
Event-Oriented Simulation Module for Dynamic Elastic Optical
Networks with Space Division Multiplexing

Mirko Zitkovich1 a, Gabriel Saavedra2 b and Danilo Bórquez-Paredes1 c

1Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar 2520001, Chile
2Electrical Engineering Department, Universidad de Concepción, Vı́ctor Lamas 1290, Concepción 4070409, Chile

Keywords: C++ library, EON, Performance Evaluation, SDM, Event-Oriented Simulation, Traffic Engineering.

Abstract: It is well-known that creating Space Division Multiplexing-Elastic Optical Networks (SDM-EON) allocation
algorithms can be challenging, especially without the right tools. This paper presents the development of a
module of an event-oriented simulator designed to code C++ allocation algorithms in the context of Space Di-
vision Multiplexing-Elastic Optical Networks. The built module was tested and validated using an allocation
algorithm previously published in the literature. The results were consistent with those in the original article,
indicating that the module developed is effective and reliable. The use of specialized tools, such as the mod-
ule being shown, can significantly increase the effectiveness and precision of this process and can stimulate
additional developments in the telecommunications industry.

1 INTRODUCTION

The demand for bandwidth worldwide has been grow-
ing over time (Roser et al., 2020), and this trend is
unlikely to change. One of the enabling technolo-
gies supporting this growth is elastic optical networks
(EON) (Gerstel et al., 2012).

EONs have introduced to the fiber the ability to
divide the spectrum into small portions called Fre-
quency Slots Units (FSU) (Gerstel et al., 2012), and
therefore, each connection uses the spectrum more ef-
ficiently. However, the set of FSUs must be contigu-
ous (one slot next to the other) and continuous (the
same set of slots) on all links along the route. In ad-
dition, each connection can use a specific modulation
format, allowing the transfer of more information per
FSU at the cost of reduced optical reach (Jinno, 2017).

Space division multiplexing (SDM) is among the
potential candidates to extend even more the capac-
ity of optical networks (Puttnam et al., 2021), cur-
rently limited by the nonlinear nature of silica. SDM
transmits information multiplexed in different spatial
channels over a given transmission medium. The
main candidates for implementing SDM in optical
networks are multi-core (MCF), few-mode, multi-

a https://orcid.org/0009-0003-2454-4264
b https://orcid.org/0000-0002-5450-3661
c https://orcid.org/0000-0001-6590-2329

mode fiber, and combinations thereof (Winzer et al.,
2018). Each transmission medium proposed for SDM
presents physical impairments that need to be con-
sidered when allocating resources in an optical net-
work, as they might detrimentally affect other con-
nections (Klinkowski et al., 2018). In particular, for
MCF, inter-core cross-talk (XT) transfers energy be-
tween adjacent cores at the same wavelength as the
propagating signal (Gené and Winzer, 2019).

A commonly explored area is dynamic elastic op-
tical networks. Here, connections are allocated and
released from the network following random distri-
butions. Within this context, a typical problem is
Routing, Modulation Format, and Spectrum Assign-
ment (RMSA), which consists of finding the route and
modulation format and employing some spectrum al-
location policy to assign the connection to the specific
spectrum of the network. The problem is extended
for the new SDM technology by adding the choice of
the core to be used for the connection. Thus the prob-
lem changes to Routing, Modulation Format, Core se-
lection, and Spectrum Assignment (RMCSA), adding
the C for the core choice. Ad-hoc simulators are typ-
ically used to measure some metric related to these
resource allocation policies, given the complexity of
implementing a hardware testbed.

The current availability of simulators is not suffi-
cient, and there is still a demand for more specialized
tools that cater specifically to the development and

Zitkovich, M., Saavedra, G. and BÃşrquez-Paredes, D.
Event-Oriented Simulation Module for Dynamic Elastic Optical Networks with Space Division Multiplexing.
DOI: 10.5220/0012084500003546
In Proceedings of the 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2023), pages 295-302
ISBN: 978-989-758-668-2; ISSN: 2184-2841
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

295



testing of allocation algorithms for SDM-EONs. Ad-
dressing this need, the article presents an SDM exten-
sion for a flexible optical networks simulator library
called Flex Net Sim (Falcón et al., 2021). The ex-
tension aims to provide a robust and effective means
for coding and validating C++ allocation algorithms
for SDM-EONs, allowing the researcher to code RM-
CSA algorithms quickly, taking care of the allocation
policies, and leaving the simulation details to the li-
brary.

