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Abstract: Artificial intelligence (AI)-assisted cervical cytology is poised to enhance sensitivity whilst lessening bias, 
labor, and time expenses. It typically involves image processing and deep learning to automatically recognize 
pre-cancerous lesions on a given whole-slide image (WSI) prior to lethal invasive cancer development. Here, 
we introduce autoencoder (AE)-based hybrid models for cervical carcinoma prediction on the Mendeley- 
liquid-based cytology dataset. This is built on fourteen combinations of AE, DenseNet-201, and six state-of-
the-art classifiers: adaptive boosting (AdaBoost), support vector machine (SVM), multilayer perceptron 
(MLP), decision tree (DT), k-nearest neighbors (k-NN), and random forest (RF). As empirical evaluations, 
four performance metrics, Scott-Knott (SK), and Borda count voting scheme, were performed. The AE-based 
hybrid models integrating AdaBoost, MLP, and RF as classifiers are among the top-ranked architectures, with 
respective accuracy values of 99.30, 99.20, and 98.48%. Yet, DenseNet-201 remains a solid option when 
adopting an end-to-end training strategy. 

1 INTRODUCTION 

Cervical cancer (CxCa) is a prominently occurring 
gynecologic neoplasm (Dasari et al., 2015). It implies 
an unregulated cell cycle and invasiveness of the 
cervix uteri (Dasari et al., 2015) – the lower, narrow 
end of the uterus. Precancerous cervical lesions are 
strongly associated with human papillomavirus 
(HPV), a viral infection spread at an 80% rate via 
skin-to-skin or skin-to-mucosa contact (Hu et al., 
2018; Petca et al., 2020). While 80%–90% of HPV 
infections are transient/latent and regress by host 
immunity within two years spontaneously, persistent 
or repeated infections with strains of high-risk HPV 
(HR-HPV) evolve into high-grade lesions or 
invasiveness (Huber et al., 2021). With such a well-
known causal agent and a slower disease progression, 
cervical cancer is regarded as preventable and the best 
candidate for screening principles; its morbimortality 
appears thereof to be declining with the licensure of 
HPV- vaccines and mass-screening programs (Dasari 
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et al., 2015; Hu et al., 2018). Howbeit, CxCa persists 
to be a heavy global burden, largely encountered by 
women in low- and middle-income countries 
(LMICs) – accounting for 9 out of 10 deaths and an 
estimated 27% rise by 2030, while increasing by only 
1% in high-income countries (HICs) according to the 
World Health Organization (WHO) (Ginsburg et al., 
2017; Woo et al., 2021). Still, cervical cancer remains 
the second most prevalent malignancy in women 
under the age of 45 in HICs despite its disparity trend 
(Koliopoulos et al., 2017). Reckon with the status 
quo, by 2030, vaccine alone would have little effect 
on CxCa mortality with just a 0.1% decline, yet 
accelerated twice-lifetime screening in conjunction 
with treatment would lower mortality by 34.2%, 
sparing 300,000–400,000 lives lost (Canfell et al., 
2020; Gangopadhyay, 2022). 

Liquid-based cervical cytology (LBCC) has 
evolved as the gold standard of CxCa screening, 
owing to its superior sensitivity and specificity over 
traditional smear cytology (SC) (Sanyal et al., 2019). 
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LBCC procedure not only offers the advantage of 
lessening artifacts caused by low cellularity and blood 
contamination, yet it permits pathologists to conduct 
ancillary tissue assays previously restricted to 
histological material (Sanyal et al., 2019; Zhang et al., 
2021). Nonetheless, cervical screening is generally 
labor-intensive. It highly demands skilled cytologists, 
with conflicting findings attributed to (i) population 
diversity, (ii) inter-examiner discrepancy in both 
sampling and preparation processes, and (iii) inter-
observer variability in interpreting specimens (Bao et 
al., 2020; Sanyal et al., 2019; Thakur et al., 2022).  

