
Lightweight FHE-Based Protocols Achieving Results Consistency
for Data Encrypted Under Different Keys

Marina Checri, Jean-Paul Bultel, Renaud Sirdey and Aymen Boudguiga
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Keywords: Homomorphic Encryption, Multi-Key Frameworks, Cloud Computing, Data Consistency.

Abstract: Over the last few years, the improved performances of FHE has paved the way for new multi-user approaches
which go beyond performing encrypted-domain calculation for a single user. In this context, this paper pro-
poses several simplified multi-user setups resulting in new FHE-based building blocks and protocols. By
simplified multi-user setting we mean that, in order to process a user request, the FHE server is able to select
only data encrypted under the proper key in an oblivious way. In doing so, information like the distribution
of data per user remains private without losing the consistency of the obtained homomorphic results. We con-
clude the paper with experiments illustrating that these simplified setups, although not universally applicable,
can lead to practical performances for moderate-size databases.

1 INTRODUCTION

Homomorphic encryption (HE) allows blind com-
puting on encrypted data, thus providing data
confidentiality-by-design, not only during storage or
transfer but also during processing. In many situ-
ations, institutions hold pieces of knowledge which
gain value when put together. Still, for some rea-
sons, such data are often very difficult to share, at
least when sharing implies their disclosure to others.
In this context, multi-user FHE can serve as a basis to
design protocols where participants can encrypt their
data under their own keys, and calculations are per-
formed blindly by a server on several contributions.

This paper proposes a simplified multi-user HE
setting that allows calculations to be performed by a
server on data encrypted by several contributors under
different keys. It guarantees data and results confiden-
tiality, results’ consistency and untraceability between
a contributor’s data and the user authorized to use that
data (encrypted under that user’s key). By simplified
multi-user setting, we mean that only one user at a
time (the requester) can request other users (the con-
tributors) to encrypt their data under his own public
key and send it to the server, then instruct the server
to perform calculations on the relevant information
stored in its database (that is, contributors’ messages
encrypted under the requester’s key).

The paper investigates four setups or scenarios of
increasing practical relevance and usefulness. The

first setup defines a baseline toy scenario in which
the requester can detect whether or not a result has
been produced by means of only data encrypted un-
der his key. Intuitively, this setup corresponds to the
case where the requester wishes to detect situations
in which some data not encrypted under his key have
been wrongly taken into account to produce the result.
The three other setups allow to produce correct results
even in presence of computations in between data not
encrypted under the same key with different trade-offs
in terms of communication and storage (two of them
analyze a trade-off between transmission and storage
of evaluation keys while the last one provides results’
compactness). In these latter cases, the server can-
not trace the keys under which each data has been en-
crypted which is a desirable property in some cases.
Hence, the server cannot link the contributors’ data
to the requesters for which they are intended. This
prevents statistical or frequency analysis of the data
usable by the server for treating the requester query.

We also specify a conditional key switching oper-
ator for TFHE (Chillotti et al., 2020), which takes a
ciphertext and either returns a ciphertext of the same
message if encrypted under a given key or otherwise,
a random message encrypted under this same key.

In the following, Sec. 2 is preliminaries on FHE,
Sec. 3 presents motivating use-cases. Our contribu-
tion is in Sec. 4, followed by the above-mentioned
conditional key switching in Sec. 5. Experimental re-
sults are in Sec. 6. We conclude with Sec. 7.

704
Checri, M., Bultel, J., Sirdey, R. and Boudguiga, A.
Lightweight FHE-based Protocols Achieving Results Consistency for Data Encrypted Under Different Keys.
DOI: 10.5220/0012085200003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 704-709
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



2 PRELIMINARIES ON FHE

In this paper, we consider two homomorphic cryp-
tosystems: BFV and TFHE. BFV (Brakerski, 2012;
?) is based on the RLWE problem and supports batch-
ing, i.e., a technique for leveraging SIMD operations
by encoding multiple messages in different slots of
a plaintext. The TFHE encryption scheme was pro-
posed in 2016 and updated in (Chillotti et al., 2020).
It relies on the TLWE problem, an adaptation of the
LWE problem to the real torus T = R/Z. TFHE pro-
vides the most efficient bootstrapping operation for
binary plaintexts running in tens of millisecond. BFV
and TFHE rely on 3 keys: a public key for encryption,
a secret key for decryption, and an evaluation key for
re-linearization with BFV, and for bootstrapping with
TFHE.