The new module introduces significant changes
to two of the main components of the library, along
with minor modifications to the remaining compo-
nents. These changes focus on storing link informa-
tion by adding a new dimension for cores, enhancing
how the simulator manages certain network informa-
tion, and allocating connection requests. Addition-
ally, user-friendly auxiliary macros have been incor-
porated to facilitate straightforward programming.

This article is organized as follows: First, the
“State of the Art” section reviews existing simula-
tion tools. Next, the “Architecture” section outlines
our proposed solution and discusses the models and
heuristics in the “Model and Heuristics Used” section.
The “Specific Problem Implementation” section de-
tails practical aspects, while the “Simulation Results”
section presents the tool’s performance. Finally, the
“Conclusions” section summarizes our contributions
and findings.

2 STATE OF THE ART

In the field of EONs, there is a limited selec-
tion of simulation tools available. Through our
research, we could identify only a few, such as
EONS (Delvalle et al., 2016), ElasticO++ (Tessinari
et al., 2016), FlexGridSim (Moura and Drummond,
2020), CEONS (Aibin and Blazejewski, 2015), and
SimEON (Cavalcante et al., 2017).

Regarding SDM specifically, even fewer tools
have been found. OMNeT++ is quite versatile and
supports SDM; however, it has a steep learning curve
due to its utilization of advanced programming con-
cepts, which may be unfamiliar to some researchers.
Other tools like VPItransmissionMaker and NS-3 of-
fer SDM support but do not focus on allocation algo-
rithms.

Comparatively to other simulators in the litera-
ture, Flex Net Sim is focused on resource allocation
techniques in dynamic optical networks and offers
tremendous flexibility when coding heuristics, mod-
ifying the topology, and adding or removing network
resources. Incorporating a multicore optical network

handling extension into the simulator is essential to
fully utilize its adaptability to the new technology.

3 ARCHITECTURE

The simulation library Flex Net Sim consists of 4
main components that work together to model the sys-
tem and generate output data: Network, Simulator,
Controller, and Allocator, shown in Fig. 1.

Simulator Controller Network

Allocator

Figure 1: Representation of the architecture.

The library’s Network component stores informa-
tion about the network’s nodes, links, slots, and meth-
ods for modifying the network state. These meth-
ods are atomic and only allow one link or slot mod-
ification at a time. This component does not work
with lightpaths since it works at the level of links and
nodes.

The controller component handles the network’s
global information, such as established network con-
nections and routes between nodes. It provides meth-
ods for assigning or unassigning connections, modi-
fying slot states, and setting connection lightpaths.

The simulator component creates connection re-
quests, which are parameterized by the user, and
sends them to the controller for allocation using the
allocator component.

Finally, the user can actively contribute to the al-
locator component by creating the algorithm used for
allocation, which is the only part of the simulator
where user input is required.

There are two types of events: arrival and depar-
ture. Arrival occurs when a new connection attempt is
made, while departure takes place when a connection
releases previously allocated resources. During an ar-
rival event, the simulator randomly generates a triad
(source node, destination node, bitrate) and passes it
to the Controller component. This component fea-
tures a virtual function that invokes the researcher’s
resource allocation algorithm and returns a mapping
of the resources to be assigned by the controller. The
Controller then attempts to allocate resources within
the network component. If successful, the simulator
proceeds to the next event. Conversely, during a de-
parture event, the connection ID to be released is iden-
tified, and the controller is responsible for instructing
the network component to free up these resources.

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

296



Network Component

≪vector≫

Network

networkType : int

readSDM(std::string filename) : void
readEON(std::string filename) : void

Link

id : int

setSlots(int slots, int core, int mode) : void
setSlot(int core, int mode, int pos, bool value): void
setCores(int numberOfcores): void
setModes(int numberOfmodes): void
getSlots(int core, int mode) const: int
getSlot(int core, int mode, int pos) : bool
getCores(void) : int
getModes(void) : int

Figure 2: UML diagram of the network component.