Modern pathology practice is shifting toward a 
digital scheme. Herein, computer displays are used to 
evaluate scanned cytology glass slides, enabling 
automated AI image-analysis on tissue sections (Bao 
et al., 2020). In contrast to shallow machine learning 
(ML), the strength of neural networks resides in their 
ability to extract highly representative features over 
several layered architectures, letting them suit high-
dimensional data. A performance overview achieved 
by various deep convolutional neural networks 
(dCNNs) in both branches of cervical cancer 
pathology, i.e. histo-and cyto- pathology, can be 
found in (Idlahcen et al., 2022). As ML algorithms 
rely heavily on optimal feature extraction and 
selection schemes, a hybrid learning model (HLM) 
built on dCNN and ML remains more appealing than 
single learners (SLs) due to more robust features and 
classification lifting both performance and 
interpretability (Qaid et al., 2021). Still, the amount 
of training data continues to have a strong impact on 
models’ performances (Fan et al., 2022). 

In tumor pathology, gathering a large amount of 
noiseless data with correct labeling is quite tricky due 
to plenty of issues that impede automated WSI 
analysis, such as  (Khened et al., 2021): stain 
variability, tissue artifacts, limited representative 
training samples, lack of labeling during acquisition, 
and extraction of clinically relevant patterns. The 
scarcity of expert-labeled and artifacts-free data poses 
barriers to the broadly adopted supervised learning 
approaches in computational pathology (Försch et al., 
2021). Another less apparent challenge is the large 
dimensionality of WSIs compared to existing medical 
imaging modalities. Typically, a glass slide of 20 mm 
× 15 mm yields at least a 4.8 gigapixel image at an 
extremely high resolution equivalent to 40× 
magnification on a microscope, limiting end-to-end 
training (Khened et al., 2021). 

To handle the above drawbacks, the present paper 
explores (i) the use of an unsupervised learning 
strategy, the autoencoder (AE), to overcome 
supervised feature learning limitations in digital 

cytology, and (ii) whether HLMs surpass SLs (end-
to-end) in cervical LBCC smears classification. 
Herein, we built and assessed fourteen architectures 
for differentiating healthy controls from cervical 
carcinoma patients on the Mendeley- LBCC WSIs. 

Recall that all the empirical evaluations were 
performed under Scott-Knott (SK) and Borda count 
voting schemes. Various domains, including software 
engineering (Idri et al., 2016; Ottoni et al., 2019), 
adopted the SK algorithm to compare clusters when 
scoring ML techniques for parameter tuning. Ergo, 
we applied the SK test since (i) it selects the top non-
overlapping sets and (ii) surpasses past statistical 
methods. Likewise, the Borda count is used to score 
optimally the SK-selected techniques. 

The present study addresses three key research 
questions (RQs): 

- RQ1: Do dCNN-based HLMs outperform 
end-to-end dCNN architecture for classifying 
cervical cytology WSIs? 

- RQ2: Do AE-based HLMs outperform end-
to-end AE architecture for classifying 
cervical cytology WSIs? 

- RQ3: Do dCNN-based HLMs outperform 
AE-based HLMs? 

The major contributions of this study are three-
fold: 

- As far as we know, this work adopts for the 
first time autoencoders to (i) automatically 
extract robust features from cervical liquid-
based cytology whole-slides and (ii) address 
supervised feature learning limitations. 

- Analyze the effect on cervical cytology 
classification performance by modeling 
fourteen various combinations of AE, dCNN, 
and ML/DL classifiers on the same dataset. 

- Assess the performances of the proposed 
architectures through four measures, SK 
clustering, and Borda count schemes. 

This document is organized as follows. Data 
acquisition and pre-processing are described in 
Section 2. Section 3 reports the implemented 
empirical scheme. The experimental findings and 
discussion are provided in Section 4. Section 5 sums 
up this study. 

2 DATASET 

Data preparation is a key asset in an ML pipeline, 
consisting of (i) data acquisition, (ii) data pre-
processing, and (iii) data augmentation, as depicted in 
Fig 1. 
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Figure 1: Data preparation scheme. 

2.1 Data Acquisition 

A total of 963 hematoxylin and eosin (H&E) -stained 
SurePath™ liquid-based cytology WSIs were 
retrieved from the Mendeley data repository (Hussain 
et al., 2020). The specimens were collected from 460 
patients in the Gynaecology and Obstetrics 
Department of Gauhati Medical College and 
Hospital. All slides were captured at 400x 
magnification using a Leica ICC50 HD microscope 
and sampled into four sets as per The Bethesda 
System (TBS) standards: negative for intraepithelial 
lesion or malignancy (NILM, 613 slides), low-grade 
squamous intraepithelial lesion (LSIL, 163 slides), 
high-grade SIL (HSIL, 113 slides), and squamous cell 
carcinoma (SCC, 74 slides). A board-certified 
pathologist reviewed patient reports as ground truth. 

