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Abstract: Verifiable credentials are a digital analogue of physical credentials. Their authenticity and integrity are pro-
tected by means of cryptographic techniques, and they can be presented to verifiers to prove claims about the
holder of the credential itself. One way to preserve privacy during presentation consists in selectively dis-
closing the attributes in a credential. In this paper we present the most widespread cryptographic mechanisms
used to enable selective disclosure of attributes, describing their structure and comparing them in terms of
performance, size of the associated verifiable presentations, and the ability to produce predicate proofs and
unlinkable presentations.

1 INTRODUCTION

As more services move online, increasing importance
is given to an individual’s digital identity as the foun-
dation for secure and trusted online interactions, such
as e-government and e-commerce.

A new paradigm for identity management based
on digital identity wallets is emerging to empower
data subjects to selectively disclose credentials in a
privacy-preserving and secure way. The most promi-
nent example is the revised regulation eIDAS 2 (EU,
2021), proposing a European Digital Identity (EUDI)
Framework and Wallet to improve cross-border inter-
operability. The privacy enhancing aims of the EUDI
wallet include offering data subjects the means to con-
trol who has access to which of their personally iden-
tifiable information, and making it possible to selec-
tively disclose only some of the attributes in their cre-
dentials to trusted parties. These aims are technically
non-trivial to achieve; a service provider has to sat-
isfy the principles of data minimisation and privacy
by design under the GDPR (EU, 2016), while consid-
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ering trade-offs between simplicity vs sophistication
of protocol, implementation, and deployment issues
including resource constraints.

Scenario. To exemplify disclosure, we consider the
following simplified scenario: a young adult wishes
to purchase alcohol and to prove that s/he is over the
legal age limit in the jurisdiction, e.g., 18, without
fully disclosing his/her entire mobile driving license
(mDL).

In this example, the agency in charge of issuing
mDL (Issuer) verifies the mDL Subject’s age during
the issuance process and includes it as an attribute in
the mDL. The data Subject holding the mDL can se-
lect to disclose the single mDL attribute “age” to the
liquor store employee (Verifier). The Verifier can ver-
ify that the Subject is of age to buy alcohol without
learning any other personal information.

This enhances privacy for the Subject while en-
abling the Verifier to verify their age in a trusted and
efficient manner.

Contributions. eIDAS 2 states that EUDI wallets
“should technically enable the selective disclosure
of attributes”, and amendments to the proposal add
“where attestation of attributes does not require the
identification of the user, zero knowledge attestation
shall be performed” (EU, 2023). The EUDI Wallet
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Architecture and Reference Framework (ARF) (DG
CONNECT, 2023), intended to provide more con-
crete technical guidelines and tools, states that “attes-
tation MUST enable Selective Disclosure of attributes
by using Selective Disclosure for JSON Web Tokens
(SD-JWT) and Mobile Security Object (ISO/IEC
18013-5) scheme”.

Both schemes cited in the ARF are based on hid-
ing commitment mechanisms - generating a commit-
ment to a value while keeping it hidden, with the abil-
ity to reveal the committed value later. The ARF does
not currently cover zero knowledge proofs (ZKP) -
e.g., repeatedly proving knowledge of a value with-
out ever having to reveal it. Given the complexity and
range of available options, it is non-trivial to assess
their pros and cons. In order to facilitate an informed
choice, we start to fill this gap by providing crypto-
graphic building blocks for credentials with selective
disclosure capability based on hiding commitments
and ZKP. This paper provides the following main con-
tributions:

• We summarize four cryptographic mechanisms
(cm) for selective disclosure based on hiding com-
mitment and ZKP.

• We provide the structure of Verifiable Credentials
and Presentations for the cm, together with the
operation of entities that must be performed for
their creation (issuing) and consumption (presen-
tation).

• We compare the cm w.r.t. several features to assist
in selecting the most appropriate for the use case
of interest.

Outline. Section 2 introduces the cryptographic
primitives used to implement the cryptographic mech-
anisms described in Sections 3 and 4. In Section 5,
we analyse and compare the mechanisms and we dis-
cuss how they support some privacy-enhancing fea-
tures. We summarize the main results and discuss fu-
ture work in Section 6.

2 SELECTIVE DISCLOSURE

Following the VC data model (Sporny et al., 2022),
a credential can be defined as “a set of one or more
claims [assertions about a Subject] made by an Is-
suer”, and a Verifiable Credential (VC) as “a tamper-
evident credential that has authorship that can be
cryptographically verified”. We consider the follow-
ing entities and quote the descriptions from (Lodder-
stedt et al., 2023):

Issuer: “a role an entity can perform by asserting
claims about one or more subjects, creating a VC
from these claims, and transmitting the VC to a
holder”.

Holder: “a role an entity might perform by possess-
ing one or more VCs and generating presentations
from them”.

Subject: “the entity about which claims are made”.

Verifier: “a role an entity performs by receiving one
or more VCs, optionally inside a verifiable pre-
sentation” and verifies it “to make a decision re-
garding providing a service to the Subject”.