Multi-user approaches for implementing FHE
schemes refer to Threshold Homomorphic Encryp-
tion (ThHE) and Multi-Key Homomorphic Encryp-
tion (MKHE). They involve multiple keys during the
decryption of ciphertexts and ensure that no single en-
tity holds the decryption key (i.e. the private key).
ThHE schemes were introduced in (Asharov et al.,
2012; ?; ?). ThHE has a static setup and needs to
remove and re-encrypt all the data each time a user is
removed. In contrast, MKHE schemes (described in
(López-Alt et al., 2013; Doröz et al., 2016; ?)) re-
move the need for a key setup by allowing the evalu-
ation server to dynamically extend ciphertexts from
encryption under individual keys to ones under the
concatenation of several users keys. Then, all the pri-
vate key owners have to collaborate for decryption.
However, the increase of ciphertext size in the num-
ber of users results in a huge increase in homomorphic
operators’ computational costs. Recently, hybrid ap-
proaches have been proposed (Aloufi and Hu, 2019)
to combine the advantages of both ThHE and MKHE.

3 MOTIVATING USE-CASES

3.1 Communication Between Hospitals

Assume hospital H0 is the national referral hospital
for an orphan disease, and wishes to confirm a new
hypothesis by comparing correlations found from its
own data with those observed in other hospitals. The
other hospitals accept to send the requested indica-
tors to H0 under two conditions: H0 must not have
access to individual patients’ data, covered by med-
ical secrecy, hence data will be encrypted and sent
to an external server for homomorphic calculations;
moreover, neither H0 nor the server should identify

the contributing hospital, because the few patients it
treats for this rare disease might be identified. Thus,
in the protocol, hospital Hn encrypts its indicator In
under H0’s public key and sends it to the server. The
latter homomorphically aggregates contributions and
sends the result to H0. Eventually, only H0 can de-
crypt the statistic with its private key.

This paper proposes approaches ensuring that nei-
ther H0 nor the server learn anything about the users’
private data, nor may identify the contributors them-
selves. As the referral hospitals for different orphan
diseases may not be the same, each hospital may play
the role of H0: thus, the server’s database contains
data intended for different hospitals without knowing
the associated encryption key, hence the referral hos-
pital and the disease data relates to.

3.2 Biometric Templates

Suppose now that an organization maintains a
database of biometric data (e.g. fingerprint, facial
recognition,...) that regulates accesses to a number of
secured rooms according to users’ accreditations. Ac-
cesses are physically controlled by connected doors
D having each a key pair (skD,pkD). Upon accredi-
tation to a room controlled by door D, the new user’s
biometric data is encrypted under public key pkD and
sent in the server. The server does not know the send-
ing door, nor a fortiori the public key used, and only
stores the encrypted data.

When an individual i requests access to this room,
door D acquires i’s biometric data, encrypts it under
public key pkD and sends it to the server. The server
then seeks a match with biometric identification data
stored in its database: recall that data is encrypted
hence search must be performed, say through a homo-
morphic Hamming distance. The server then issues
to the door an encrypted boolean value, depending on
whether the match was found or not.

In a non-homomorphic scheme, biometric data
would still be stored as an encrypted vector, but the
database would be indexed in clear by the doors’ iden-
tifier, enabling the server to trace it. Our protocol
prevents this situation. In addition, the server may
be used by several companies: each may be identi-
fied through its proxy (IP address), but in no way the
rooms that were accessed in it. Thus, the server can-
not determine which room has very restricted access
nor which one is open to almost everyone. The price
to pay is that the entire stored data, encrypted under
several keys, must be scanned to seek a match before
authorizing or denying such access.

Lightweight FHE-based Protocols Achieving Results Consistency for Data Encrypted Under Different Keys

705



4 ACHIEVING RESULTS
CONSISTENCY UNDER
DIFFERENT KEYS

We present four protocols that correspond to succes-
sive scenarios of increasing usability. We denote by
“requester” the user who initiates the request and
“contributors” the other participants to the protocols.

4.1 System Setting

The protocols defined in this section manage inter-
acting multi-user data, which are encrypted with dif-
ferent keys. During setup, each user Un can ask the
other users to send their contribution, encrypted un-
der his own public key pkn, to the server. The server
does not know under which key a contributor sent
his (encrypted) data. When receiving a request, the
server only performs homomorphic calculations using
an evaluation key either provided by the requester or
stored with each record (depending on the scenario).
It then produces results encrypted by construction un-
der the private/public key pair associated to the eval-
uation key used for the calculations. As such, every
user is responsible for identifying those results that
were produced under its own key (as those that he,
and he alone, can decrypt).