To support SDM multi-core and/or multi-mode
fiber, the main changes have been made in the net-
work component, specifically in the link class. These
changes allowed every link between each pair of
nodes to have a variable number of modes and/or
cores defined by the user through the methods shown
in Fig. 2. Furthermore, adding cores/modes to the
fiber introduces an extra layer of complexity to the
problem, as connection establishment now varies de-
pending on the network type. A networkType flag
was incorporated into the network component to dis-
tinguish between different network types. The read-
ing of user-provided files that indicate the topology
will expect a certain format depending on this vari-
able, using the methods readEON and readSDM shown
in Fig. 2.

While the network component underwent the
most significant changes, other components, such
as the controller, were also modified. Depending
on the declared network type at the beginning
of the simulation, different methods are used in
the controller to assign or unassign connections.
An important addition was the inclusion of new
MACROS, as NUMBER OF CORES, NUMBER OF MODES,
and ALLOC SLOTS SDM. The former receives the route
ID and the link ID as arguments and returns the num-
ber of cores in that link. The second MACRO receives
the same arguments but returns the number of modes
of the identified link. Finally, the latter receives as
arguments the link ID, the core, the mode, and the
starting and ending slot (assuming contiguity). This

macro is in charge of changing the state of the
slots in the identified link.

4 SPECIFIC PROBLEM
IMPLEMENTATION

We use the two heuristics presented in (Tan et al.,
2016) to test the module. The first is a Distance Adap-
tive RCSA (DA-RCSA), and the second is a First Fit
RCSA (FF-RCSA). The main difference between the
two is that the DA-RCSA uses different modulation
formats, while the FF-RCSA only uses BPSK.

The network is represented by a directed graph
G(N ,L), where N is the set of nodes, and L is the
set of optical links. Each link li is composed of a set C
of cores, where each core c j corresponds to the j− th
core. Each core c j has a vector S⃗, representing the
set of slots composing the usable spectrum. Each slot
can be in either of two states, used or free. Also, each
connection can be allocated using a modulation for-
mat m ∈ M.

All routes are pre-calculated using the K-shortest
path algorithm for both algorithms. At startup, the
DA-RCSA calculates the route length and, according
to this value, selects the highest modulation format
that meets the required optical range, i.e., the one that
uses fewer slots. Then, the algorithm performs a FF
on the core c to find candidate slots. Once found,
calculate the XT of the current core as the candidate
slots were used; if the threshold is met, the slots are
set as used, and the connection is allocated. In the
FF-RCSA algorithm , only BPSK is used. Therefore,
the modulation format loop is not used in this pseu-
docode.

The fiber is composed of 7 cores: six around
a center core. Both algorithms are implemented in
three parts: crosstalk calculation, threshold verifica-
tion, and main allocation algorithm. The codes can
be found in the GitLab repository1.

The library calculates by default the blocking
probability of the allocation algorithms. We also
added the maximum spectrum utilization of the fiber
as an additional metric.

4.1 Crosstalk Calculation

We use the statistical mean XT of a homogeneous
trench-assisted multi-core fiber that can be formulated
with Equations 1, 2, and 3 (Muhammad et al., 2015):

1https://gitlab.com/DaniloBorquez/flex-net-sim/-/tree/
master/examples/SDM

Event-Oriented Simulation Module for Dynamic Elastic Optical Networks with Space Division Multiplexing

297



h =
2k2r
βwtr

(1)

XT =
n−n · exp[−(n+1) ·2 ·h ·L]
1+n · exp[−(n+1) ·2 ·h ·L]

(2)

XTdB = 10 · log10 XT (3)

Where h is the mean crosstalk increase by unit
length. k, r, β, and wtr are the coupling coefficient,
bend radius, propagation constant, and core pitch, re-
spectively. XT corresponds to the mean crosstalk,
using h previously calculated, and n and L, where n
is the number of adjacent active cores (which are the
cores using slots on the same position), and L is the
path length, measured in meters. Finally, XTdB corre-
sponds to the threshold in decibels.

The allocation process must satisfy a crosstalk
threshold to complete the resource assignment. This
means the XT cannot surpass a specific value to es-
tablish a successful connection.