There are several methods that allow VCs to sup-
port selective disclosure. (Sporny et al., 2019), iden-
tifies the following categories:

Atomic credentials contain only a single claim: the
Issuer may provide a set of atomic credentials and
the Holder presents to a Verifier only those that it
wants to show.

Hashed values allow an Issuer to issue a single VC
containing multiple claims. Each claim is hidden
and committed to using hash functions, then the
commitment is signed by the Issuer. Examples
include hash lists (Section 3.1) and Merkle trees
(Section 3.2).

Selective disclosure signatures are signatures
schemes that natively support selective disclo-
sure of VC claims by using non-interactive zero
knowledge proofs. Examples are CL signature
(Section 4.1) and BBS+ signature (Section 4.2).

We provide noteworthy examples of crypto-
graphic mechanisms based on hashed values, consid-
ered as an instance of hiding commitments, which are
adopted in the standardized mobile Driving License
(ISO/IEC 18013-5, 2021) or discussed in (Steele and
Prorock, 2021) (Section 3). We also present examples
of the most relevant selective disclosure signatures
adopted in (IBM, 2010; Khovratovich et al., 2022;
Lodder et al., 2019)(Section 4). Atomic credentials
are unwieldy to manage, particularly to guarantee that
a presentation contains a collection of atomic creden-
tials that is valid as a whole, but do not introduce or re-
quire substantially different cryptographic techniques
than the other two mechanisms; therefore, we do not
discuss them further.

2.1 VC Structure and Lifecycle

We describe the general structure of VCs and Ver-
ifiable Presentations (VPs) regardless of the crypto-
graphic mechanism used.
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A VC is composed of three sections: an Is-
suer protected header, containing general informa-
tion about the credential, for instance the Issuer, the
Subject and the credential type, an Issuer payload
containing information about the credential attributes,
and an Issuer proof which contains the cryptographic
material which attests the authenticity of the creden-
tial (see Table 1).

A VP is composed of three sections (see Table 2):
a presentation protected header with general infor-
mation about the credential; a presentation payload
with information related to the disclosed attributes;
and a presentation proof with the cryptographic ma-
terial that allows the Verifier to check the authenticity
of the presentation.

The structure of the VC and VP we adopt is con-
sistent, albeit simplified to focus on selective disclo-
sure, with the structure of JSON Web Proof (JWP)
(Miller et al., 2023), a proposal to standardize a JSON
container which aims to describe the structure of VCs
to allow the selective disclosure of attributes.

In a preliminary set-up phase, the Issuer must
generate its private-public key pair (skIss,pkIss) us-
ing the key generation function of the digital signa-
ture scheme used to sign the VCs, keyGen(). In
the issuing phase, the Issuer generates an Issuer
proof with the function genIssuerProof(−). The
Holder, upon reception of the VC created by the
Issuer, verifies its validity computing the function
verIssuerProof(−).

In the presentation phase the Holder can cre-
ate a VP specifying the attributes it wants to dis-
close. In particular, the Holder creates the VP
containing the Holder-generated proof by comput-
ing the function genHolderProof(−). The Veri-
fier, upon reception of the VP computes the function
verPresentProof(−) to verify it and possibly ac-
cept the Holder’s claims.

2.2 Cryptographic Building Blocks

We provide the main cryptographic notions that are
useful to understand the approaches for the creation
of VCs supporting selective disclosure of attributes:
hashing and salting for the creation of hiding com-
mitments, and ZKP to prove statements about undis-
closed attributes in selective disclosure signatures.

Digital signatures define the algorithms
keyGen() to generate the public and private
keys (pk,sk), genSig(sk,m) to sign a message m,
and verSig(pk,m,σ) to verify the signature σ.

While the algorithms to implement the above
functions mentioned in Section 3 may be any stan-
dardized digital signature algorithm, those described

in Section 4 are a special class of signatures designed
to support ZKP, and may require more structured in-
put, e.g., ordered lists of messages. We use the same
notation for brevity, but we stress that they enable dif-
ferent features.

2.2.1 Hash and Salt Technique

A commitment scheme allows a party to commit to a
value v by sending a commitment, and then to reveal
v by opening the commitment at a later point in time.
A commitment scheme is hiding if the commitment
reveals nothing about v.

In hiding commitments based on a hash function
H , the commitment creation algorithm takes as input
a value v to be committed to, and outputs H (v||s),
where s is chosen uniformly at random and is referred
to as the salt of the commitment, and v||s is the con-
catenation of the bytes strings v and s. This scheme is
said to be:

• binding: it is computationally infeasible to
find another pair (v′,s′) ̸= (v,s) such that
H (v||s) = H (v′||s′);

• hiding: no information about v can be gained by
only looking at the commitment H (v||s).
Only someone who knows both v and s can open

the commitment (by revealing v,s) and prove that the
message committed to is v.

2.2.2 Non-Interactive Zero-Knowledge Proofs

Non-interactive zero-knowledge proofs (NIZKP) al-
low an actor, called prover, to convince another actor,
called verifier, of the truthfulness of some claim, with-
out revealing anything else to the verifier. The proto-
col is non-interactive, meaning the prover generates a
proof π and the verifier checks that π is valid without
requiring additional interactions between prover and
verifier.

