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Abstract: This paper presents theoretical and practical aspects of finite-time tracking control of a multirotor attitude 
system. The vehicle is subjected to matched lumped disturbances. Inspired by the homogeneity theory, an 
Improved Optimized Homogeneous Twisting Control (IOHTC) is proposed to deal with the fast dynamics’ 
response of the attitude states. Within the designed control scheme, the chattering issue of discontinuous 
Sliding Mode Control (SMC) techniques can be mitigated due to the continuous control signal that is 
generated by a non-switching function in the form of |𝑥|ఈsign(𝑥), 𝑥 ∈  𝑅, 𝛼 ∈  𝑅 +. Besides, finite-time 
convergence of the system’s states can be ensured to achieve accurate control. It is worth mentioning that 
the disturbance rejection does not require the design of an observer since the control law integrates a 
compensation term. Stability analysis of the closed-loop system is rigorously investigated by using a 
homogeneous Lyapunov function. From the practical aspect, the control algorithm is embedded onboard the 
quadrotor’s autopilot through a model-based design approach. A comparative study is made involving the 
proposed IOHTC strategy and three other controllers. The obtained results show that the suggested controller 
yields performance improvement regarding accuracy and robustness. Meanwhile, the chattering effect of 
conventional SMC is remarkably alleviated. 

1 INTRODUCTION 

The quadrotor is among the most often used 
multirotor aircraft because of its particular flight 
mode, variety of sizes, and exceptional hovering 
capabilities. Unfortunately, it is also considered a 
well-known underactuated mechanical system. 
However, since its invention in 1907, quadcopters 
have found use in a wide range of application fields 
(O. Mechali J. I., 2021) (O. Mechali J. I., 2021). 
However, despite its alluring qualities, this kind of 
system faces real challenges, especially in terms of 
control. Accurate and robust aircraft attitude control 
is necessary for autonomous quadrotor flying. Since 
a quadrotor is a nonlinear system with highly coupled 
dynamics, it is susceptible to internal modeling errors, 
parametric uncertainty, and external disturbances. 
Consequently, developing the system attitude 
controller becomes challenging. In order to perform 
the objectives of the flying mission, this aircraft’s 
autonomous flight requires a sophisticated control 

scheme. Additionally, the controller design appears 
based on robustness, high control accuracy, and quick 
convergence. 

SMC, among other robust control approaches, is 
an active topic in the unmanned aerial vehicle 
community nowadays for controlling quadrotor 
aircraft (S. Benmansour, 2023) (S. G. Khan, 2019). 
The simplicity of design and the fast response are 
among the benefits of such methods. In addition, it 
accurately compensates for matched disturbances. 
Several recent research works have focused on 
synthesizing and implementing robust SMC-based 
control laws for disturbance handling in the quadrotor 
system. For example, through an integral SMC-based 
approach, the study described in (S. Ullah, 2020) 
seeks to enhance the stability of an underactuated 
quadcopter. A robust backstepping-SMC control law 
is suggested in a further inspired study (Almakhles, 
2020) to deal with the quadrotor model with 
disturbances. However, because a linear switching 
manifold has been employed, it is guaranteed that the 
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states will only converge asymptotically to the origin. 
Additionally, Linear SMC (LSMC) is concerned with 
low precision, decaying performance, and chattering 
issues that might overload the actuators. Using a 
nonlinear sliding manifold with continuous-based 
SMC methods is one approach to get around the 
chattering problem and slow convergence rate (F. 
Guo, 2019). Compared with LSMC, continuous-
based SMC offers faster finite-time convergent 
response and accurate tracking (Yu, 1997). For 
instance, the work (O. Mechali L. X., 2022) deals 
with robust trajectory tracking of a quadrotor vehicle 
through a homogeneous terminal sliding mode 
control. Nonetheless, the controller in (O. Mechali L. 
X., 2022) is observer-based, resulting in more 
computational burden. Such a method does not fit our 
application, consisting of implementing the controller 
in Pixhawk 1 board. Furthermore, this autopilot is 
limited in terms of memory resources; thus, control 
performance might be compromised. To the best of 
the authors’ knowledge, only a few research studies, 
such as (F. Guo, 2019) and (Falcón, Ríos, & Dzul, 
2019), investigate a continuous SMC-based control 
for quadrotor aircraft designs with real-time 
implementation onboard a dedicated autopilot. The 
current effort’s fundamental goal, inspired by (H. 
Rabiee, 2019), is to report experimental findings to 
bridge the gap between theoretical fronts and real-
world situations. 