4.2 Main Allocation Algorithms

Codes 1 and 2 implement DA-RCSA and FF-RCSA.
The code must begin with BEGIN ALLOC FUNCTION
reserved word with the name of the allocation algo-
rithm as a parameter, and it must finish with the re-
served word END ALLOC FUNCTION.

Code 1: DA-RCSA.
1 BEGIN ALLOC FUNCTION(DA) {
2 int currentNumberSlots;
3 int currentSlotIndex;
4 int bitrateInt = bitRates map[REQ BITRATE];
5 int numberOfSlots;
6 std::vector<bool> totalSlots;
7 for (int r = 0; r < NUMBER OF ROUTES; r++){
8 for (int c = 0; c < NUMBER OF CORES(r, 0); c++)

↪→ {
9 double routeLength = 0;

10 totalSlots = std::vector<bool>(LINK IN ROUTE
↪→ (r, 0)−>getSlots(), false);

11 for (int l = 0; l < NUMBER OF LINKS(r); l++){
12 routeLength += LINK IN ROUTE(r,l)−>

↪→ getLength();
13 for (int s = 0; s < LINK IN ROUTE(r, l)−>

↪→ getSlots(); s++){
14 totalSlots[s] = totalSlots[s] |

↪→ LINK IN ROUTE(r, l)−>getSlot(c,
↪→ 0, s);

15 }
16 }
17 for (int m = 0; m <

↪→ NUMBER OF MODULATIONS; m++)
↪→ {

18 numberOfSlots = REQ SLOTS(m);
19 if (routeLength > REQ REACH(m)) continue;
20 currentNumberSlots = 0;
21 currentSlotIndex = 0;
22 for (int s = 0; s < totalSlots.size(); s++) {
23 if (totalSlots[s] == false) {
24 currentNumberSlots++;
25 } else {
26 currentNumberSlots = 0;
27 currentSlotIndex = s + 1;
28 }
29 if (currentNumberSlots >= numberOfSlots) {
30 double XT treshold =

↪→ XT treshold by bitrate[m];
31 if (!isOverTreshold(c, sim.getPaths()−>at(

↪→ SRC)[DST][r], numberOfSlots,
↪→ currentSlotIndex, routeLength,
↪→ XT treshold)){

32 for (int l = 0; l < NUMBER OF LINKS(
↪→ r); l++) {

33 ALLOC SLOTS SDM(
↪→ LINK IN ROUTE ID(r, l), c,
↪→ 0, currentSlotIndex,
↪→ numberOfSlots)

34 }
35 currentUtilization = currentUtilization + (

↪→ numberOfSlots *
↪→ NUMBER OF LINKS(r));

36 if (currentUtilization/totalCapacity >

↪→ maxUtilization) maxUtilization
↪→ = currentUtilization/
↪→ totalCapacity;

37 return ALLOCATED;
38 } else {
39 currentSlotIndex++;
40 }
41 }
42 }
43 }
44 }
45 }
46 return NOT ALLOCATED;
47 }
48 END ALLOC FUNCTION

Lines 2-6 in Code 1 initialize auxiliary variables.
Loops in lines 8-9 are used to go through the routes
and cores, respectively. Lines 12-17 create an aux-
iliary vector representing the utilization of all links
in the current route in terms of slots, representing a
transparent connection. Lines 18-29 execute the FF
algorithm, searching for contiguous slots in the aux-
iliary vector previously defined. Line 30-32 check
that the requested number of slots is satisfied and
then check the threshold. If the threshold is satisfied,
Lines 33-35 allocate the resources to the current core.
Line 37 updated the extra metric that we calculated.
Line 38 returns that the allocation process was suc-
cessful (ALLOCATED). Finally, if the algorithm tries all

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

298



routes/cores and does not find enough space to allo-
cate, it returns NOT ALLOCATED in line 47.

