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The increasing number of online systems and services has led to a rise in cyber security threats and attacks,
making Intrusion Detection Systems (IDS) more crucial than ever. Intrusion Detection Systems (IDS) are
designed to detect unauthorized access to computer systems and networks by monitoring network traffic and
system activities. Owing to the valuable values provided by IDS, several machine learning-based approaches
have been developed. However, most of these approaches rely on feature selection methods to overcome the
problem of high-dimensional feature space. These methods may lead to the exclusion of important features
or the inclusion of irrelevant ones, which can negatively impact the accuracy of the system. In this work, we
propose Trans-IDS (transformer-based intrusion detection system), a transformer-based system for intrusion
detection, which does not rely on feature selection methods. Trans-IDS learns efficient contextualized rep-
resentations for both categorical and numerical features to achieve high prediction performance. Extensive
experiments have been conducted on two publicly available datasets, namely UNSW-NB15 and NSL-KDD,

and the achieved results show the efficiency of the proposed approach.

1 INTRODUCTION

Intrusion detection systems (IDS) are security mecha-
nisms designed to detect unauthorized access to com-
puter systems and networks (Aydin et al., 2022). They
monitor network traffic and system activities to iden-
tify potentially malicious behavior.

Although IDS has made significant progress in re-
cent years, many current solutions continue to rely on
signature-based detection methods instead of using
anomaly-based methods. Signature-based methods
monitor network traffic for patterns and sequences
that match a known attack signature (Zhang et al.,
2022). While these methods can effectively detect
known attacks, they may not be able to identify new
or previously unknown attacks. However, anomaly-
based methods learn the normal behavior of a system
or network and then identify any deviations from its
behavior that may indicate an intrusion.

Over the past few years researchers have directed
their efforts towards developing IDS using a variety
of machine learning algorithms such as support vec-
tor machine (Roopa Devi and Suganthe, 2020) with
different feature selecting methods. Recently, deep
learning has been widely applied to IDS and has
achieved interesting results. Its success in the do-
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main of intrusion detection can be primarily attributed
to its ability to automatically learns complex patterns
and behaviors from raw data, such as network traf-
fic or system logs, without relying on explicit fea-
ture engineering. Several deep learning architectures
have been used for IDS such as Recurrent Neural
Networks (RNN) (Donkol et al., 2023), and Autoen-
coders (Basati and Faghih, 2022).

Previous traditional approaches often depend on
manually defined features or a subset of features ex-
tracted from network traffic data. However, such fea-
ture selection techniques may lead to the exclusion
of important features or the inclusion of irrelevant
ones, increasing the amount of noisy data and af-
fecting the classification accuracy negatively (Ayesha
et al., 2020; Taha et al., 2022).

In this work, we suggest a system, namely Trans-
IDS (transformer-based intrusion detection system)
for intrusion detection. Trans-IDS aims to overcome
the limitation of relying on feature selection methods
in traditional IDS approaches. Inspired by the suc-
cess of FT-Transformer (Gorishniy et al., 2021), we
use the transformer to automatically learn contextu-
alized representations for all features without relying
on feature selection techniques. The proposed sys-
tem identifies complex patterns and relationships in
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the data to enhance the performance of IDS. There-
fore, extensive experiments have been conducted on
two publicly available datasets, namely UNSW-NB15
and NSL-KDD, and the achieved results show the ef-
ficiency of the proposed approach. The main contri-
butions are summarized as follows:

* This work proposes a transformer-based method
for intrusion detection which can automatically
learn contextualized representations for all the
features without relying on feature selection tech-
niques.

» Extensive experiments are conducted on two pub-
licly available datasets to investigate the perfor-
mance of the proposed approach against several
baseline models.

2 BACKGROUND ON IDS

IDS is considered as a passive monitoring device used
to detect unauthorized access, malicious activity, and
other security threats to computer networks, systems,
and applications. This section provides an overview
of IDS and the threat model considered in this paper.