As our purpose is to identify which patients are 
healthy and which are diagnosed with cervical 
carcinoma, we regard SCC as the “case or carcinoma” 
class, whereas NILM is labeled “control or healthy”. 

2.2 Stain Normalization 

H&E-stained tissue sections are the main pillar of 
anatomic pathology (Idlahcen et al., 2020). It 
highlights the cellular structures, allowing for 
convenient differentiation of the nuclear, 
cytoplasmic, and extracellular matrix components 
(Chan, 2014). While hematoxylin binds to nucleic 
acid and stains it blue-purple, eosin grants the 
cytoplasm a bright pink hue that contrasts the nuclear 
color (Idlahcen et al., 2020). But uneven stains are 
ubiquitous in samples, posing one of the biggest 
hurdles to whole-slide image analysis (Khened et al., 
2021). To avert such color variations, tissue stain 
normalization techniques are required. In this study, 
we implemented the (Macenko et al., 2009) stain 
normalization approach from the StainTools (Otálora 
et al., 2022) Python package on all the Mendeley- 
LBCC slides as a preprocessing step to avert color 
variation-driven biases. 
 

2.3 Data Augmentation 

In this study, we applied six augmentation techniques 
as follows: 90-degree rotation, horizontal flip, 
vertical flip, random scale, gaussian noise, and 
brightness. 

A class imbalance in the Mendeley- LBCC 
dataset is perceived since 63% of WSIs pertain to a 
“control” class. As it stands, all the samples 
underwent data augmentation using the six aforesaid 
techniques for resampling to avert such limitations as 
well as a misleading classification. Accordingly, we 
generated new data from every single slide making an 
overall total of 2000 images for each class. 

3 EMPIRICAL DESIGN 

This section depicts the empirical design of the 
present study. The designed architectures were 
shortened using acronyms. 

3.1 Performance Measures 

We used four metrics: accuracy (Acc), precision (Pr), 
recall (Re), and F1-measure (F1). Accuracy is defined 
as the ability to correctly detect cases from controls. 
While precision denotes the proportion of the cases 
out of the total noted cases instances, recall indicates 
the number of cases successfully identified out of the 
instances of the total case; it reduces the total controls 
declared under cases. F-measure ranges from 0 as its 
worst value to 1 as its best one and refers to the 
harmonic mean of precision and recall. 

As for evaluation, we adopted (k=5)-fold cross-
validation (fCV). Recall that cross-validation 
schemes give better insights into complex and unseen 
data at every level, averting bias issues. 

3.2 Scott-Knott & Borda Count Voting 
Schemes 

Scott-Knott is proposed by Scott and Knott in 1974 as 
a hierarchical clustering algorithm (Ottoni et al., 
2019). Its core use is variance analysis (ANOVA) 
although it is extensively used to achieve multiple 
comparisons of treatment means for distinct 
homogenous overlapping groups due to its simplicity 
yet robustness. Further, Borda count is adopted to 
pick the ideal architecture given four metrics with 
equal weight. Although other candidates or options 
could be picked instead of the bulk-favored option - 
the consensus-based voting process is the inverse of 
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the majority system. Recall that the Borda count 
voting system was performed to guarantee that no 
biases existed in the selection of any metric. 

3.3 Experimental Scheme 

The empirical scheme followed throughout this study 
is inspired by prior research in (Idri et al., 2016; 
Lahmar et al., 2022), involving three steps as follows: 

- Assess the accuracy of each variant of the 14 
architectures through Mendeley- LBCC 
dataset: one dCNN end-to-end architecture, 
six dCNN-based hybrid architectures, one AE 
end-to-end architecture, and six AE-based 
hybrid architectures. 

- Cluster the designed architectures using the 
Scott-Knott algorithm, then select the SK top-
cluster as per accuracy. 

- Rank the designed architectures of the SK top-
cluster using the Borda count voting system as 
per four performance measures, i.e. accuracy, 
precision, recall, and F1-measure. At last, 
select the top architecture. 

