following restrictions will be
applied on the adversary in the security game, for our
three variations: For column and row-hiding, all the
values from each subset should (ideally) only come
form a single column/row. In case, this is not the case,
the client will need to update the shares for all the
rows/columns from which the two subsets draw their
values. For the cell-hiding, the entire database has to
be updated for change in a single value. However, we
restrict our adversary to selecting the subsets in some

pattern, then we can achieve much more efficient and
privacy-preserving outcomes.

S ANALYSIS

To the best of our knowledge, all other protocols in
this field have been designed specifically for a single
client-server model. That is to say, the focus of their
design has been on improving the efficiency of the
computation and communication aspects of the pro-
tocol in a non-distributed setup. All previous proto-
cols like Lipmaa’s (Lipmaa and Zhang, 2010) results
in a complete update of the entire database i.e., all n
encrypted records will be modified. For a distributed
database, this would require necessary updates in all
the locations/shards which would cost around O(n?)
updates assuming there are n instances of the database
for high availability. In a more particular scenario
where the data is hosted on a blockchain, this would
also result in immense gas costs. Others, like (Ishai
et al., 2004) have implemented a distributed setup,
somewhat similar to ours, but it only works for private
information retrieval and not for updating. Since our
protocol focuses on minimizing the net difference in
terms of records changed between the original and up-
dated database, in terms of communication and com-
putational efficiency, it only needs O(n) updates as-
suming there are n instances of the database for high
availability for updating a number of shares related
only to the subset.

Batch Updates. The existing PIR-Writing protocols
do not explicitly address the issue of batch updates,
which is a critical consideration for reducing gas costs
on public blockchains(Sguanci et al., 2021). The rea-
son for this is that these protocols typically involve
accessing and updating individual elements of a dis-
tributed database one at a time, which can quickly be-
come prohibitively expensive in terms of the gas fees
required for each transaction. However, our proto-
col takes a different approach by utilizing packed se-
cret sharing, which allows us to compress an entire
set of data into a single field element. By doing so,
we are able to update multiple elements within the
data set by only modifying this single field element
at all instances of the distributed database. This ap-
proach drastically reduces the number of transactions
required to update the entire data set, leading to sig-
nificant cost savings in terms of gas fees.

Privacy Improvement. Unsupervised sharding could
lead to information leakage. However, Sharding the
dataset based on the apriori knowledge of the user ac-
cess patterns can turn out to be an efficient method
to improve privacy in practical scenarios. A trivial

PIUDI: Private Information Update for Distributed Infrastructure

way to achieve this could be by distributing data with
patterns of frequent access uniformly into different
shards.

6 APPLICATIONS

There are several important applications of our proto-
col in various fields such as medical research, finance,
and government, where sensitive data must be stored
and manipulated securely and privately. Our protocol
can be used as an add-on with existing protocols with-
out modifying the system drastically. This provides
an easy mechanism to protect existing protocols that
are susceptible to side-channel attacks. This protocol
is useful to protect clients data whenever it is updated
on a remote unreliable server. For example, in case of
medical information being store on a hospital server.
With the optimizations in place, it is very difficult for
an adversary to glean information about which patient
record was updated.

7 CONCLUSION

In this paper, we have presented a novel information
theoretic PIR-Writing protocol, PIUDI, that is highly
suitable and efficient for distributed database settings.
The protocol is designed to mitigate two main types
of attacks, correlation attacks and frequency attacks,
which have been identified as major vulnerabilities in
existing PIR protocols.

The proposed protocol not only addresses these
vulnerabilities but also improves efficiency using
batch updates. This makes our protocol highly effi-
cient and scalable, which is critical for distributed ar-
chitectures. Another key advantage of this protocol is
that it is highly suitable for public blockchains. With
the growing popularity of blockchain technology, re-
ducing the gas cost is a critical consideration for any
blockchain-based protocol. This protocol achieves
this by drastically reducing the gas cost, making it a
highly desirable solution for blockchain-based appli-
cations.

Future work in this area could explore further im-
provements to the protocol, such as exploring more
efficient methods of batch updates or investigating ad-
ditional attack types that may be mitigated through
the use of this protocol. Another avenue of future re-
search is reducing the gas cost of updates when the
data is completely on blockchain without intervention
off-chain programs. We hope that our work provides
an excellent foundation for such research in this area,

431

SECRYPT 2023 - 20th International Conference on Security and Cryptography

Table 1: Comparison of related schemes in distributed database setting with n instances each with m data objects each of /

bits.
Scheme Lipmaa Boneh Chandran PIUDI
Communication | (logn+1)k*m(best case) | O(Ixmy/n) | O(m*I1'*%)polylog(n) | O(I*n)
Computation O(mx (nxlogn+n)) O(lxmxn) O(nxmx polylog(n)) O(n)
DB size change None None None None

Table 2: Gas fee comparison between trival encrypted db(Best case), homomorphically encrypted db(Best case) and our
approach for updating n data objects with ¢ being the gas cost for a trivial addition operation.