2.1 IDS Overview

IDSs are divided into two main types: network-based
IDS (NIDS) and host-based IDS (HIDS). On the
one hand, NIDS monitors network traffic at various
points/nodes on the network and can detect suspicious
activities, such as port scanning and packet sniffing.
On the other hand, HIDS are installed on individual
systems and monitor activities on the host, including
file changes, system calls, login attempts, and other
activities. In this work, we are focusing on NIDS.

A network architecture is composed of multiple
nodes, which are the individual devices or comput-
ers that are connected to the network. Each node
can communicate with other nodes on the network
through traffic, which enables data transfer and shar-
ing. Each traffic flow has a source IP address, source
port, destination IP address, destination port, and net-
work protocol. The architecture of a network can vary
depending on its size and purpose, but it typically in-
cludes routers, firewalls, switches, servers, wireless
access points, and other networking equipment. The
communication process of all the nodes on a network
can be formulated by using a tuple of (IP source,
port source, IP destination, port destination, and net-
work protocol). The transmission process of the traf-
fic flows between two nodes can be formulated as:

Trans-IDS: A Transformer-Based Intrusion Detection System

(NP)
Hsipspy — H(pip.pp) (H

where H represents the host/node, the NP refers to
the network protocol. We can represent a network
traffic flow as a set of tuples, where each tuple rep-
resents a unique communication flow between two
devices. For example, we might have a set of traf-
fic flows F = {F1,F2,F3,...,Fn}, where each Fi
represents a distinct communication flow. Specifi-
cally, Fi is a tuple (SIP;,SP;,DIP;,DP;,NP;) repre-
senting a unique communication flow between two
devices. SIP;, SP;, DIP;, DP;, NP; denote respectively
the source IP address, source port number, destination
IP address, destination port number, network protocol
of the i-th flow.

2.2 Threat Model

We consider a threat model applicable to networks
where adversaries lack knowledge of the network
topology. Adversaries may launch malicious traffic
flows to attack nodes, both from within and outside
the network. The malicious traffic flows may take
various forms, including Backdoors, Fuzzers, DDoS
attacks, and Men in the Middle (MITM) attacks.

Successful attacks may compromise and take con-
trol over vulnerable nodes, rendering them untrust-
worthy, and converting them into malicious ones that
launch a large volume of traffic to attack other normal
nodes. The goal of the adversaries is to infect as many
nodes as possible, eventually leading to the network’s
paralysis.

IDS sensors, such as port mirroring, packet cap-
ture, Network test access points, and netflow, capture
each traffic flow and extract statistical features from
both the network and transport layer, then transmit
them to the IDS for analysis and detection. These
features including packet lengths, duration, start time,
and source bytes, can indicate potentially malicious
behavior. Figure 1 shows a network architecture
where numerous IDS monitoring tools (sensors) are
positioned at multiple positions in the network to cap-
ture and forward traffic to the IDS.

3 RELATED WORKS

Several studies have been conducted to evaluate and
compare the performance of various machine learn-
ing algorithms on different datasets. (Zhang et al.,
2022) applied several machine learning algorithms
with feature selection for NIDS. (Das et al., 2021)
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Figure 1: Flowchart of IDS monitoring tools capturing and transmitting traffic to the IDS for analysis and classification of the

traffic flow to malicious or benign (0,1).

implemented a supervised ensemble machine learn-
ing framework, which incorporates multiple machine
learning classifiers with ensemble feature selection
technique for NIDS.

Deep learning techniques such as RNN, Graph
Neural Networks (GNN), Graph Convolutional Net-
works (GCN), and Transformer methods have been
widely used to IDS with promising results.

(Kasongo, 2023) proposed an IDS framework us-
ing different types of RNNs techniques coupled with
the XGBoost-based feature selection method. (Cav-
ille et al., 2022) presented a GNN approach to IDS
that leverages edge features and a graph topological
structure in a self-supervised manner. (Zheng and
Li, 2019) combined the traffic trace graph with sta-
tistical features in the training process, to enhance
the classification accuracy of the GCN model. (Sun
et al,, 2020) built a graph to represent the struc-
ture of traffic data, which contains more similar in-
formation about the traffic, and combined a two-
layer GCN and autoencoder for feature representa-
tion learning. (Wang and Li, 2021) proposed a hy-
brid neural network model by combining transform-
ers and CNN to detect distributed denial-of-service at-
tacks on software-defined networks. (Wu et al., 2022)
proposed a robust transformer-based intrusion detec-
tion that uses the positional embedding technique to
associate sequential information between features.