The main scientific contributions of the current 
research can be summed up as follows: 

• Inspired by the homogeneity theory, an 
IOHTC is proposed to deal with the fast 
dynamics’ response of the attitude states. 
The proposed controller allows for 
mitigating the chattering of discontinuous 
SMC techniques compared to (S. Ullah, 
2020) (Almakhles, 2020) (N. Wang, 2019) 
(Z. Hou, 2020). 

• It is worth mentioning that the disturbance 
rejection does not require the design of an 
observer or an adaptation mechanism since 
the control law integrates a compensation 
term. Thus, resulting in alleviating the 
computational burden on the Pixhawk 
autopilot being memory-resource limited; 

• terms of application, a beneficial model-
based design methodology is used to 
incorporate the control algorithm inside the 
quadrotor autopilot. The suggested IOHTC 
method and three other controllers are 
compared in this study. 

The following is the outline of this article. The 
preliminaries and the problem description are 

presented in Section 2. Then, in Section 3, the control 
method is presented along with a thorough 
mathematical analysis of the stability. The 
experimental results are critically discussed in 
Section 4. Finally, Section 5 concludes the paper and 
considers possible research directions. 

2 PRELIMINARIES AND 
PROBLEM STATEMENT 

2.1 Preliminaries 

Lemma 1.  (Xu, 2017). Consider the following 
system 𝑥ሶ = 𝑓(𝑥), 𝑥(0) = 𝑥଴,    𝑥 ∈ ℝ௡ (1)

If there exist ∁ଵ  Lyapunov function 𝑉(𝑥): D → ℝା 
and some real constants 0 < 𝑐 < ∞ and 0 < 𝛼 < 1, 
such that 𝑉ሶ (𝑥) ≤ −𝑐𝑉(𝑥)ఈ; then, system (1) is finite-
time stable for any given 𝑥(𝑡଴) ∈ D଴ ⊆ D. 

2.2 Problem Statement 

The three differential equations governing the 
rotational dynamics of the quadcopter in the presence 
of external disturbances are given as in (F. Guo, 2019)   

൞𝛷ሷ = 𝐽௫௫ିଵൣ൫𝐽௬௬ − 𝐽௭௭൯𝜃ሶ𝜓ሶ − 𝒸ః𝛷ሶ ଶ − 𝐽௥𝜔ഥ𝜃ሶ + 𝑢ః + 𝑑ఃୣ୶୲൧,𝜃ሷ = 𝐽௬௬ିଵൣ(𝐽௭௭ − 𝐽௫௫)𝛷ሶ 𝜓ሶ − 𝒸ఏ𝜃ሶ ଶ + 𝐽௥𝜔ഥ𝛷ሶ + 𝑢ఏ + 𝑑ఏୣ୶୲൧,𝜓ሷ = 𝐽௭௭ିଵ ൣ൫𝐽௫௫ − 𝐽௬௬൯𝛷ሶ 𝜃ሶ − 𝒸ట𝜓ሶ ଶ + 𝑢ట + 𝑑టୣ୶୲൧,              (2)

To elaborate an adequate control model of the 
quadrotor, state-space representation can be used to 
reformulate the mathematical model (equation 2) as 

             

⎩⎪⎪
⎨⎪
⎪⎧xሶ ଵ = xଶ,                                  xሶ ଶ = 𝐽௫௫ିଵ ቀ൫𝐽௬௬ − 𝐽௭௭൯xସx଺ + 𝑢ః + 𝑑ః୪୳୫ቁ,   xሶ ଷ =  xସ,                                                              xሶ ସ = 𝐽௬௬ିଵ ቀ(𝐽௭௭ − 𝐽௫௫)xଶx଺ + 𝑢ఏ + 𝑑ఏ୪୳୫ቁ,    xሶ ହ =  x଺,                                                               xሶ ଺ = 𝐽௭௭ିଵ ቀ൫𝐽௫௫ − 𝐽௬௬൯xଶxସ + 𝑢ట + 𝑑ట୪୳୫ቁ,   

 (3)

Where x ≜ ൣ𝛷 𝛷ሶ 𝜃 𝜃ሶ 𝜓 𝜓ሶ ൧ ∈  ℝଵଶ  the 
state vector. the design of the control law follows 
from the perturbated second-order nonlinear system 
given below 