3.4 Configuration 

We built 14 architectures consisting of (i) end-to-end 
DenseNet-201. (Idlahcen et al., 2022) reports on 
preliminary work over the same dataset that led to the 
selection of DenseNet-201 as dCNN for this study.; 
(ii) six dCNN-based hybrid architectures involving 
DenseNet-201 as FE with respective six classifiers 
(AdaBoost, SVM, MLP, DT, k-NN, and RF); (iii) an 
end-to-end AE; and (iv) six AE-based hybrid 
architectures involving AE as FE with the same 
classifiers. All are designed to achieve a binary 
classification on the Mendeley- LBCC dataset. 
Herein, the following configurations were adopted: 

- Since the default input size differs amongst 
dCNNs, we downsized all the images from 
an original size of 2048×536 px. into 
224x224 px. to match the processed size 
when implementing a DenseNet-201 
network. 

- To avoid repetitions throughout the process, 
NumPy files (.npz) were used to store the 
resized images. 

- We used Keras and TensorFlow frameworks 
as deep learning backends - particularly for 
end-to-end architectures. As per hybrid 
ones, we used the Scikit-learn library to 
implement the default configuration of the 
six classifiers. 

All empirical schemes were performed using Google 
Colab's TPU. 

3.5 Acronyms 

For the convenience of the reader, we shorten the 
name of each variant as follows: DesNet for 
DenseNet-201; DERF for DenseNet-201 + RF; 
DEAda for DenseNet-201 + AdaBoost; DEMLP for 
DenseNet-201 + MLP; DETREE for DenseNet-201 + 
DT; DEKNN for DenseNet-201 + k-NN; DESVM for 
DenseNet-201 + SVM; AuEn for AutoEncoders; 
AuEnRF for AutoEncoders + RF; AuEnAda for 
AutoEncoders + AdaBoost; AuEnMLP for 
AutoEncoders + MLP; AuEnTREE for 
AutoEncoders + DT; AuEnKNN for AutoEncoders + 
k-NN; and AuEnSVM for AutoEncoders + SVM. 

4 RESULTS & DISCUSSION 

This section presents the empirical findings of the 
proposed designs. As stated, four performance 
metrics were used for assessment. Initially, the 
accuracy of DenseNet-201is compared against the 
hybrid architectures by a set of classifiers, each of 
which is conducted individually in conjunction with 
DenseNet-201 as a feature extractor. Likewise, end-
to-end AE with hybrid architectures and dCNN-based 
hybrid architectures with those based on AE 
respective per each classifier. Then, the SK statistical 
test is performed to cluster the elected techniques. At 
last, the architectures of the SK top-cluster are ranked 
using the Borda count voting system. 

4.1 Do dCNN-Based HLMs 
Outperform End-to-end dCNN 
Architecture for Classifying 
Cervical Cytology WSIs? 

Table 1 displays the accuracy values of (i) end-to-end 
DenseNet-201 and (ii) dCNN-based HLMs, on 
augmented Mendeley- LBCC dataset. Through the 
results obtained: 

- The end-to-end outperformed the others 
with an accuracy value of 99.66%.  

- The HLM integrating SVM scored the 
worst, with an accuracy value of 83.04%. 

- The remaining architectures, i.e. DenseNet-
201 + AdaBoost, DenseNet-201 + MLP, 
DenseNet-201 + DT, DenseNet-201 + k-
NN, and DenseNet-201 + RF, had an 
accuracy rating greater than 95%. 
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Table 1: Accuracy values of dCNN-based and AE-based 
end-to-end and hybrid architectures. 

dCNN 
Archi. 

Acc [%] AE Archi. Acc [%] 

DesNet  99.66 AuEn 78.50 

DEAda 97.88 AuEnMLP 99.20 

DESVM 83.04 AuEnAda 98.48 

DEMLP 97.80 AuEnSVM 51.06 

DETREE 95.12 AuEnTREE 95.40 

DEKNN 96.38 AuEnKNN 94.14 

DERF 98.00 AuEnRF 99.30 

Based on accuracy values, the seven architectures 
were clustered using the SK test as displayed in Fig 
2. Through this figure, we notice that:  

- Cluster 1 got just one architecture, i.e. end-
to-end DenseNet-201, which performs the 
best out of all our models. 

- The elements of the second cluster comprise 
three dCNN-based HLMs, (i) DenseNet-201 
+ RF, (ii) DenseNet-201 +AdaBoost, and 
(iii) DenseNet-201 + MLP, all of which have 
an accuracy greater than 96%. 