In Section 4 we mention two NIZKP based on the
NIZKP for linear relations: given a group G - which
in Section 4.1 will be a group of unknown order and
in Section 4.2 will be a group of prime order p - and
y,g1, . . . ,gm ∈ G, the prover can prove that it knows
a1, . . . ,am such that y = ∏

m
i=1 gai

i . For an introduction
to such protocols see Section 19.5.3 of (Boneh and
Shoup, 2023) and (IBM, 2010).

3 HIDING-COMMITMENT
MECHANISMS

Instances of hiding commitment mechanisms can be
obtained, for example, by using lists of hash-based
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hiding commitments (cmtList, see Section 3.1),
Merkle Trees (merTree, see Section 3.2), or vec-
tor commitments (Catalano and Fiore, 2013), as sug-
gested in (Steele and Prorock, 2021).

The Issuer commits to a set of attributes, then dig-
itally signs the commitment. The properties of hiding
commitments allow the Issuer of a credential to sign
the commitments, then a Holder, who knows the at-
tribute values of a credential, can open only some of
the committed values proving to a Verifier the truth-
fulness of its claims.

Operations in the Issuing Phase. The Issuer can
create a VC with the structure of Table 1 and issues it
to the Holder. The VC is composed of the three parts
already mentioned:

• the Issuer protected header containing the cryp-
tographic mechanism identifier cm, - specifying
primitives such as the chosen digital signature al-
gorithm and cryptographic hash function - and the
Issuer public key pkIss;

• the Issuer payload containing a list of attributes
A = (a1, . . . ,am) certified by the Issuer who cre-
ated the credential, together with a list of random
salts, one for each attribute S= (s1, . . . ,sm);

• the Issuer Proof containing the digital sig-
nature of the commitment CMT to the at-
tributes A, constructed according to the cho-
sen cryptographic mechanism and the list of
attributes and salts, signed by the Issuer, ob-
taining σ = genSig(skIss,CMT). These op-

erations are performed executing the function
genIssuerProof(skIss,A,S).

Note that the choice of the digital signature scheme
adopted by the Issuer to sign the CMT is not restricted
to a specific primitive.

The Holder can verify the VC’s validity by com-
puting the function verIssuerProof(VC), which
consists in verifying that the commitment CMT is ac-
tually a commitment to the elements in A and S, and
verifying the Issuer’s digital signature.

Operations in the Presentation Phase. The
Holder creates a VP to convince the Verifier that the
attributes revealed are included in a credential issued
by a trusted Issuer.

A VP in this context has the structure described in
Table 2. It is composed by:

• a presentation protected header containing the
name of the cryptographic mechanism cm adopted
in the creation of the underlying credential and the
Issuer public key;

• the presentation payloads, containing a subset
DA⊂ A of attributes (ai1 , . . . ,aid ) that the Holder
wants to disclose together with DS⊂ S, the list of
associated salts (si1 , . . . ,sid );

• a presentation proof generated by the Holder in-
cluding the commitment CMT and its signature σ

created by the Issuer associated to pkIss and the
Holder-generated proof obtained computing the
function genHolderProof(DA,DS,A,S).

Table 1: A simplified representation of VC which allows selective disclosure of attributes.

VC Hiding-commitment Selective disclosure signature
Issuer Protected Header Cryptographic mechanism: cm Cryptographic mechanism: cm

Issuer public key: pkIss Issuer public key: pkIss
Issuer Payloads Attributes and salts: Attributes:

A= (a1, . . . ,am) A= (a1, . . . ,am)
S= (s1, . . . ,sm)

Issuer Proof Signed commitment: Selective disclosure signature:
genIssuerProof(skIss,A,S) = genIssuerProof(skIss,A) =
= (CMT,σ = genSig(skIss,CMT)) = σ = genSig(skIss,A)

Table 2: The general structure of a VP.

VP Hiding-commitment Selective disclosure signature
Presentation
Protected Header

Cryptographic mechanism: cm Cryptographic mechanism: cm
Issuer public key: pkIss Issuer public key: pkIss

Presentation Payloads Disclosed attributes and salts: Disclosed attributes:
DA= (ai1 , . . . ,aid )⊂ A DA= (ai1 , . . . ,aid )⊂ A
DS= (si1 , . . . ,sid )⊂ S

Presentation Proof

Signed commitment:
(CMT,σ)

Holder-generated Proof: Holder-generated proof:
P = genHolderProof(DA,DS,A,S) P = genHolderProof(pkIss,DA,A,σ)
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The Verifier verifies a VP received
from the Holder by computing the function
verPresentProof(VP), which consists in (i)
verifying the signature of the CMT created by the
Issuer, and (ii) verifying the proof that the disclosed
attributes in DA are a subset of the attributes commit-
ted to in CMT.

Once the commitment opening algorithm for
the pairs (ai,si) in DA×DS ⊂ A×S is defined,
the functions genHolderProof(DA,DS,A,S) and
verPresentProof(VP) are well defined.