Code 2: FF-RCSA.
1 BEGIN_ALLOC_FUNCTION(FF) {
2 int currentNumberSlots;
3 int currentSlotIndex;
4 int bitrateInt = bitRates_map[

↪→ REQ_BITRATE];
5 int numberOfSlots;
6 std::vector<bool> totalSlots;
7 int BPSK = 2;
8 for (int r = 0; r < NUMBER_OF_ROUTES; r

↪→ ++){
9 for (int c = 0; c < NUMBER_OF_CORES(r,

↪→ 0); c++){
10 double routeLength = 0;
11 totalSlots = std::vector<bool>(

↪→ LINK_IN_ROUTE(r, 0)->getSlots
↪→ (), false);

12 for (int l = 0; l < NUMBER_OF_LINKS(r
↪→ ); l++){

13 routeLength += LINK_IN_ROUTE(r,l)->
↪→ getLength();

14 for (int s = 0; s < LINK_IN_ROUTE(r
↪→ , l)->getSlots(); s++){

15 totalSlots[s] = totalSlots[s] |
↪→ LINK_IN_ROUTE(r, l)->
↪→ getSlot(c, 0, s);

16 }
17 }
18 numberOfSlots = REQ_SLOTS(BPSK);
19 if (routeLength > REQ_REACH(BPSK))

↪→ continue;
20 currentNumberSlots = 0;
21 currentSlotIndex = 0;
22 for (int s = 0; s < totalSlots.size()

↪→ ; s++) {
23 if (totalSlots[s] == false) {
24 currentNumberSlots++;
25 } else {
26 currentNumberSlots = 0;
27 currentSlotIndex = s + 1;
28 }
29 if (currentNumberSlots >=

↪→ numberOfSlots) {
30 double XT_treshold =

↪→ XT_treshold_by_bitrate[
↪→ BPSK];

31 if (!isOverTreshold(c, sim.
↪→ getPaths()->at(SRC)[DST][r
↪→ ], numberOfSlots,
↪→ currentSlotIndex,
↪→ routeLength, XT_treshold))
↪→ {

32 for (int l = 0; l <
↪→ NUMBER_OF_LINKS(r); l++)
↪→ {

33 ALLOC_SLOTS_SDM(
↪→ LINK_IN_ROUTE_ID(r, l)
↪→ , c, 0,
↪→ currentSlotIndex,

↪→ numberOfSlots)
34 }
35 currentUtilization =

↪→ currentUtilization + (
↪→ numberOfSlots *
↪→ NUMBER_OF_LINKS(r));

36 if (currentUtilization/
↪→ totalCapacity >
↪→ maxUtilization)
↪→ maxUtilization =
↪→ currentUtilization/
↪→ totalCapacity;

37 return ALLOCATED;
38 } else {
39 currentSlotIndex++;
40 }
41 }
42 }
43 }
44 }
45 return NOT_ALLOCATED;
46 }
47 END_ALLOC_FUNCTION

The Code 2 is similar to Code 1, and shows the
implementation of FF-RCSA. The main difference is
presented in the modulation part. The code shown for
the DA algorithm tries different modulation formats
to allocate a connection, while FF algorithms only try
Binary Phase-Shift Keying (BPSK). So, lines 18-20
of Code 1, where the modulation format is variable,
are replaced by lines 19-20 in Code 2, where this vari-
able takes a fixed value of BPSK. The rest of the code
is the same as Code 1.

4.3 Main Program Code

The main program is shown in Code 3. Line 1 is the
Flex Net Sim library included. Lines 3-9 are auxil-
iary variables. The function shown in line 11 is trig-
gered after each connection departure. We use this
function to update the auxiliary variables concerning
maximum utilization.

Code 3: Main simulation code.
1 #include "./simulator.hpp"
2 #define DA_RCSA 0
3 #define FF_RCSA 1
4 double lambdas[10] = {100, 200, 300, 400,

↪→ 500, 600, 700, 800, 900, 1000};
5 int active_algorithm = DA_RCSA;
6 int numberConnections = 1e5;
7 double currentUtilization = 0;
8 double maxUtilization = 0;
9 BEGIN_UNALLOC_CALLBACK_FUNCTION {

10 currentUtilization = currentUtilization
↪→ - (c.getSlots()[0].size() * c.
↪→ getLinks().size());

11 if (currentUtilization/totalCapacity >
↪→ maxUtilization) maxUtilization =

Event-Oriented Simulation Module for Dynamic Elastic Optical Networks with Space Division Multiplexing