- The third and fourth clusters each feature 
one architecture only, namely (i) DenseNet-
201 + DT and (ii) DenseNet-201 + k-NN 
respectively. The two models' accuracy 
range from 95.12 to 96.38%.  

- The last cluster is made up of the dCNN-
based HLM integrating SVM, which 
performs the worst out of all our models. 

Recall that Borda Count is not required to rank the 
models since the first cluster contains just one 
architecture. 

4.2 Do AE-Based HLMs Outperform 
End-to-end AE Architecture for 
Classifying Cervical Cytology 
WSIs? 

Table 1 displays the accuracy values of (i) end-to-end 
AE and (ii) AE-based HLMs, on augmented 
Mendeley- LBCC dataset. Through the results 
obtained: 

- The HLM integrating RF scored the best, 
with an accuracy value of 99.30%. 

- The HLM integrating SVM scored the 
worst, with an accuracy value of 51.06%. 

- Except for the “AE + SVM”, a significant 
variance in performance between end-to-end 
and hybrid architectures is perceived. 

- The hybrid performance has improved in 
comparison to some of the prior dCNN-

based HLMs, notably for AdaBoost, MLP, 
and RF. 

 

Figure 2: SK test results for the dCNN-based architectures. 

In this sub-section, the SK test serves the same 
purpose as in RQ1. Through Fig 3, we notice four 
clusters including: 

- The best cluster comprises three AE-based 
HLMs, (i) AE + RF, (ii) AE + MLP, and (iii) 
AE + AdaBoost, all of which have an 
accuracy greater than 98%. 

- Both ‘AE + DT’ and ‘AE + k-NN’ come 
second given an accuracy range from 94.14 
to 95.4%. 

- The third cluster features the end-to-end AE 
given an accuracy value under the 80%. 

- The last cluster features also one 
architecture only, i.e. the AE-based HLM 
integrating SVM, which performs the worst 
out of all our models. 

- Except for the “AE + SVM”, HLMs 
outperform the end-to-end architecture. 

 

Figure 3: SK Test results for the AE-based end-to-end and 
hybrid architectures. 

Table 2: Performance criteria values and Borda count 
ranking of the AE-based architectures belonging to the SK 
top-cluster. 

Archi. AE + RF AE + MLP AE + 
AdaBoost

Rank 1 2 3
Scores 11 9 4

Acc [%] 99.30 99.20 98.48
Pr [%] 99.65 99.10 98.35
Re [%] 98.96 99.30 98.60
F1 [%] 99.30 99.20 98.47

Next, the Borda count voting system was used to 
rank the proposed architectures belonging to the SK 
top-cluster. Herein, HLMs integrating AdaBoost, 
MLP, and RF as classifiers are statistically similar as 
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per cluster 1, indicating that all were used for the 
ranking according to the four performance measures. 
The related performance scores and Borda count 
ranking are depicted in Table 2. The findings are as 
follows: 

- HLM with RF is ranked top. 
- HLM with MLP comes second with a close 

score. 
- HLM with AdaBoost is ranked last. 

4.3 Do dCNN-Based HLMs 
Outperform AE-Based HLMs? 

Table 1 summarizes the obtained accuracy values on 
the augmented Mendeley- LBCC dataset. Through 
the results, we notice that: 

- Except for (i) end-to-end AE, (ii) AE + 
SVM, and (iii) dCNN + SVM, all the 
proposed architectures have an accuracy 
value superior to 95%. 

- Among the 14 designs, DenseNet-201 
performs the best with an accuracy value of 
99.66%. 

- AE-based HLMs integrating RF, AdaBoost, 
and MLP, perform as well favorably, with 
accuracy values ranging from 98.48 to 
99.30%. 

- All the HLMs incorporating SVM perform 
poorly, with the paring 'AE + SVM' yielding 
the worst accuracy value of 51.06%. 

- Except for ‘AE + k-NN’, the remaining 
HLMs yielded accuracy values ranging from 
95.12 to 98%. 

- End-to-end AE performs poorly in contrast 
to DenseNet-201, with an accuracy rating of 
78.5%.  

The SK test fulfills the same purpose as in 
RQ1/RQ2. Through Fig 4, we notice five clusters 
including: 

- The best cluster is made up of seven designs. 
All, apart from end-to-end DenseNet-201, 
are HLMs – particularly built with 
AdaBoost, MLP, and RF classifiers. 