While the use of machine learning and deep learn-
ing techniques in IDS has shown promising results,
they rely on manually defined features or a subset of
features extracted from network traffic data. How-
ever, such feature selection techniques can result in
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the loss of important information that can be useful
for more accurate predictions.

4 THE PROPOSED METHOD

We consider a network architecture made up of mul-
tiple nodes, where each node has a unique IP address
for communication with other nodes on the network.
Each node communicates with other nodes through
traffic flow, which is characterized by multiple fea-
tures. These features can be divided into numerical
and categorical features. Numerical features may in-
clude variables such as the size of the data packets,
and the duration. However, categorical features may
include variables such as the protocol type, and the
source and destination IP addresses. In this section,
we provide more details about the global architecture
of Trans-IDS shown in figure 2.

4.1 Feature Embedding

We consider a dataset D = (X,Y) where X =
{Xxea x"ml is the features, X°“ and X" denote re-
spectively the categorical and numerical features, and
Y the list of the labels (Normal or attack). For each
sample i in the dataset, let X/ = {x{* x5“,...,x;%}
the list of categorical features with each x?“’ being
a categorical feature, for j € {1,...,n}. Also, let
X = {xfem e L xe™ ) the list of numerical fea-

tures with each x;?“’" being a numerical feature, for

Jj€{l,...,m}. The Trans-IDS transforms each numer-

ical feature /" into parametric embedding ey, (x7*"")
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Figure 2: The global Trans-IDS architecture.

of dimension d as follows:
eq)[ (x;lum) — x;zum % v‘/inltm + b;mm G Rd (2)

where W/ is a hyper-parameter vector of dimension
d, and b is the bias of the i-th numerical feature.
However, each categorical feature xf‘” is transformed
into parametric embedding ey, (x{') of dimension d
as follows:

ey (") = W +B" €RT(3)

where e is the transpose of the one-hot vector for the
corresponding categorical feature, WS is a lookup
table for categorical features, b{* is the bias of the
i-th categorical feature. The numerical embeddings
are concatenated along with categorical embeddings
to form a matrix H° of dimension (n +m,d).

num

HO = concat leg, (¥ namn

)s-eer € (X)),
ey, (£57), ..., ey, (x57)] e R ()

Then, the embedding of the [CLS] (Devlin et al.,
2018) token is appended to H ©), and the resulting
matrix is inputted to stacked encoder blocks of the
transformer to learn contextualized representations.

4.2 Transformer Encoder

We propose a slight variant of the transformer en-
coder block introduced in (Vaswani et al., 2017). The
core component of the transformer encoder block is
the multi-head self-attention layer, which allows the
model to capture dependencies between different po-
sitions in the input. The self-attention layer comprises
three parametric matrices Key, Query, and Value. It
computes a weighted sum of the value vectors, where
the weights are determined by the similarity between
the query and key vectors. Formally, let K € RSk,
Q € R* and V € R**” be the matrices comprising
key, query and value vectors of all the numerical and
categorical embeddings. For each query vector Q;, a
score is computed by taking the dot product between
Q; and each key vector K. This can be expressed as:

score(Q;,Kj) = Qi+ K; &)

The scores are then scaled by dividing them by the
square root of the dimension of the key vectors k:

score(Q;,Kj) = Qi*Kj/\/lz 6)

The scores are passed through a softmax function to
obtain attention weights that sum to 1:

weight(Q;,K;) = softmax(score(Q;,K;)) (7)

Then, the attention weights are used to compute a
weighted sum of the value vectors V;, where the
weights are the attention weights. This can be ex-
pressed as:

out put(Q;) = sum(weight (Q;,K;) *V;)  (8)

This process is repeated for each head in the multi-
head attention mechanism, and the results are con-
catenated and passed through a linear layer to obtain
the final output of the attention module.