299



↪→ currentUtilization/totalCapacity;
12 }
13 int main(int argc, char* argv[]) {
14 for (int lambda = 0; lambda < sizeof(

↪→ lambdas)/sizeof(double); lambda
↪→ ++) {

15 sim = Simulator(std::string("./networks
↪→ /NSFNet.json"),

16 std::string("./networks/
↪→ NSFNet_routes.
↪→ json"),

17 std::string("./networks/
↪→ bitrates.json"),

18 SDM);
19 if (active_algorithm == DA_RCSA)

↪→ USE_ALLOC_FUNCTION(DA, sim)
20 else USE_ALLOC_FUNCTION(FF, sim)
21
22 USE_UNALLOC_FUNCTION_SDM(sim);
23 sim.setGoalConnections(

↪→ numberConnections);
24 sim.setLambda(lambdas[lambda]);
25 sim.setMu(1);
26 sim.init();
27 sim.run();
28
29 currentUtilization = 0;
30 maxUtilization = 0;
31 }
32 return 0;
33 }

Line 16 starts the program, composed of a loop, to
get the blocking probability and maximum utilization
of each traffic load. Lines 18-21 create a simulator ob-
ject with a specific network, routes for that network,
bitrates to be used, and the SDM flag. Lines 23-24
determine which algorithm will be used, which in this
case is DA RCSA. Line 26 sets the algorithm for each
connection departure for the Simulator object. Lines
27-30 sets the principal parameters of the simulation
and initialize it. Finally, Line 32 executes the simu-
lation, and lines 34-35 reset auxiliary variables to be
recalculated on the next loop.

4.4 Network Files

The simulator receives three files for the construction
of the network, and it requests. To explain its struc-
ture and for the sake of space, we present a 3-node
network. An example of the first file can be seen in
Code 4, and it corresponds to the structure of the net-
work, specifies the number of nodes and their id, as
well as the links that connect them and their character-
istics: length, id, number of cores, number of modes
and their respective slots. The slots are specified in
a list of lists where the first dimension corresponds
to the core and the second dimension to the mode,
i.e., if you want to specify that the number of slots

of the first core with three modes is 30, it would be
slots = [[30,30,30], ...]. The example shows a 3-node
7-core single-mode network.

Code 4: Network JSON file.
1 {
2 "alias": "NetExample",
3 "name": "Network Example",
4 "nodes": [
5 {"id": 0}, {"id": 1}, {"id": 2}
6 ],
7 "links": [
8 {"id": 0, "src": 1, "dst": 0,
9 "length": 500,

10 "number_of_cores": 7,
11 "number_of_modes": 1,
12 "slots": [[80], [80], [80], [80

↪→ ], [80], [80], [80]]
13 },{ "id": 1, "src": 0, "dst": 1,
14 "length": 500,
15 "number_of_cores": 7,
16 "number_of_modes": 1,
17 "slots": [[80], [80], [80], [80

↪→ ], [80], [80], [80]]
18 },{ "id": 2, "src": 2, "dst": 1,
19 "length": 200,
20 "number_of_cores": 7,
21 "number_of_modes": 1,
22 "slots": [[80], [80], [80], [80

↪→ ], [80], [80], [80]]
23 },{ "id": 3, "src": 1, "dst": 2,
24 "length": 200,
25 "number_of_cores": 7,
26 "number_of_modes": 1,
27 "slots": [[80], [80], [80], [80

↪→ ], [80], [80], [80]]
28 },{ "id": 4, "src": 0, "dst": 2,
29 "length": 600,
30 "number_of_cores": 7,
31 "number_of_modes": 1,
32 "slots": [[80], [80], [80], [80

↪→ ], [80], [80], [80]]
33 },{ "id": 5, "src": 2, "dst": 0,
34 "length": 600,
35 "number_of_cores": 7,
36 "number_of_modes": 1,
37 "slots": [[80], [80], [80], [80

↪→ ], [80], [80], [80]],
38 }
39 ]
40 }

The second file corresponds to the pre-calculated
paths between each pair of nodes. These routes are
unidirectional, so setting all the routes between nodes
0 and 1 will not establish the routes between nodes 1
and 0. It is essential to mention that the order of the
paths in the file defines the order in which they will
be iterated in the allocating algorithm. Code 5 shows
an example of the paths between the 3-node network.