- The second cluster comprises four HLMs of 
k-NN and DT as classifiers only. 

- The last clusters are made up of poorly 
performing architectures, namely end-to-
end AE and HLMs built on SVM. 

Next, the Borda count voting scheme was 
performed. Table 3 summarizes the performance 
scores and ranking of the SK top-cluster-related 
models. The findings are as follows: 

- AE-based HLMs are highly ranked, with the 
RF classifier performing the best.  

 

Figure 4: SK test results for all the proposed architectures. 

- The ‘AE + MLP’ receives a similar score as 
DenseNet-201, ranking both seconds. 

- AE-based HLM with AdaBoost is ranked 
third. 

- The remaining are built on DenseNet-201 
with RF, AdaBoost, and MLP. 

Here, incorporating AE demonstrated its efficacy 
in classification tasks within cervical computational 
pathology. It is consistent with the fact that extracted 
features supplied as input to the classifiers are more 
informative and, ergo, cervical lesions are better 
distinguished. When paired with RF, the 
classification accuracy improves. One of the 
appealing benefits of RF is it searches for the relevant 
features among a random subset of pathological ones, 
in which complex nuclear elements (intended to 
identify abnormalities) could be wasted. Instead, 
DenseNet-201 remains a viable choice as an end-to-
end strategy over whole-slide imaging for its structure 
adapted to prevent feature redundancy while 
employing fewer parameters.  

5 CONCLUSION 

The present paper proposed AE-based hybrid 
learning models for cervical cancer screening and 
investigated the impact of fourteen combinations on 
classification performance. All the architectures were 
evaluated under four key metrics, Scott-Knott, and 
Borda count schemes over Mendeley- LBCC WSIs. 
The main findings are as follows: 

- RQ1: Do dCNN-based HLMs outperform 
end-to-end dCNN architecture for 
classifying cervical cytology WSIs? As per 
accuracy, the end-to-end dCNN outperforms 
the hybrid architectures. The SK test 
revealed the optimum cluster as having just 
such one architecture. 

- RQ2: Do AE-based HLMs outperform end-
to-end AE architecture for classifying 
cervical cytology WSIs? Except for the AE-
based hybrid architecture integrating SVM 
as a classifier, the AE-based HLMs surpass 
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the end-to-end AE by a wide margin. Recall 
that AE with RF, MLP, and Adaboost 
classifiers come first, second, and third in 
the Borda count ranking, respectively.  

- RQ3: Do dCNN-based HLMs outperform 
AE-based HLMs? As per Borda count, the 
AE-based HLMs are among the top 3 ranked 
architectures, whereas dCNN-based HLMs 
are all rated after the AE-based designs. 
Ergo, the feature extractions are more 
successful when the AE is implemented. 

Table 3: Performance criteria values and Borda count 
ranking of the architectures belonging to the SK top-cluster. 

Archi. R.; 
Sc. 

Acc 
[%] 

Pr 
[%] 

Re 
[%] 

F1 
[%] 

AuEn
RF 

1; 
25 

99.30 99.65 98.96 99.30 

Des 
Net 

2; 
23 

99.66 99.89 98.53 99.10 

AuEn
MLP 

3; 
23 

99.20 99.10 99.30 99.20 

AuEn
Ada 

4; 
17 

98.48 98.35 98.60 98.47 

DE 
RF 

5; 
10 

98.00 98.35 97.67 98.01 

DE 
Ada 

6; 8 97.88 97.85 97.91 97.87 

DE 
MLP 

7; 6 97.80 97.90 97.74 97.80 

The present study is limited by the cost of training 
DL models and the difficulty of interpreting their 
predictions. Further validation is required to ensure 
their reliability. Another weakness is the total number 
of images remains relatively small. Although the 
slides used were collected from three distinguished 
medical diagnostic centers, most of the study 
population was Indian, locally trained, so 
generalizability to other populations and settings is 
not known. To be objective, the usefulness of the 
proposed architectures will be concretely evaluated in 
future work on the Herlev dataset to confirm or refute 
this study’s findings regarding conventional 
cytology. Extending it toward a multi-class problem 
mimicking pathologists for screening cervical 
intraepithelial neoplasia is also necessary. 
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