3.1 Commitment List Mechanism

In the cmtList mechanism, credentials contain or-
dered lists of attribute-salt pairs; for each pair, the is-
suer creates a hiding commitment, then signs the list
of commitments.

In genIssuerProof(skIss,A,S), the Issuer gen-
erates a random salt si for each attribute ai and com-
putes the commitment list entries Li = H (ai||si). Fi-
nally, CMT = [Li]

#A
i=1 is signed by the Issuer to create

the Issuer proof.
Since the payload of a Holder-generated VP (Ta-

ble 2, column 2) contains all the information needed
to open the commitments to the disclosed attributes,
the Presentation Proof only contains the signed com-
mitment - genHolderProof is the null function.

In verPresentProof(VP) the Verifier verifies the
Issuer signature of CMT and compares H (ai j ||si j) with
Li j , for each (ai j ,si j) ∈ DA×DS. If the signature is
verified and the digests H (ai j ||si j) match with Li j , the
VP is accepted.

3.2 Merkle Tree Mechanism

The merTree mechanism uses Merkle trees to create
commitments CMT.

genIssuerProof(skIss,A,S): the Issuer gener-
ates one random salt si for each attribute ai, then uses
their ordered concatenated pairs as leaves of a Merkle
tree. The Issuer sets the CMT equal to the Merkle tree
root

R = getRoot(a1||s1,a2||s2, . . . ,am||sm). (1)

An example of Merkle tree is given in Figure 1.
To create a VP, the Holder includes the presenta-

tion payload as in column 2 of Table 2. The presen-
tation proof, together with the signed commitment,
also requires the Holder-generated proof, which the
Holder obtains by computing the inclusion paths of
the attributes that the Holder wants to disclose.

R = H (d5||d6)

d5 = H (d1||d2)

d1 = H (l1)

l1 = a1||s1

d2 = H (l2)

l2 = a2||s2

d6 = H (d3||d4)

d3 = H (l3)

l3 = a3||s3

d4 = H (l4)

l4 = a4||s4

Figure 1: Merkle tree constructed over 4 leaves. Disclosing
a3||s3, their inclusion proof in R is [3,d4,d5].

The Verifier verifies the presentation computing
verPresentProof(VP) verifying the signature of
CMT and verifying that the inclusion paths in P let
the Verifier reconstruct the signed root R, for each
(aij ,sij) ∈ DA×DS.

For example, the inclusion path of the leaf l3 in
position 3 of the Merkle tree in Figure 1, given the
public root R, is [3,d4,d5]. In order to verify the
inclusion of l3, the Verifier computes d3 = H (l3),
d6 = H (d3||d4), and verifies that H (d5||d6) = R.

4 SELECTIVE DISCLOSURE
SIGNATURE MECHANISM

Selective disclosure signatures, following the naming
in (Sporny et al., 2019), are a class of digital signa-
ture algorithms that enable (a) an Issuer to sign mul-
tiple attributes with a single signature, (b) a Holder to
prove possession of a signature and some undisclosed
attributes, generating fresh ZKP without involving the
Issuer - recall Section 2.2.2, and (c) a Verifier to verify
the validity of a disclosed subset of attributes, given
only the ZKP of undisclosed attributes and signature.

Examples of selective disclosure signatures
are CL (Section 4.1) and BBS+ (Section 4.2),
which are multimessage signature algorithms
for which an ordered list is input to the signa-
ture generation genSig(skIss,(a1, . . . ,am)) =
σ and signature verification
verSig(pkIss,(a1, . . . ,am),σ) = true/false.

Operations in the Issuing Phase. The VC based on
the use of selective disclosure signature algorithms as
cryptographic mechanism is composed of three parts
(see column 3 of Table 1):

• Issuer protected header, containing the name of
the cryptographic mechanism cm i.e., the chosen
selective disclosure signature scheme, and the Is-
suer public key pkIss;

• Issuer payloads, containing the list of attributes
A= (a1, . . . ,am);
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• Issuer proof, containing the selective disclosure
signature (SDSig) of the attributes in A, σ =
genSig(skIss,A).

Therefore the function that allows the
Issuer to create the Issuer proof is just
genIssuerProof(skIss,A) = genSig(skIss,A),
and the function that allows the Holder to verify it is
verIssuerProof(VC) = verSig(pkIss,A,σ).

Operations in the Presentation Phase. To selec-
tively disclose some attributes of a VC to a Verifier,
the Holder creates a VP (see column 3 of Table 2)
composed of:

• presentation protected header, containing the
name of the cryptographic mechanism cm and the
Issuer public key;

• presentation payload, containing the list DA =
(ai1 , . . . ,aid ) of disclosed attributes;

• presentation proof P, generated by the Holder
executing genHolderProof(pkIss,DA,A,σ), a
NIZKP of the signature σ, certifying the revealed
attributes in DA and proving in zero-knowledge the
knowledge of the hidden attributes in A\DA.

The Verifier verifies the NIZKP P by computing the
function verPresentProof(VP).

For both BBS+ and CL we provide a high level
description of genHolderProof(pkIss,DA,A,σ) and
verPresentProof(VP), including references to
computation details omitted for brevity.