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

300



Code 5: Routes JSON file.
1 {
2 "name": "Network Example",
3 "alias": "NetExample",
4 "routes": [
5 {"src": 0, "dst": 1,
6 "paths": [[0, 1], [0, 2, 1]]
7 },{ "src": 0, "dst": 2,
8 "paths": [[0, 2], [0, 1, 2]]
9 },{ "src": 1, "dst": 0,

10 "paths": [[1, 0], [1, 2, 0]]
11 },{ "src": 1, "dst": 2,
12 "paths": [[1, 2], [1, 0, 2]]
13 },{ "src": 2, "dst": 0,
14 "paths": [[2, 0], [2, 1, 0]]
15 }
16 ]
17 }

The third file corresponds to the bitrates and mod-
ulation format requests. Each modulation has its
name, reach, and the required number of slots. Like
the routes, the order in which the modulation formats
are placed in the JSON file determines the order in
which they will be iterated in the allocating algorithm.
Code 6 shows an example of two bitrates {40,100}
each with two modulation formats {16-QAM, QPSK}

Code 6: Bitrates JSON file.
1 {
2 "40": [
3 {"16QAM": {"slots":1, "reach":1500},
4 "QPSK": {"slots":2, "reach":4000}
5 }
6 ], "100": [
7 {"16QAM": {"slots":2, "reach":1500},
8 "QPSK": {"slots":4, "reach":4000}
9 }

10 ]
11 }

5 SIMULATION RESULTS

The simulation was conducted in a Windows Subsys-
tem for Linux Version 2 (Windows 10) installed on
an HDD using an Intel Core i5 9400F, 3.90 GHz,
and 16 GB of RAM, obtaining a total CPU execu-
tion time equal to 20 seconds for the FF-RCSA al-
gorithm and 22 seconds for the DA-RCSA algorithm.
We simulate 105 connections in the NSFNet topology
(14 nodes, 44 unidirectional links) shown in Fig. 3.
Each fiber has seven cores and 80 spectrum slots.Fiber
parameters used by (Tan et al., 2016) are 0.05m,4×
1061/m,4× 10−4, and 4× 10−5, for bending radius,
propagation constant, coupling coefficient, and core
pitch, respectively. Cross-talk thresholds used are

−14dB, −18.5dB, and −25dB for BPSK, QPSK, and
16-QAM modulation formats, respectively.

Figure 3: NSFNet topology with distance in km (Tan et al.,
2016).

The bitrates were uniformly distributed between
B = {40,100,200} Gbps, and a total of three modu-
lation formats were used (BPSK, QPSK, 16-QAM),
with their respective optical reach and frequency slot
capacity (Table 1 at (Tan et al., 2016)).

Fig. 4a shows the blocking probability of both al-
gorithms. The results show that the use of the DA-
RCSA algorithm performs better compared to the FF-
RCSA. Fig. 4b displays the maximum resource uti-
lization of the network. These results also show that
the DA-RCSA algorithm alleviates network usage us-
ing different modulation formats compared to FF-
RCSA. Although all the results obtained are consis-
tent with those at (Tan et al., 2016), they are not ex-
actly the same, and this may be due to several reasons.
Firstly, as there is a generation of random variables
involved (to simulate the arrival of the connections),
it is improbable to replicate the exact same results,
either because it was programmed differently or be-
cause there is no access to the seed used.

On the other hand, the number of connections
used by the researchers was 5,000 compared to the
100,000 used during our simulations. Given that the
higher the number of simulated connections, the bet-
ter the confidence interval of the metrics obtained, we
can state that our values are more reliable. Despite
these differences, it could be said that the proportions
between the two algorithms are quite similar, which
would lead us to conclude the same as the researchers.

6 CONCLUSION

In this paper, we presented a module for the Flex-
Net-Sim C++ library that extends its support for using
SDM. The results obtained are consistent with the ref-
erence example presented. With the addition of this
module, researchers and developers can now inves-
tigate and expand their knowledge of SDM-enabled
elastic optical networks using the FlexNet-Sim C++
library.