The setup is a semi-honest model. More precisely,
the server is assumed to perform correctly what it is
expected to do, but observes all behaviours and data
exposed to it, trying to extract as much information as
possible from its observations. The other participants
are assumed to send valid information. The setup as-
sumes that the server and the requester are not collud-
ing. Otherwise they could determine and decrypt all
the data under the requester’s key.

Needless to emphasize that this semi-honest threat
model is too weak for real-world deployment scenar-
ios and in such context, relying on homomorphic en-
cryption alone is unreasonable. Homomorphic en-
cryption should only be considered as what it is:
a countermeasure to confidentiality threats from the
server. In real-world deployment scenarios, it must
therefore be embedded in higher-level protocols re-
sorting to additional (often off-the-shelf) techniques,
such as strong authentication of all parties or confi-
dentiality and integrity on all exchanges.

4.2 Detecting Key Inconsistencies

This setup (namely scenario 0) deals with the basic
requirement that a single user (the requester) should
only be able to detect whether or not a result has been
produced by mean only of data encrypted under his

key. The server however assumes that all data have
been encrypted under the requester key and, hence,
that it generates consistent FHE results but also per-
forms redundant FHE calculation results which allow
the requester to check this. In reply to its request, the
requester must therefore decrypt the result getting a
valid value if all data involved in the FHE calculation
were encrypted under his own key and a random re-
sult (noted $) otherwise.

A simple approach to sort valid results out of ran-
dom ones is to require each contributor to concatenate
his data with a padding of zeroes before encrypting it
under the requester’s key. The server then performs
two homomorphic calculations with these ciphertexts.
It computes both the payload function and the sum of
the padding encryptions, which will serve as a ver-
ification ciphertext because a homomorphic sum of
paddings of zeroes should remain a padding of ze-
roes. The requester then only needs to check that the
decrypted padding (of the verification ciphertext) is
indeed all zeroes to assert that the result is consistent
and to ensure that it has not been “polluted” by contri-
butions encrypted under a wrong key. For a uniform
distribution of encrypted paddings of ℓ zeroes in Fq,
false positives occurs with a probability of 1/qℓ.

4.3 Masking Key Inconsistencies

Scenario 1. From now on, we assume that each of
the contributors sends its data multiple times to the
server, encrypted under the keys of some of the re-
questers. That is, the contributors explicitly grant
the requesters of their choice access to by-products
of their encrypted data through FHE calculations on
the server. Besides its ignorance of the requester and
contributors, the server now deals with data encrypted
under several keys, without being able to determine
on its own which data should be used in which cal-
culations. Scenario 1 therefore assumes that every
contributor sends his encrypted data, together with a
padding of zeroes encrypted under the same key, as
well as an associated evaluation key (evaluation keys
have to be rerandomized1 to avoid leaking which data
are encrypted under the same key to the server). The
server stores each record with these three fields in its
database. When the server receives a query from a
requester, it performs calculations for each record,
using the record’s evaluation key then concatenates
the associated encrypted padding of zeroes to the en-
crypted result before sending it. For each result, if
the key used was the requester’s, the padding decryp-

1FHE evaluation keys usually are encryptions of a se-
cret key and can be rerandomized by homomorphically
adding encryptions of 0.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

706



tion is a padding of zeroes, otherwise, it is a random
padding. The requester can thus quickly determine
which is the correct result (the one with a padding
of ℓ zeroes). The drawback is that, in reply to a sin-
gle request, the requester must then decrypt one re-
sult per database entry. Then, he uses the padding
to identify those results derived from database en-
tries intended for him. In addition, this scenario re-
quires every contributor to send a (usually large) key
per database record it is creating.