CMT vs SDSig. The purpose of CMT is to bind the
attributes into an item that is subsequently signed by
the Issuer. The Holder can perform selective disclo-
sure by revealing CMT, the attributes to be disclosed,
and a presentation proof. On the other hand, SDSig
simultaneously binds the attributes into an item that is
itself a digital signature, certifying the authorship of
the VC. To create a presentation, the Holder must not
reveal SDSig, but rather derive from SDSig a random-
ized proof that assures the Verifier about the claims.
For a comparison between CMT vs SDSig w.r.t. impor-
tant features, see Section 5.

4.1 CL Signature

The CL signature scheme was presented in (Ca-
menisch and Lysyanskaya, 2002).

VC Creation and Verification. To create SDSig
for a VC, an Issuer signs the attributes a1, . . . ,am ∈ A
using the following CL digital signature algorithm as
defined in (IBM, 2010).

Key generation algorithm keyGen(). Let k be the se-
curity parameter and n← pq be an ℓn-bit special
RSA modulus 1, and choose uniformly at random
quadratic residues R1, . . . ,Rm,S,Z 2.
Output the public key

pkIss = (n,R1, . . . ,Rm,S,Z) (2)

and the secret key skIss = (p).

Signing algorithm genSig(skIss,A). On input
A = {a1, . . . ,am},ai ∈ {0,1}ℓa , choose a ran-
dom prime number e ∈ {0,1}ℓe , ℓe > ℓa +2,
e > 2ℓe−1, and a random number v ∈ {0,1}ℓv ,
where ℓv = ℓn + ℓa + ℓ /0 with ℓ /0 a security param-
eter (e.g. ℓ /0 = 80). Compute

A←
Å

Z
Ra1

1 . . .Ram
m Sv

ã 1
e

mod n. (3)

The resulting output signature is

σ = genSig(skIss,(a1, . . . ,am))

= (A,e,v). (4)

Verification algorithm verSig(pkIss,A,σ). To ver-
ify that the triple (A,e,v) is a signature on
a1, . . . ,am check that the following holds:

Z = AeRa1
1 . . .Ram

m Sv mod n (5)

ai ∈ {0,1}ℓa (6)

e ∈ [2ℓe−1 +1,2ℓe −1] (7)

These functions completely define
genIssuerProof(skIss,A) which corresponds
to SDSig= genSig(skIss,A) = σ = (A,e,v) ∈
Zn×{0,1}ℓe ×{0,1}ℓv and verIssProof(VC).

VP Creation. At every presentation, the Holder
generates a new random signature from a signature
received from the Issuer; then the Holder creates a
NIZKP of knowledge of a representation for the ran-
domized signature using an argument similar to the
one about NIZKP for linear relations (Section 2.2.2)
and described in detail in (IBM, 2010).

The Holder-generated proof is a NIZKP of knowl-
edge of a signature and the attributes signed in it, gen-
erated by the function

P = genHolderProof(DA,A,σ,pkIss)

= (c,A′, ê, v̂′, âi1 , . . . , âi(n−d)) (8)

1n = pq is a special RSA modulus if p = 2p′+ 1 and
q = 2q′+1 with p′,q′ prime numbers

2q is a quadratic residue modulo n if there exists a ∈ Zn
such that q = a2 mod n
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with pkIss from Eq. (2), and σ from Eq. (4); c ∈
{0,1}256 is the challenge of the underlying NIZKP;
A′ ∈ Z∗n is a component of the randomized signa-
ture; ê ∈ {0,1}ℓ′e+ℓH +ℓ /0+1, v̂′ ∈ {0,1}ℓv+ℓH +ℓ /0+1 and
âi1 , . . . , âi(n−d) ∈ {0,1}

ℓa+ℓH +ℓ /0+1 are the response
values of the underlying NIZKP for linear relations.

VP Verification. The verification function
verPresentProof(VP) consists in (i) verify-
ing the NIZKP for linear relations to prove the
Holder knows a valid undisclosed signature, and
(ii) verifying that the size of the received values
(ê, âi1 , . . . , âi(n−d)) lies in the expected integer interval
(IBM, 2010) to ensure that the undisclosed attributes
ai1 , . . . ,ai(n−d) and parameter e used to build the
NIZKP have the expected size.

4.2 BBS+ Signature

The BBS+ signature was presented by Au et al. (Au
et al., 2006) as a provably secure extension to BBS
group signatures (Boneh et al., 2004) and improved
by Camenisch et al. (Camenisch et al., 2016). An op-
timisation provided with a proof of security has also
recently been published (Tessaro and Zhu, 2023).

VC Creation and Verification. To issue a VC, an
Issuer creates SDSig by producing a BBS+ signature
of the messages a1, . . . ,am with its private key skIss.

Let G1,G2 and GT be groups of prime order p,
and e : G1×G2→GT be a pairing 3.