Scheme Encrypted Homomorphic encrypted | PIUDI
Single update gas cost | O(n*logn+n)xc O(nxlogn+n)x*c O(1)xc
Batch update gas cost N.A. N.A. O(1) xc

and we anticipate it will have practical implications in
the field of privacy-preserving distributed databases.

REFERENCES

Bagui, S. and Nguyen, L. T. (2015). Database sharding:
to provide fault tolerance and scalability of big data
on the cloud. International Journal of Cloud Applica-
tions and Computing (IJCAC), 5(2):36-52.

Boneh, D., Kushilevitz, E., Ostrovsky, R., and Skeith, W. E.
(2007). Public key encryption that allows pir queries.
In Advances in Cryptology-CRYPTO 2007: 27th An-
nual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2007. Proceedings 27,
pages 50-67. Springer.

Chor, B., Kushilevitz, E., Goldreich, O., and Sudan, M.
(1998). Private information retrieval. Journal of the
ACM (JACM), 45(6):965-981.

Dwork, C., Smith, A., Steinke, T., and Ullman, J. (2017).
Exposed! a survey of attacks on private data. Annual
Review of Statistics and Its Application, 4:61-84.

Franklin, M. and Yung, M. (1992). Communication com-
plexity of secure computation. In Proceedings of the
twenty-fourth annual ACM symposium on Theory of
computing, pages 699-710.

Gasarch, W. (2004). A survey on private information re-
trieval. Bulletin of the EATCS, 82(72-107):113.

Goldreich, O. and Ostrovsky, R. (1996). Software protec-
tion and simulation on oblivious rams. Journal of the
ACM (JACM), 43(3):431-473.

Grubbs, P, Ristenpart, T., and Shmatikov, V. (2017). Why
your encrypted database is not secure. In Proceedings
of the 16th workshop on hot topics in operating sys-
tems, pages 162—-168.

Ishai, Y., Kushilevitz, E., Ostrovsky, R., and Sahai, A.
(2004). Batch codes and their applications. In Pro-
ceedings of the thirty-sixth annual ACM symposium
on Theory of computing, pages 262-271.

Ishai, Y. and Paskin, A. (2007). Evaluating branching pro-
grams on encrypted data. In Theory of Cryptography:
4th Theory of Cryptography Conference, TCC 2007,
Amsterdam, The Netherlands, February 21-24, 2007.
Proceedings 4, pages 575-594. Springer.

432

Islam, M. S., Kuzu, M., and Kantarcioglu, M. (2012). Ac-
cess pattern disclosure on searchable encryption: ram-
ification, attack and mitigation. In Ndss, volume 20,
page 12. Citeseer.

Lacharité, M.-S., Minaud, B., and Paterson, K. G. (2018).
Improved reconstruction attacks on encrypted data us-
ing range query leakage. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 297-314. IEEE.

Lipmaa, H. and Zhang, B. (2010). Two new efficient pir-
writing protocols. In Applied Cryptography and Net-
work Security: 8th International Conference, ACNS
2010, Beijing, China, June 22-25, 2010. Proceedings
8, pages 438—455. Springer.

Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S.,
and Saxena, P. (2016). A secure sharding protocol for
open blockchains. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pages 17-30.

Papadimitriou, A., Bhagwan, R., Chandran, N., Ramjee,
R., Haeberlen, A., Singh, H., Modi, A., and Badri-
narayanan, S. (2016). Big data analytics over en-
crypted datasets with seabed. In OSDI, volume 16,
pages 587-602.

Popa, R. A., Redfield, C. M., Zeldovich, N., and Balakr-
ishnan, H. (2011). Cryptdb: Protecting confidential-
ity with encrypted query processing. In Proceedings
of the twenty-third ACM symposium on operating sys-
tems principles, pages 85-100.

Popa, R. A,, Stark, E., Helfer, J., Valdez, S., Zeldovich, N.,
Kaashoek, M. E., and Balakrishnan, H. (2014). Build-
ing web applications on top of encrypted data using
mylar. In NSDI, volume 14, pages 157-172.

Sguanci, C., Spatafora, R., and Vergani, A. M. (2021).
Layer 2 blockchain scaling: A survey. arXiv preprint
arXiv:2107.10881.

Shamir, A. (1979). How to share a secret. Communications
of the ACM, 22(11):612-613.

Stefanov, E., Dijk, M. v., Shi, E., Chan, T.-H. H., Fletcher,
C., Ren, L., Yu, X., and Devadas, S. (2018). Path
oram: an extremely simple oblivious ram protocol.
Journal of the ACM (JACM), 65(4):1-26.

Zolotukhin, M., Hiamilédinen, T., Kokkonen, T., and Silta-
nen, J. (2014). Analysis of http requests for anomaly
detection of web attacks. In 2014 IEEE 12th Inter-
national Conference on Dependable, Autonomic and
Secure Computing, pages 406—411. IEEE.