Scenario 2. Scenario 2 is a variant of the previous
one, aiming to avoid transmissions of evaluation keys
by the contributors, as well as their storage on the
server. To do so, the requester sends his evaluation
key along with his request, and the server performs
FHE computations under this key to produce the en-
crypted results. As the calculations are homomor-
phic, only results obtained from data encrypted under
the same key will be meaningfully decryptable by the
requester (thanks to the padding approach, as previ-
ously described). Scenarios 1 and 2 are similar, but
the former imposes on the server to keep K evalua-
tion keys (which may be costly in terms of storage ca-
pacity), while the latter only requires the requester’s
key to be sent (which may have some limitations in
terms of bandwidth: typically, for TFHE (Chillotti
et al., 2020), bootstrapping key used as an evalua-
tion key is about 113Mb in size with default param-
eters). In other words, scenario 1 and 2 achieve dif-
ferent communication trade-offs: scenario 2 replaces
offline communications and storage (in scenario 1) by
online (per-request) communications. Which of the
two is the most appropriate depends on the concrete
use-case.

Scenario 3. In this last approach, we achieve result
compactness and remove the need for post-decryption
padding verification on the requester’s side. That
is, the server only had to produce one result per re-
quest, that the requester and only he can decrypt.
The idea is to rely on the server to obliviously deter-
mine in the encrypted domain whether data are part
of a calculation, depending on whether the associated
padding of zeroes is encrypted under the appropri-
ate key. First, the server performs a homomorphic
equality test to zero on the encrypted padding, result-
ing in an encrypted boolean value [b]. In this sec-
tion, the boolean function chk denotes a homomor-
phic equality test to zero: it returns an encryption of
1 if the padding of zeroes is encrypted under a given
key and 0 otherwise. Then, depending on whether
the equality test succeeds or fails (i.e., [b] = [1] or
[0]), the server combines [b] with both the FHE calcu-

lation result [m] and a default application-dependant
value [α] (think of a neutral element or a ’not-an-
answer’ value) as: [m] · [b] + (1− [b]) · [α]. As such,
the equality test and the selection are homomorphic.
Still, since the server does not know which cipher-
text to consider, it must perform these calculations on
the whole database without knowing if the data of the
record is effectively used in the computation.

5 A CONDITIONAL KEY
SWITCH OPERATOR FOR
TFHE

As we shall see in Sec. 6, scenario 3 (described in
Sec. 4.3) can be naturally implemented by means of
the TFHE cryptosystem. However, with that cryp-
tosystem, allowing homomorphic interactions of data
encrypted under different keys requires an additional
manipulation which we now specify.

TFHE uses the bootstrapping key as the evalua-
tion key. More precisely, the bootstrapping key is a
TRGSW encryption of the private key under an ap-
propriate distinct key (refer to (Chillotti et al., 2020),
for more details). The bootstrapping is performed in
several steps, including a blind rotation whose index
is precisely the bootstrapping key. In other words, the
operation multiplies the input by X (∑n

i=0 ai·si)−b, where
si is a TRGSW ciphertext of the ith component of the
secret key sk. If the encryption key used does not
match the bootstrapping key, the indices kept during
the blind rotation will not match. This is precisely
what occurs in a multi-user context when an operation
is performed on an argument encrypted with a wrong
key pkWK that is not matching the bootstrapping key
bkRK (the right key).

To compute on a message encrypted under a
wrong key pkWK , one needs to force an evaluation un-
der the right key. Recall that messages not encrypted
under the right key can be recognized because they
give a random result when decrypted under this key.
Hence it is sufficient to ensure that the result of the
bootstrapping operation performed on a “random” ar-
gument remains random and otherwise can be cor-
rectly decrypted. Forcing the evaluations to be done
with the right key bkRK can be achieved by multiply-
ing the argument by the constant 1 encrypted under
the right key pkRK . This amounts to implementing
a new conditional key-switching that takes a cipher-
text as input and either returns another ciphertext of
the same message, if it was encrypted under pkRK , or,
otherwise, a random message encrypted under pkRK .

Lightweight FHE-based Protocols Achieving Results Consistency for Data Encrypted Under Different Keys

707



6 EXPERIMENTAL RESULTS

The following results have been obtained in a DELL
LATITUDE E7450 computer running on Ubuntu
20.04.5 LTS x86 64 with the CPU Intel i5-5200U (4)
@ 2.700GHz and only one core activated. For the
BFV cryptosystem (Fan and Vercauteren, 2012), us-
ing the SEAL library, we chose a polynomial modulus
degree of size 4096, a coefficient modulus size of 109
(36+36+37) bits, and a plain modulus of 1032193.
For the TFHE cryptosystem (Chillotti et al., 2020),
using the Cingulata compiler (Carpov et al., 2015),
we used the default parameters of the TFHE library.