ቐ𝜒ሶଵ(𝑡) = 𝜒ଶ(𝑡),                                         𝜒ሶଶ(𝑡) = 𝑓௵(𝜒ଶ, 𝑡) + 𝑔௵(𝑡)𝑢௵(𝑡) + 𝑑௵୪୳୫(𝑑௵ୣ୶୲, 𝑑௵୳୬୫, 𝑡),𝒴ଵ(𝑡) = 𝜒ଵ(𝑡).                                          (4)

Where𝑋௵ ≜ ሾ𝜒ଵ 𝜒ଶሿ் ∈  ℝଷ×ଶ  is the vector of 
states, and 𝜒ଵ ≜ 𝛩 = ሾxଵ xଷ xହሿ் = ሾ𝛷 𝜃 𝜓ሿ் 𝜒ଶ ≜ 𝛩ሶ = ሾ𝛷ሶ 𝜃ሶ 𝜓ሶ ሿ் = ሾxଶ xସ x଺ሿ் , and  
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 𝑢௵ ≜ ሾ𝑢ః 𝑢ఏ 𝑢టሿ் ∈  ℝଷ is the vector of control 
inputs, 𝒴ଵ ≜ ሾ𝛷 𝜃 𝜓ሿ் ∈  ℝଷ  is the vector of 
controlled outputs, and the uncertain function 𝑑௵୪୳୫ ≜ൣ𝑑ః୪୳୫ 𝑑ఏ୪୳୫ 𝑑ట୪୳୫൧் ∈  ℝଷ  stands for the total 
lumped disturbances, i.e., unmodeled dynamics and 
external load perturbations. The functions 𝑓௵(𝜒ଶ, 𝑡), 𝑔௵(𝑡) are defined as follow: 

𝑓௵(𝜒ଶ, 𝑡) ≜ ቎𝑓ః𝑓ఏ𝑓ట቏ = ൦𝐽௫௫ିଵ൫𝐽௬௬ − 𝐽௭௭൯𝜃ሶ𝜓ሶ𝐽௬௬ିଵ(𝐽௭௭ − 𝐽௫௫)𝛷ሶ 𝜓ሶ𝐽௭௭ିଵ൫𝐽௫௫ − 𝐽௬௬൯𝛷ሶ 𝜃ሶ൪ (5)

 𝑔௵(𝑡) ≜ ሾ𝑔ః 𝑔ఏ 𝑔టሿ் = ൣ𝐽௫௫ିଵ 𝐽௬௬ିଵ 𝐽௭௭ିଵ൧் (6)

Definition 1. (Robust tracking control problem). The 
considered control problem of our study consists of 
designing robust finite-time SMC laws 𝒖𝜣 =ሾ𝒖𝜱 𝒖𝜽 𝒖𝝍ሿ𝑻 for the attitude system affected by 
perturbations in (4), such that: (i) The attitude 
tracking errors tend to the origin in finite-time, i.e., 
for ∀𝒆𝟏𝜣(𝒕) ≜  𝜣(𝒕) − 𝜣𝒅(𝒕), There exist a constant 𝑻𝜣 , such that: 𝐥𝐢𝐦𝒕→𝑻𝜣 𝒆𝟏𝜣(𝒕) = 𝟎, ∀𝒕 > 𝑻𝜣 , where 𝜣𝒅 

is the desired reference signal for the attitude system.  
(ii) The controller must ensure robustness against 
uncertainties and disturbances. (iii) The control signal 
is chattering-free. 

3 CONTROL DESIGN AND 
STABILITY ANALYSIS 

3.1 Control Design 

Let the attitude-tracking error and its dynamics be 
defined as:  ቊ𝑒ଵ௵(𝑡) ≜  𝛩(𝑡) − 𝛩ௗ(𝑡)𝑒ଶ௵(𝑡) ≜ 𝛩ሶ (𝑡) − 𝛩ሶௗ(𝑡)   (7)
 ൝𝑒ଵ௵(𝑡) = ൣ𝑒ଵః 𝑒ଵఏ 𝑒ଵట൧் ∈  ℝଷ,𝑒ଶ௵(𝑡) = ൣ𝑒ଶః, 𝑒ଶఏ, 𝑒ଶట൧் ∈  ℝଷ,   (8)

The derivatives of the above expressions are given as: ቊ𝑒ሶଵ௵ =  𝑒ଶ௵,        𝑒ሶଶ௵ = 𝛩ሷ − 𝛩ሷௗ. (9)