The output of the multi-head attention is then
passed through two feed-forward layers, where the
first layer expands the embedding and the second
layer projects it back to its original size. After the
feed-forward layers, element-wise addition and layer
normalization (Add & Norm) are performed to nor-
malize the output of the layer and facilitate the train-
ing.

Figure 3 shows the architecture of the transformer
encoder.

Finally, the learned representation of the [CLS] to-
ken is used to predict the label y through a linear func-
tion as follows:

§=o(Wx+b) )

where x denotes the learned vector of the [CLS] to-
ken, ¢ is the sigmoid activation function, and W and
b denote the weight and bias of the linear layer re-
spectively.

S EXPERIMENTS

To evaluate the performance of the proposed Trans-
IDS, we conduct several experiments. In this section,
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we provide more details about the experiment settings
and we discuss the achieved results.

5.1 Datasets
5.1.1 UNSW-NBI15 Dataset

The UNSW-NBI15 is a dataset that is widely used to
evaluate IDS. It contains 42 attributes, consisting of
3 categorical inputs and 39 numerical inputs. The
numerical inputs have binary, integer, and float data
types. Table 1 provides a detailed description of the
distribution of attacks across the UNSW-NB15 sub-
sets.

5.1.2 NSL-KDD Dataset

The NSL-KDD is a public network traffic dataset that
was created for the purpose of evaluating IDS. The
dataset was developed as an improvement over the
earlier KDD Cup 99 dataset, which had some limi-
tations and flaws. The dataset contains a total of 41
features. Table 2 provides a detailed description of
the distribution of attacks across the NSL-KDD sub-
sets.

Table 2: NSL-KDD distribution data subsets: Training

(Train), Validation (Val), and Test.

Attack Type All Train Val Test
Normal 67343 50494 16849 9711
DoS 45927 34478 11449 7458
Probe 11656 8717 2939 2754
R2L 995 747 246 2421
U2R 52 42 10 200
Total 125973 94480 31493 22544

Table 1: UNSW-NBI1S5 distribution subsets: Training
(Train), Validation (Val), and Test.

Attack Type All Train Val Test
Normal 56000 41911 14089 37000
Generic 40000 30081 9919 18871
Exploits 33393 25034 8359 11132
Fuzzers 18184 13608 4576 6062

DoS 12264 9237 3027 4089

Reconnaissance 10491 7875 2616 3496
Analysis 2000 1477 523 677
Backdoor 1746 1330 416 583
Shellcode 1133 854 279 378
Worms 130 99 31 44

Total 175341 131506 43835 82332
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5.2 Baseline Models

We compare the Trans-IDS against several baselines
and state-of-the-art methods. The baselines include:

e MCA-LSTM: a network intrusion detection
model based on the multivariate correlations anal-

ysis — long short-term memory network (Dong
et al., 2020)

* RNN: a deep learning approach for intrusion de-
tection using recurrent neural networks (Yin et al.,
2017).

* FFDNN: a feed-forward deep neural network
wireless IDS using a wrapper-based feature ex-
traction unit (Kasongo and Sun, 2020).

» Simple RNN: Recurrent neural network imple-
mented in conjunction with a feature selection
method that is inspired by the Extreme Gradient
Boosting (XGBoost) algorithm (Kasongo, 2023).

e LSTM: Long short-term memory used in combi-
nation with a feature selection method that is in-
spired from XGBoost (Kasongo, 2023).

* GRU: Gated Recurrent Unit developed in combi-
nation with an XGBoost-inspired feature selection
method (Kasongo, 2023).

e CNN-LSTM: a combination of convolutional
neural networks and long short-term memory for
IDS (Hsu et al., 2019).