6.1 Homomorphic Hamming Distance

Table 1: Average runtime for the computation of a Ham-
ming distance in seconds, according to the cryptosystem
and the size of vectors to be compared (size in bits).

16b 32b 64b 1024b
TFHE/Cingu. 00,27 00,28 00,33 01,51
BFV/SEAL 00,59 00,62 00,66 00,83

As a “Hello world” functionnality we chose to work
with Hamming distance calculations.This distance,
which is simple to calculate, is often used as an in-
dicator, according to which a result is acceptable if
the number of components that differ between the
two vectors is less than a certain bound. The use-
case in Sec. 3.2 illustrates this usage. We have im-
plemented the Hamming distance on F2 under three
cryptosystems: BFV (Fan and Vercauteren, 2012),
TFHE (Chillotti et al., 2020), and extended Paillier
as presented in (Catalano and Fiore, 2015). However,
the extended Paillier cryptosystem was more than five
hundred time slower than the other two for 1024-
bit vectors, so we did not investigate it further. For
BFV, the library used was Microsoft SEAL. The BFV
implementation uses the batching technique to paral-
lelize the computations. In TFHE, we used the Cin-
gulata compiler, providing the CiBit class, which rep-
resents an encrypted bit. This representation is partic-
ularly adapted to compute on F2. Table 1 presents the
unitary performances according to the size n of the
vectors and the cryptosystem used.

6.2 Performance Result

Scenarios 1 and 2. The first two scenarios are imple-
mented under the BFV cryptosystem using the Mi-
crosoft SEAL library and batched ciphertexts (we did
not test this scenarios with TFHE since the unitary re-
sults in Table 1 show BFV is the most efficient option,
when no such things as zero testing are required). The

function to compute for the requester is a homomor-
phic Hamming distance between two binary vectors
of size 1024. Table 2 illustrates that, in these scenar-
ios, one can scale (assuming a latency threshold of
less than one minute) up to 50 users, which may be
usable for some applications (albeit resorting to par-
allelism to help either downing the latency or increas-
ing the database size by an order of magnitude). Nev-
ertheless, as many results as there are records in the
database are returned to the requester, who must then
decrypt all these results by himself and extract those
intended for him. However, according to table 2, the
decryption time for all these results stays acceptable
(about one second for 50 results) and so is the vol-
ume of data exchanged (≈ 110 ko per ciphertexts so
around ≈ 5.5 Mo for a 50 records database). These
tests also allow us to observe that the scenario takes
only slightly less time when the evaluation keys are
stored (i.e. in scenario 1), and that scenario 2 works
just as well, despite the transmission of the evalua-
tion key of the calculation requester (the requester).
The elapsed time for a hundred records remains ac-
ceptable for homomorphic computations (less than a
minute and a half).

Table 2: Scenario 1 and 2 - Average runtime for evalua-
tions and decryptions, according to the number of database
records (min:sec,ms).

DB Scenario 1 Scenario 2
records Eval Decrypt Eval Decrypt

5 0:04,05 0:00,13 0:04,06 0:00,13
10 0:08,10 0:00,25 0:08,25 0:00,26
50 0:40,57 0:01,27 0:40,58 0:01,26

100 1:21,10 0:02,53 1:21,20 0:02,52

Scenario 3. The third scenario needs a homomorphic
test to zero, a capability which is more difficult to pro-
vide with certain cryptosystems (BFV, BGV,...) than
with others (TFHE). For that case, we chose to use
TFHE using the Cingulata compiler for this scenario,
as the time tests of the Hamming distance of table 1 do
not differ much from those of BFV, and it implements
a homomorphic zero test, as it work at the boolean
circuit level. As previously, the function to compute
for the requester is a Hamming distance between two
binary vectors of size 1024. As already emphasized in
section 5, the multi-user context requires a new con-
ditional key switching operator for TFHE to do op-
erations between two ciphertexts (possibly over dif-
ferent keys): we force the use of the right key on
these two ciphertexts before operating. This adapta-
tion adds exactly one bootstrapping for each record in
the database.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

708



Table 3: Scenario 3 - Average runtime according to the
number of database records, ranging from 16 bits of
padding (low reliability) to 64 bits of padding (strong re-
liability) (min:sec,ms).