The Traditional Twisting Control (TTC) algorithm is 
given as: 
 
 

൝𝑢ത௵ = −𝑘௵భ⌈𝑒ଵ௵⌋ଵଷ − 𝑘௵మ⌈𝑒ଶ௵⌋ଵଶ + 𝜗௵,𝜗ሶ௵ = −𝑘௵య⌈𝑒ଵ௵⌋଴ − 𝑘௵ర⌈𝑒ଶ௵⌋଴.           (10)

Remark 1. It has been shown in work (Falcón, Ríos, 
& Dzul, 2019) that the TTC controller generates a 
higher frequency, i.e., chattering in its control signal. 
Therefore, limiting its implementation in practice. 
Hence, to improve its performance, we propose to: (i) 
Design a smooth hyperbolic function to mitigate the 
chattering effect as ℱ(𝑒ଵ௵) ≜ (𝑒ଵ௵)ధሾtanh(𝑒ଵ௵ 𝜐⁄ )ሿధ , 
where 𝜛, 𝜐 are positive constants that are related to  ℱ function. (ii) Integrate the sliding function  𝑠௵ =𝑒ଶ௵ + 𝑘௦𝑒ଵ௵  in the TTC’s algorithm to enhance the 
robustness and tracking.  

Consequently, by introducing the following 
control law for the attitude system 

൞𝑢ത௵ ≜ −𝑘௵భ|𝑒ଵ௵|భయℱ(𝑒ଵ௵) − 𝑘௵మ|𝑠௵|భమℱ(𝑠௵) + 𝜗௵,𝜗ሶ௵ ≜ 𝑘௵య|𝑒ଵ௵|బℱ(𝑒ଵ௵) − 𝑘௵ర|𝑠௵|బℱ(𝑠௵),             𝑠௵ = 𝑒ଶ௵ + 𝑘௦𝑒ଵ௵.                                    (11)

The final attitude controller is formulated as: 

𝑢௵ ≜ ሾ𝑔௵ሿିଵ ൥ −𝑘௵భ|𝑒ଵ௵|భయℱ(𝑒ଵ௵) −𝑘௵మ|𝑠௵|భమℱ(𝑠௵) + 𝜗௵ − 𝑓௵൩ (12)

3.2 Stability Analysis of the Closed 
Loop System 

Theorem 1. Consider the nonlinear perturbated 
attitude system (4) and the designed control law u_Θ 
given in (11). Then, the attitude tracking errors are 
globally finite-time stable at the origin.  

Proof. Since the attitude dynamics are similar, we 
consider the stability proof of the roll angle. The 
closed-loop dynamics for the roll variable 𝛷 can be 
described as: 

⎩⎪⎨
⎪⎧𝑒ሶଵః = 𝑒ଶః,                                       𝑒ሶଶః = −𝑘ఃభ|𝑒ଵః|భయℱ(𝑒ଵః) − 𝑘ఃమ|𝑠ః|భమℱ(𝑠ః) + 𝜍ః,   𝜍ሶః = −𝑘ఃయ|𝑒ଵః|బℱ(𝑒ଵః) − 𝑘ఃర|𝑠ః|బℱ(𝑠ః) − 𝛷ௗ(ଷ),𝑠ః = 𝑒ଶ௵ + 𝑘௦𝑒ଵ௵.                                        (13)

Where 𝜍ః = 𝜗ః − 𝛷ሷ ௗ . The third expression in 
(12) can be associated with differential inclusion (DI) 𝜍ሶః ∈ −𝑘ఃయ|𝑒ଵః|బℱ(𝑒ଵః) − 𝑘ఃర|𝑠ః|బℱ(𝑠ః) + ሾ−𝜆, 𝜆ሿ 
which is basically 𝜍ሶః ∈ −𝑘ఃయ|𝑒ଵః|బsign(𝑒ଵః) −𝑘ఃర|𝑠ః|బsign(𝑠ః) + ሾ−𝜆, 𝜆ሿ .Therefore, it is 
associated with DI 𝑥ሶ ∈ F(𝑥), where the set valued 
map F  is given by F(𝑥) = ሼ𝑦 ∈ ℝ௡|𝑦 =ሾ𝑒ଶః, 𝜍ః, 𝜌ሿ்ሽ , for all 𝜌 ∈ −𝑘ఃయ|𝑒ଵః|బℱ(𝑒ଵః) −𝑘ఃర|𝑠ః|బℱ(𝑠ః) + ሾ−𝜆, 𝜆ሿ ⊂ ℝ . This DI is 
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homogeneous of degree  𝑞ః = −1 with weights 𝑟ః =ሾ3,2,1ሿ்  (Falcón, Ríos, & Dzul, 2019). 
Let the following candidate Lyapunov function be 