Event-Oriented Simulation Module for Dynamic Elastic Optical Networks with Space Division Multiplexing

301



0 200 400 600 800 1,000
0.00

0.05

0.10

0.15

0.20

0.25

Traffic load [Erlang]

B
lo

ck
in

g
Pr

ob
ab

ili
ty

FF-RCSA
DA-RCSA

(a) Blocking probability

0 200 400 600 800 1,000
0.00

0.20

0.40

0.60

0.80

1.00

Traffic load [Erlang]

M
ax

im
um

R
es

ou
rc

e
U

til
iz

at
io

n FF-RCSA
DA-RCSA

(b) Resource utilization

Figure 4: Numerical results.

Future work is expected to implement multiband
in multi-core/mode modules to enhance the simula-
tor’s capabilities further. There is also the possibility
of implementing other types of events used in opti-
cal network research, such as fragmentation and fault
tolerance.

ACKNOWLEDGEMENTS

This work received financial support from ANID
FONDECYT Iniciación 11220650 and Fondecyt
1231826.

REFERENCES

Aibin, M. and Blazejewski, M. (2015). Complex elastic
optical network simulator (ceons). In 2015 17th Inter-
national Conference on Transparent Optical Networks
(ICTON), pages 1–4.

Cavalcante, M. A., Pereira, H. A., and Almeida, R. C.
(2017). SimEON: an open-source elastic optical net-
work simulator for academic and industrial purposes.
Photonic Network Communications, 34(2):193–201.

Delvalle, L., Alfonzo, E., and Roa, D. P. P. (2016). Eons:
An online rsa simulator for elastic optical networks.
In 2016 35th International Conference of the Chilean
Computer Science Society (SCCC), pages 1–12.

Falcón, F., España, G., and Bórquez-Paredes, D. (2021).
Flex net sim: A lightly manual.

Gené, J. M. and Winzer, P. J. (2019). A universal specifi-
cation for multicore fiber crosstalk. IEEE Photonics
Technology Letters, 31(9):673–676.

Gerstel, O., Jinno, M., Lord, A., and Yoo, S. B. (2012).
Elastic optical networking: a new dawn for the optical
layer? IEEE Communications Magazine, 50(2):s12–
s20.

Jinno, M. (2017). Elastic optical networking: Roles and
benefits in beyond 100-gb/s era. Journal of Lightwave
Technology, 35(5):1116–1124.

Klinkowski, M., Lechowicz, P., and Walkowiak, K. (2018).
A study on the impact of inter-core crosstalk on sdm
network performance. In 2018 International Confer-
ence on Computing, Networking and Communications
(ICNC), pages 404–408.

Moura, P. M. and Drummond, A. C. (2020). FlexGridSim:
Flexible Grid Optical Network Simulator. http://www.
lrc.ic.unicamp.br/FlexGridSim/.

Muhammad, A., Zervas, G., and Forchheimer, R. (2015).
Resource allocation for space-division multiplexing:
Optical white box versus optical black box network-
ing. Journal of Lightwave Technology, 33(23):4928–
4941.

Puttnam, B. J., Rademacher, G., and Luı́s, R. S. (2021).
Space-division multiplexing for optical fiber commu-
nications. Optica, 8(9):1186–1203.

Roser, M., Ritchie, H., and Ortiz-Ospina, E.
(2020). Internet. Our World in Data.
https://ourworldindata.org/internet.

Tan, Y., Yang, H., Zhu, R., Zhao, Y., Zhang, J., Liu, Z.,
Ou, Q., and Zhou, Z. (2016). Distance adaptive rout-
ing, core and spectrum allocation in space division
multiplexing optical networks with multi-core fibers.
In 2016 Asia Communications and Photonics Confer-
ence (ACP), pages 1–3.

Tessinari, R. S., Puype, B., Colle, D., and Garcia, A. S.
(2016). Elastico++: An elastic optical network simu-
lation framework for omnet++. Optical Switching and
Networking, 22:95 – 104.

Winzer, P. J., Neilson, D. T., and Chraplyvy, A. R. (2018).
Fiber-optic transmission and networking: the previ-
ous 20 and the next 20 years (invited). Opt. Express,
26(18):24190–24239.

SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

302