Key generation algorithm keyGen(). Take a random
vector (h0, . . . ,hm) ∈Gm+1

1 , a random x ∈ Z∗p and
sets skIss = x and pkIss = (w = gx

2,h0, . . . ,hm)

Signing algorithm genSig(skIss = x,A). On
input the secret key x and the messages
A= (a1, . . . ,am) ∈ Zm

p , randomly generate e,s ∈
Zp and compute A = (g1hs

0 ∏
m
i=1 hai

i )
1

e+x . Output
the triple (A,e,s).

Verification algorithm verSig(pkIss,A,σ). On in-
put the public key

pkIss = (w,h0, . . . ,hm) ∈G2×Gm+1
1 , (9)

messages (a1, . . . ,am) ∈ Zm
p , and a

signature (A,e,s) ∈G1× ∈ Z2
p, check

e(A,wge
2) = e(g1hs

0 ∏
m
i=1 hai

i ,g2).

3A pairing is a map satisfying bilinearity, i.e.
e(gx

1,g
y
2) = e(g1,g2)

xy, non-degeneracy, i.e. for each gen-
erator g1 ∈G1,g2 ∈G2, then e(g1,g2) generates GT , and
efficiency which means that the map can be efficiently com-
puted for any input.

These algorithms define the functions
genIssuerProof(skIss,A) which corresponds to
SDSig= genSig(skIss,A) =σ= (A,e,s)∈G1×Z2

p,
and verIssuerProof(VC).

VP Creation. The Holder can generate a VP with
genHolderProof(DA,A,σ,pkIss) whose output is
obtained from the construction of a NIZKP of knowl-
edge of the signature and the hidden attributes based
on the NIZKP for linear relations. The function re-
turns

P = genHolderProof(DA,A,σ,pkIss)

= (A′,A,d,c, ê, r̂2, r̂3, ŝ′, âi1 , . . . , âin−d ) (10)

where A′,A,d ∈ G1, and all other elements lie in Zp.
For a detailed description we refer to (Looker et al.,
2023; Camenisch et al., 2016).

VP Verification. Having received a VP from
a Holder, the Verifier computes the function
verPresentProof(VP), which consists in executing
the verification steps of the underlying NIZKP for lin-
ear relations and verifying that the terms A=A′x using
the pairing e.

5 SOLUTION ANALYSIS

To assess the maturity of options, we consider their
standardization (Section 5.1) and their cryptographic
agility (Section 5.2). Standardization is important
for cryptographic protocols to ensure expert vetting
of correctness, security, and other properties claimed,
as well as to promote interoperability as encouraged
e.g., by the proposed Interoperable Europe Act (EU,
2022). Cryptographic agility (Sullivan, 2010) “is
achieved when a protocol can easily migrate from
one algorithm suite to another more desirable one,
over time” (Housley, 2015). The need to transition
between cryptographic algorithms and key lengths
has been steadily gaining importance, e.g., replac-
ing older versions of the Secure Hash Algorithm, and
preparing for quantum computing (Barker and Rogin-
sky, 2019).

We observe how each mechanism supports pri-
vacy and offline features with regards to presenta-
tion unlinkability (Section 5.3), and briefly discuss
the advantages of predicate proofs (Section 5.4). We
compare the computation speed of each function de-
scribed in Section 2 (Section 5.5.2), and the size of
presentation elements of each mechanism (Section
5.5.3). Our assessment is summarized in Section 5.6.

A First Appraisal of Cryptographic Mechanisms for the Selective Disclosure of Verifiable Credentials

129



5.1 Standardization

cmtList is the only mechanism featured in official
standards: it is enabled by design in ISO 18013-5
(ISO/IEC 18013-5, 2021), and it is the basis for the
IETF draft SD-JWT (Fett et al., 2023). Both are con-
sidered mandatory for the European digital identity
wallet (DG CONNECT, 2023) developed in the con-
text of the revised eIDAS regulation (EU, 2021).

JSON Web Proof (JWP) (Miller et al., 2023) is a
proposed container format for VCs and VPs that aims
to be agnostic to the proof mechanism. It is currently
an IETF draft on the Standards Track. merTree has
been proposed in (Steele and Prorock, 2021) as a pos-
sible mechanism for JWP. It also appears in the exper-
imental Certificate Transparency 2.0 proposal (Laurie
et al., 2021).

The BBS+ specification (Looker et al., 2023) is an
IRTF draft. CL signatures are not specified indepen-
dently but as part of the Identity Mixer (IBM, 2010)
and Hyperledger Ursa (Khovratovich et al., 2022)
anonymous credentials protocols.

5.2 Cryptographic Agility

cmtList and merTree offer the greatest agility: any
cryptographic hash function can be used to construct
them, and any digital signature can be chosen to sign
the hash list or tree root.

BBS+ signatures can in theory be based on any
pairing-friendly curve, of which several options have
been identified (Sakemi et al., 2022) up to 256-
bit security, and any correspondingly secure cryp-
tographic hash function. Cipher suites have been
drafted (Looker et al., 2023).

The idemix specification (IBM, 2010) for anony-
mous credentials with CL signatures contains a default
value for 14 parameters and 7 “constraints which pa-
rameter choices must satisfy to ensure security and
soundness” (Tables 2 and 3 therein), and it is left to
the reader to adjust these as required. The default
RSA modulus is 2048 bits, which corresponds to only
112 bits of security. Other than increasing the prime
factor length, it is non-trivial to establish how param-
eters should change to increase the security level of
the scheme as a whole.