proposed for system (10) 𝑉ః(𝑒ଵః, 𝑒ଶః, 𝜍ః) = 𝛼ଵ|𝑒ଵః|ఱయ + 𝛼ଶ𝑒ଵః𝑠ః + 𝛼ଷ|𝑠ః|ఱమ+ 𝛼ସ𝑒ଵః൫|𝜍ః|మℱ(𝜍ః)൯ − 𝛼ହ𝑠ః𝜍ఃଷ+ 𝛼଺|𝜍ః|ఱ,  (14)

Where 𝛼௝ = ሾ𝛼ଵ, … , 𝛼଺ሿ் ∈  ℝ଺, 𝑗 = 1,6തതതത  is a 
coefficients vector. The time derivative of  𝑉ః(𝑒ଵః, 𝑒ଶః, 𝜍ః) is computed as: 𝑉ሶః = ℳ = 𝛽ଵ|𝑒ଵః|రయ + 𝛽ଶ𝑒ఃsignଵଶ(𝑠ః) − 𝛽ଷsignଶଷ(𝑒ଵః)𝑠ః+ 𝛽ସsignଵଷ(𝑒ଵః)signଷଶ(𝑠ః) + 𝛽ହ|𝑠ః|మ− 𝛽଺𝑒ଵః𝜍ః + 𝛽଻|𝑒ଵః||𝜍ః|− 𝛽଼𝑒ଵఃsign଴(𝑠ః)|𝜍ః|− 𝛽ଽsignଷଶ(𝑠ః)𝜍ః − 𝛽ଵ଴𝑠ఃsignଶ(𝜍ః)+ 𝛽ଵଵsign଴(𝑒ଵః)𝑠ః|𝜍ః|మ− 𝛽ଵଶ|𝑒ଵః||𝜍ః|మ − 𝛽ଵଷsignଵଷ(𝑒ଵః)𝜍ఃଷ− 𝛽ଵସsignଵଶ(𝑠ః)𝜍ఃଷ + 𝛽ଵହ|𝜍ః|ర+ 𝛽ଵ଺sign଴(𝑒ଵః)signସ(𝜍ః)+ 𝛽ଵ଻sign଴(𝑒ଶః)signସ(𝜍ః). 

(15)

Where 𝛽ଵ = 𝛼ଶ𝑘ఃభ, 𝛽ଶ = 𝛼ଶ𝑘ఃమ, 𝛽ଷ = ହଷ 𝛼ଵ, 𝛽ସ =ହଶ 𝛼ଷ𝑘ఃభ, 𝛽ହ = ହଶ 𝛼ଷ𝑘ఃమ − 𝛼ଶ, 𝛽଺ = 𝛼ଶ, 𝛽଻ =2𝛼ସ𝑘ఃయ, 𝛽଼ = 2𝛼ସ𝑘ఃర, 𝛽ଽ = ହଶ 𝛼ଷ, 𝛽ଵ଴ = 𝛼ସ, 𝛽ଵଵ =3𝛼ହ𝑘ఃయ, 𝛽ଵଶ = 3𝛼ହ𝑘ఃర, 𝛽ଵଷ = 𝛼ହ𝑘ఃభ, 𝛽ଵସ =𝛼ହ𝑘ఃమ, 𝛽ଵହ = 𝛼ହ, 𝛽ଵ଺ = 5𝛼଺𝑘ఃయ, 𝛽ଵ଻ = 5𝛼଺𝑘ఃర . The 
Lyapunov function 𝑉ః given in (13) is homogeneous 
of degree 𝑚 = 5 . Thus, there exist a continuous 
homogeneous function ℳ of degree 𝑚 + 𝑞ః = 4 
such that 𝑉ሶః ≤ −ℳ. Hence, there exist a real 𝛾ః > 0 

such that  ℳ ≥ 𝛾ః𝑉ఃరఱ  . Therefore, 𝑉ሶః ≤ −𝛾ః𝑉ఃరఱ . This implies that the tracking errors are finite-time stable at the origin. Furthermore, since the control system is homogeneous, the stability property is global. The expression of the settling-time can be obtained by solving the differential  equation 𝑉ሶః ≤ −𝛾ః𝑉ఃరఱ . This can be achieved by appealing to the separation of variables method. Thus, by separating the variables and then 

integrating both sides of the equation, we get ׬ ଵ௏೻రఱ
௧଴ 𝑑𝑉ః ≤ ׬ −𝛾ః𝑑𝑡௧଴ . Then the following 

expression is obtained 5𝑉ఃభఱ ≤ −𝛾ః𝑡 . Finally, we 

can get 𝑇௵ ≤ 5ఊ೻ 𝑉ఃభఱ. It follows from Lemma 1 that the 
tracking errors are finite-time stable. Thus, 
completing the proof. 