5.3 Experiment Settings

In our experiments, we divided the training set of
UNSW-NB15 into two subsets, 75% of the training
data and 25% for validation. Furthermore, we reduce
the problem to binary classification. So, we project
all the attacks into a single class, and we keep the
class normal. In addition, we distinguish the categor-
ical and numerical features (see table 3). The same
process is applied to the NSL-KDD dataset. Table 4
shows the sets of categorical and numerical features
for this dataset.

We performed hyper-parameter tuning for the
Trans-IDS to define the optimal values for various



parameters that significantly impact the performance
of the model. The best settings were 16 for em-
bedding dimension, 4 for the number of transformer
blocks, 12 and 8 for the number of attention heads
for UNSW-NB15 and NSL-KDD, respectively, 0.2
for the dropout rate in the transformer and multilayer
perceptron, 0.001 for the learning rate, and 10 for the
number of epochs. For the evaluation metric, we use
accuracy. Finally, the entire architecture is trained
end-to-end using backpropagation and Adam with de-
coupled weight decay (Loshchilov and Hutter, 2017).

Table 3: UNSW-NBI1S5 features description.

Numerical ‘dur’, ‘sbytes’, ‘dbytes’, ‘sttI’, ‘dttl’, ’sload’,
Features ‘dload’, ‘spkts’, ‘dpkts’, ‘stepb’,’dtcpb’,
‘smean’, ‘dmean’, ‘response_body_len’,
‘gjit’,  ‘djit’,  ‘sinpkt’,  ‘dinpkt’,  ‘tcprtt’,

‘synack’, ‘swin’, ‘ackdat’, ‘ctftp.cmd’, ‘rate’,
‘ctsrv_src’, ‘ctsrv_dst’, ‘dwin’, ‘ct_dst_ltm’,
‘ctsreltm’, ‘ct_src_dport_Itm’, ‘ct_dst_sport_ltm’,
‘ctdst_src_Itm’, ‘trans_depth’

Categorical ‘proto’,  ‘state’, “‘sloss’, ‘dloss’, ‘service’,

Features ‘is_sm-ips_ports’, ‘ct_state_ttl’, ‘ct-flw_http_mthd’,

‘is_ftp_login’

Table 4: NSL-KDD features description.

Numerical ’duration’, ’src_bytes’, “dst_bytes’,

s

Features *num_failed_logins’,’ wrong_fragment’, ur-
gent’, ’hot’, ’root.shell’, ’num_compromised’,
’su_attempted’, ’num_root’, ’num.file_creations’,
‘num_shells’, ‘num_-access_files’,
’num_outbound_cmds’, ’count’,
’dst_host_same_srv_rate’, ’srv_count’, ’serror_rate’,
’srv_serror_rate’, ’rerror_rate’, ’srv_rerror_rate’,
’same_srv_rate’, "diff_srv_rate’, *srv_diff_host.rate’,
*dst_host_count’, *dst_host_srv_count’,
’dst_host_serror_rate’,  ’dst_host_srv_serror_rate’,
*dst_host_rerror_rate’, ’dst_host_srv_rerror_rate’,
*dst_host_same_src_port_rate’,

*dst_host_srv_diff_host_rate’,

*dst_host_diff_srv_rate’

Categorical ’protocol_type’, ’service’, ’flag’, ’logged.in’,

Features

’is_host_login’, ’is_guest_login’, "land’

5.4 Results & Discussion

A comprehensive experiment is conducted on two
publicly available datasets. The achieved results re-
veal that the proposed Trans-IDS outperformed all
the baseline models in the UNSW-NB15 dataset and
achieve competitive results on the NSL-KDD dataset
without relying on any feature selection method.

In Table 5, we provide a comparison between
the proposed Trans-IDS and the baseline models pre-
sented in (section 5.2). Based on a more detailed per-
formance analysis, it was found that Simple RNN,
LSTM, and GRU achieved competitive results com-
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pared to the Trans-IDS model. This suggests that
combining recurrent models with feature selection
methods, especially XGBoost can be an effective ap-
proach for building intrusion detection systems. How-
ever, such feature selection techniques may lead to the
exclusion of important features or the inclusion of ir-
relevant ones, which can negatively impact the accu-
racy of the system (Ayesha et al., 2020; Taha et al.,
2022). This can be observed in the results achieved
in the UNSW-NB15 dataset. This finding is also sup-
ported by the results obtained by MCA-LSTM and
FFDNN models, which used different feature selec-
tion methods. Moreover, it was found that using just
an RNN model without any feature selection method
resulted in poor performance.