Scenario 3 16 bits 32 bits 64 bits
5 records 00:21,93 00:25,34 00:35,23
10 records 00:44,37 00:52,88 01:13,23
50 records 03:47,27 04:28,43 06:01,55
100 records 07:38,88 08:50,99 12:07,74

The running times shown in table 3 illustrate that
this case is significantly more computationally costly
(more than 12 minutes for a hundred records and 2−64

false positive probability) than the previous ones, and
scales only to about ten records (about one minute for
2−64 false positive probability). Furthermore, accord-
ing to tables 1 and 3, for 10 records and 2−64 false
positive probability, we have 73s of computations, of
which 15s are devoted to calculating the Hamming
distance, which leaves 58s of computation time for
the ten tests to zero. Similarly, for 50 records and 2−64

false positive probability, 76s stands for the Hamming
distance and 286s of runtime for the homomorphic
tests to zero. This is the price to pay for results com-
pactness, thus for a lower communication cost. In-
deed, scenario 3 results in a O(1) size for the reply,
when scenarios 1 and 2 lead to an O(r) reply size,
where r is the number of records in the database.

7 CONCLUSION

This paper investigated multi-user setups, the first two
setups show two similar protocols allowing each user
to recognize the messages that are intended for him
and guaranteeing result consistency under multiple
keys. In terms of latency, these scenarios can be prac-
tically relevant (about one minute of execution time)
at a scale of 50 to 100 records in the database for
sequentially performed calculations. However, these
protocols have a natural potential for parallelization,
allowing to compute on a few thousands records per
minute. Indeed, these scenarios return one response
per record in the database, and the homomorphic cal-
culations on the records can be performed in parallel.
So for a server with 50 cores (a standard scale on the
NUMA machine market), the execution time would
be almost divided by 50. Our third setup allows users
to request the result of a calculation on the data ad-
dressed to them and returns only one response. This is
interesting for many use cases but results in a smaller
scaling potential since it can only handle about ten
records in one minute, sequentially.

ACKNOWLEDGEMENTS

This work was supported by the France 2030 ANR
Project ANR-22-PECY-003 SecureCompute.

REFERENCES

Aloufi, A. and Hu, P. (2019). Collaborative Homomorphic
Computation on Data Encrypted under Multiple Keys.
The International Workshop on Privacy Engineering
(IWPE’19) co-located with S&P’19.

Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikun-
tanathan, V., and Wichs, D. (2012). Multiparty Com-
putation with Low Communication, Computation and
Interaction via Threshold FHE. In EUROCRYPT
2012, pages 483–501.

Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S.,
Rasmussen, P. M. R., and Sahai, A. (2018). Threshold
Cryptosystems from Threshold Fully Homomorphic
Encryption.

Brakerski, Z. (2012). Fully homomorphic encryption with-
out modulus switching from classical gapsvp. In
CRYPTO 2012, pages 868–886.

Carpov, S., Dubrulle, P., and Sirdey, R. (2015). Armadillo: a
compilation chain for privacy preserving applications.
In Proceedings of the 3rd International Workshop on
Security in Cloud Computing, pages 13–19.

Catalano, D. and Fiore, D. (2015). Using Linearly-
Homomorphic Encryption to Evaluate Degree-2
Functions on Encrypted Data. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security.

Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M.
(2020). TFHE: Fast Fully Homomorphic Encryption
Over the Torus. Journal of Cryptology, pages 34–91.

Chowdhury, S., Sinha, S., Singh, A., Mishra, S., Chaudhary,
C., Patranabis, S., Mukherjee, P., Chatterjee, A., and
Mukhopadhyay, D. (2022). Efficient threshold FHE
with application to real-time systems. IACR ePrint,
page 1625.

Doröz, Y., Hu, Y., and Sunar, B. (2016). Homomorphic
AES evaluation using the modified LTV scheme. De-
signs, Codes and Cryptography, 80(2):333–358.

Fan, J. and Vercauteren, F. (2012). Somewhat practical fully
homomorphic encryption. IACR ePrint.

Kim, T., Kwak, H., Lee, D., Seo, J., and Song, Y.
(2022). Asymptotically faster multi-key homomor-
phic encryption from homomorphic gadget decompo-
sition. IACR ePrint, page 347.

López-Alt, A., Tromer, E., and Vaikuntanathan, V. (2013).
On-the-fly multiparty computation on the cloud via
multikey fully homomorphic encryption. IACR ePrint,
page 94.

Lightweight FHE-based Protocols Achieving Results Consistency for Data Encrypted Under Different Keys

709