The Ursa library also defaults to 2048-bit modu-
lus; the Ursa specification (Khovratovich et al., 2022)
lists individual parameter values scattered throughout,
including 1536-bit RSA factors, but it is left to the
reader to gather the information, to modify the source
code, and to assume that all other parameters have
been set to meet the same level of security.

5.3 Presentation Unlinkability

Unlinkability can be defined as ensuring that “no
correlatable data are used in a digitally-signed pay-
load” (Sporny and Longley, 2022). Sources of corre-
lation include the signature itself and long-term iden-
tifiers, such as the credential subject, a credential
identifier, revocation status information etc. Guaran-
teeing this property goes beyond selective disclosure
only; here we focus on signature-based correlation.

Hiding Commitment Mechanisms. Since the Pre-
sentation Proof of a VP contains the issuer-signed
commitment included in the associated VC, this iden-
tifier links each VP uniquely to one VC, and there-
fore to its Holder. This means that the Holder should
use always different VCs to generate new VPs, there-
fore in the issuing phase the Issuer must provide the
Holder with several distinct versions of the same VC
where a distinct version of VC is built including the
same set of attributes hidden using different salts.

When all the distinct versions of the same VC
have been used, the Issuer must produce and send new
ones to the Holder. There must therefore be an avail-
able channel between the Issuer and the Holder device
storing the VCs that guarantees ready access to brand
new VCs that can be used to create unlinkable presen-
tations.

Selective Disclosure Signatures. As summarized
in Table 2, the presentation proof contains only the
Holder-generated proof, which is a randomized ele-
ment.

Given a VC, the Holder can create a new presen-
tation proof each time that is indistinguishable from
random, and therefore cannot be correlated to other
VPs. The Holder can use the same VC multiple times;
therefore, interaction with the Issuer is required only
when requesting a new credential or renewing an ex-
pired one.

5.4 Predicate Proofs

In some use cases, there may be an interest in ask-
ing a question (“predicate”) about an attribute, with-
out disclosing the attribute itself. For instance, a Veri-
fier may need to know whether an mDL subject’s age
is over some threshold NN, or in some range, without
needing to know their full date of birth. This feature
would enhance privacy and follow the data minimiza-
tion principle.

The cmtList mechanism used in mDL allows
the Issuer to create range proofs only by treating
them as individual attributes; for instance, in the
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AAMVA mDL implementation guidelines (AAMVA,
2023) Issuers must identify every likely threshold
value in their jurisdiction and encode a separate at-
tribute age over NN=True or False for each NN.

The disadvantages of implementing this feature
with this mechanism are: (a) an increased size of ev-
ery VC and VP, (b) requiring the Issuer to keep track
of when each threshold is crossed to issue a new VC,
(c) interoperability issues - a Verifier may not find all
the same thresholds represented every separate juris-
diction for the same VC type (e.g., age above 18, 21,
65 etc). All hiding commitment based cm including
merTree suffer the same disadvantages.

By contrast, selective disclosure signature predi-
cate proofs enable a Verifier to request an evaluation
of attributes during the Presentation Phase, without
prior involvement of the Issuer: they are built by the
Holder as NIZKP of predicates about the attributes
included in the VC. For example, range proofs and
set membership proof s (Camenisch et al., 2008) al-
low the Prover to prove that an attribute a lies within
a range v < a < u, or in a given set of values a ∈ A ,
respectively. Examples of predicate proofs for the CL
mechanism can be found in Section 6 of (IBM, 2010).

5.5 Experimental Evaluation

Our use case of interest is a proximity flow for EUDI
Wallets, in which the Holder and Verifier are phys-
ically close and the attestation exchange and disclo-
sure occurs using proximity protocols (NFC, Blue-
tooth, QR-Code, etc.), possibly without the Holder
having internet connectivity. A concrete instance in-
volves checking a mobile driving license (mDL), as
considered in Section 1. In this scenario, the Holder
device may be resource-constrained in both compu-
tational capability and presentation exchange band-
width; we therefore measure the speed of computa-
tion, particularly genHolderProof, in Section 5.5.2
and the size of VP elements for each cm in Sec-
tion 5.5.3. Based on ISO/IEC 18013-5 (ISO/IEC
18013-5, 2021), in which an mDL consists of 11
mandatory and 22 optional attributes, we use creden-
tials with na ≤ 33 total attributes.

5.5.1 Experimental Set-up

For BBS+ and CL signature performance, we test the
Hyperledger Ursa rust implementation,4 the only li-
brary with both algorithms, to the best of our knowl-
edge. For a fair comparison, we aim for an equivalent
level of security of 128 bits in all tested mechanisms -
see SP 800-57 (Barker, 2020), Table 2. Enforcing this

4https://docs.rs/ursa/

common security level is non-trivial, as mentioned in
Section 5.2.