From the achieved results in the NSL-KDD, we
can see that Trans-IDS achieves modest results com-
pared with the other baseline models. The best results
were achieved by Simple RNN, LSTM, and GRU
models using XGBoost for feature selection.The per-
formance of Trans-IDS is mainly affected by the mod-
est size of the dataset used to train the model. Gener-
ally, the performance of transformer models such as
Trans-IDS is known to improve with larger amounts
of training data. However, the NSL-KDD dataset is
relatively modest in size, which may limit the ability
of the model to learn complex patterns and generalize
to new examples.

Overall, while Trans-IDS may not have achieved
the best performance on the NSL-KDD dataset, it is
important to consider the limitation of the amount of
data used to train the model when interpreting these
results. Further analysis may be needed to identify
specific areas for improvement and to validate the per-
formance of the model on other datasets.

In the Trans-IDS, importance weights are used in
the self-attention mechanism to determine the impor-
tance of each feature in the input when computing the
representation of each feature. These weights deter-

Table 5: Comparison with other methods (Binary classifi-
cation).

Method Dataset FS Accuracy
MCA-LSTM UNSW-NB15 1G 88.11%
RNN UNSW-NB15 - 83.28%
FFDNN UNSW-NB15 ExtraTrees 87.10%
Simple RNN UNSW-NBI15 XGBoost 87.07%
LSTM UNSW-NBI15 XGBoost 85.08%
GRU UNSW-NBI15 XGBoost 88.42%
Trans-IDS UNSW-NB15 - 89.14%
MCA-LSTM NSL-KDD 1G 80.52%
CNN-LSTM NSL-KDD - 74.77%
Simple RNN NSL-KDD XGBoost 83.70%
LSTM NSL-KDD XGBoost 88.13%
GRU NSL-KDD XGBoost 84.66%
Trans-IDS NSL-KDD - 81.86%
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Figure 5: The importance weights for all features generated by Trans-IDS on the NSL-KDD dataset.

mine how much attention to pay to each feature when
computing the representation of the current feature.
Features with high weights will have a greater impact
on the representation of the current feature, while fea-
tures with low weights will have less impact. Figure
4 and 5 show the importance weights generated by
Trans-IDS in UNSW-NB15 and NSL-KDD datasets
respectively. The importance weights generated re-
veal that considering all features with slightly differ-
ent weights is very efficient to learn predictive repre-
sentations instead of focusing on some specific fea-
tures. Hence, developing an IDS without relying on
any feature selection technique can enhance the per-
formance and robustness of the approach. This is be-
cause feature selection techniques can sometimes re-
move important features that contribute to the predic-
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tive power of the system, leading to a loss in perfor-
mance and robustness.

6 CONCLUSION

In this paper, we proposed Trans-IDS (transformer-
based intrusion detection system), a system that
presents an approach for intrusion detection by using
a transformer-based method. This method learns con-
textualized representations for both categorical and
numerical features without relying on feature selec-
tion techniques. By avoiding the need for feature
selection, Trans-IDS is able to identify complex pat-
terns that result in a more accurate IDS system. The
importance weights generated by Trans-IDS further




confirmed the significance of considering all features
with slightly different weights, as opposed to focusing
on specific features.

The experimental results on two publicly avail-
able datasets, namely UNSW-NB15 and NSL-KDD,
demonstrate the effectiveness of the Trans-IDS sys-
tem. Overall, the suggested approach for intrusion
detection has the potential to overcome some of the
limitations of traditional methods while avoiding the
need for feature selection techniques.

In future work, we plan to investigate the scal-
ability of Trans-IDS and its performance on other
datasets.
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