4 EXPERIMENT RESULTS AND 
DISCUSSION 

4.1 Control Gains Tuning 

The gains of the controller are tuned by using the 
“Optimization Toolbox”. Two blocks are used to 
optimize the parameters: (i) Check Step Response 
Characteristics (CSRC) block; (ii) Check Against 
Reference (CAR) block. In the general case, these 
two optimization blocks are inserted in the output of 
the control loop, as shown in Fig. 1. The CSRC block 
checks that a signal satisfies the step response bounds 
during simulation (Settling-time, Rise-time, % 
Overshoot, and % Undershoot). CAR block checks 
that a signal remains within the tolerance bounds, at 
steady-state, of a reference signal during the 
simulation.  

CSRC, CAR blocks ensure that a signal remains 
within specified time-domain characteristic bounds. 
In our case, these bounds are chosen for a unit step 
response, as shown in Table. 

4.2 Tracking Experiment Under Load 
Disturbances 

To quantify the superior performance achieved by the 
presented controller, comparative studies are 
conducted among the following controllers: PID 
controller, Back-Stepping Controller (BSC), Integral 
Back-Stepping  Sliding  Mode  Controller  (IBSSMC)  

Table 1: Specified time-domain characteristic bounds for position states. 

States Optimization 
Block Characteristics Value 

𝛷, 𝜃, 𝜓 

CSRC 

Settling-time (s) ≤ 2 s
Rise-time (s) ≤ 4 s
Overshoot (%) ≤ 30 %
Undershoot (%) ≤ 5 %

CAR 
Amplitudes 1 − exp(−linspace(0,20)/2) 
Absolute tolerance eps(ଵ/ଷ)
Relative tolerance 0.01
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Figure 1: Integration of the optimization blocks in the closed-loop control system. 

(Falcón, Ríos, & Dzul, 2019), and the proposed 
controller. A load perturbation of 130 grams is 
attached to the edge of the rear-left arm of the 
quadrotor. The attitude variables are commanded to 
track a time-varying reference trajectory given by: 𝛷ௗ = 10sin(0.08𝑡), 𝜃ௗ = −10sin(0.08𝑡), 𝜓ௗ =−7.5cos(0.08𝑡). 

Fig. 2 shows the experimental setup for the real-
time controllers implementation and validation. The 
tracking states are displayed in Figure 4, whereas 
Figure 3 shows the tracking errors. From these two 
figures, it can be observed that the proposed control 
strategy ensures a robust tracking of the reference 
trajectory. Figure 4 also presents the control signals 
for all controllers, where we can notice that the 
control inputs of the proposed controller have no 
noticeable control switching (chattering). Well-
known performance indexes are used to characterize 
the comparison of the achieved results. These include 
the Integral of the Absolute value of the Derivative of 
the input 𝑢  (IADU) and Integral of Square Error 
(ISE). This improvement is quantified by the Relative 
Percentage Difference (RPD) index as follows:  
( 𝑢ః  ↓ 60%, 𝑢ఏ  ↓ 36.08%, 𝑢ట  ↓ 76.60% ) 
compared to IBSSMC. 

 
Figure 2: Experimental setup for real time control 
implementation. 

5 CONCLUSION 

This work proposed an IOHTC approach to design a 
robust attitude control law while considering lumped 
disturbances. The stability of the control system has 
been rigorously discussed based on a homogeneous-
Lyapunov function. Results based on the real-time 
implementation in autopilot hardware are found to be 
consistent with the theoretical foundations. To 
thoroughly examine the capabilities of the 
synthesized controller, a comparative analysis based 
on various performance indices performed. Results 
witness the effectiveness and superiority of the 
proposed control law in terms of robustness, 
accuracy, and elimination of the chattering effect. 
Further studies will address Cartesian trajectory 
tracking with a real outdoor flight experiment. 
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