For the sake of reproducibility, the parameters and
algorithms used in our experiments are curve BLS12-
381 and BLAKE2 for BBS+, 3072-bit RSA modulus
and SHA-256 for CL, and ed25519 and SHA-256 for
hiding commitment mechanisms. For cmtList and
merTree5 digital signatures we use digital signature
EdDSA over ed25519 using the same rust crate6 on
which Ursa depends.

In order to test performance on both desktop
PCs and constrained devices with ARM CPUs more
closely resembling mobile phones - our use case for
Holder devices - experiments are run on i5-4690K
(3.50GHz, 4 cores), raspberry pi 3B+ 1GB RAM, pi
4B 4GB RAM, and Ryzen 7 5800X.

5.5.2 Speed

We measure the speed of key generation, and signa-
ture and presentation proof generation and verifica-
tion - see Table 3 and Figure 2. The presentation
phase is of particular interest since it is expected to
occur frequently on constrained devices; we show re-
sults in Tables 4 and 5. There is approximately an or-
der of magnitude difference in performance between
a modern desktop CPU (Ryzen 5800X) and an ARM
raspberry pi 4B, and another between the pi 4B and pi
3B+.

The speed of hashing and of generating Merkle
inclusion paths is negligible compared with gener-
ating and verifying the digital signature in cmtList
and merTree; we therefore only report the results of
merTree speed tests.

Table 3: Speed by mechanism for each function. Approxi-
mate orders of magnitude in ms - lower is faster.

Function merTree CL BBS+

keyGen -2 4 0
genIssuerProof -1 2 0
verIssuerProof -1 2 1
genHolderProof -3 2 1
verPresentProof -1 2 1

Table 4: Presentation Proof generation test by CPU with
nA = 33. Times in ms are median over nD ≤ nA.

cm 5800X 4690K pi 4B pi 3B+

merTree 0.0007 0.0015 0.0044 0.0143
CL 55.270 74.758 394.95 1475.9
BBS+ 7.127 15.109 52.03 374.7

5https://docs.rs/rs merkle/
6https://docs.rs/ed25519-dalek/
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Figure 2: Presentation Proof generation and verification
performance test results for CL and BBS+. merTree gen-
eration and verification speeds are 4 and 2 orders of magni-
tude faster than BBS+ and not shown. Solid lines are median
times, shaded areas are 25th and 75th percentile.

5.5.3 Presentation Size

Presentation Proof. We compare VP size contribu-
tions for each cm, with trends summarized in Figure 3.
Attribute size is arbitrary, so DA is not included. For
commitment-based mechanisms, one disclosed salt
DS per disclosed attribute must be included; there-
fore, VP size tends to grow with nD for cmtList and
merTree, while it decreases for CL and BBS+ due to
one zero-knowledge proof per undisclosed attribute.

Presentation proof size is calculated as follows:

• cmtList: one digest per attribute in the creden-
tial, a signature of the list of digests, one disclosed
salt per disclosed attribute:

|CMT|+ |σ|+ |DS|= dnA + |σ|+ snD (11)

• merTree: one tree root (of digest size), a signa-
ture of the tree root, one disclosed salt per dis-
closed attribute, an inclusion proof for disclosed
attributes. The size of an inclusion proof for a sin-
gle attribute is equal to the tree height ⌈log2(nA)⌉

Table 5: Presentation Proof verification test by CPU with
nA = 33. Times in ms are median over nD ≤ nA.

cm 5800X 4690K pi 4B pi 3B+

merTree 0.040 0.071 0.29 1.1
CL 64.969 86.393 456.00 1687.3
BBS+ 4.875 8.383 30.56 187.9
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Figure 3: VP proof size comparison for nA = 33. Values
used for comparison, in bytes: salt size s = 16; digest size
d = 32; cmtList and merTree signature size |σ| = 64 for
EdDSA with curve ed25519. Model equations for cmtList
(11), CL (8), BBS+ (10) shown alongside measured Merkle
implementation values for sequential attribute disclosure
(best-case) and random sampling of attribute combinations
(median with 25th and 75th percentile shaded).

times the digest size; a simple implementation
may return a separate proof per disclosed at-
tribute, an optimized implementation will be more
compact. An upper bound is therefore:

|CMT|+ |σ|+ |DS|+ |P|=
= d + |σ|+dnD + ⌈log2(nA)⌉dnD (12)

• CL: SDSig: in order to make a fair comparison
between the algorithms, we consider as size of
n 3072 bits to have a security level of 128 bits.
Therefore, a NIZKP of knowledge of a signature
and of the undisclosed attributes (Eq. (8)) is given
by:

– a digest c ∈ {0,1}256 (32 bytes);
– an element A′ ∈ Zn (384 bytes), an element

ê ∈ {0,1}457 (58 bytes), and v̂′ ∈ {0,1}3744

(468 bytes)
– an element âi ∈ {0,1}593 (75 bytes) for each

undisclosed attribute.

• BBS+: SDSig: a NIZKP of knowledge of a sig-
nature and of the undisclosed values (Eq. (10)) is
given by:

– three elements A′,A,d ∈G1;
– five elements c, ê, r̂2, r̂3, ŝ′ ∈ Zp;
– one âi ∈ Zp for each undisclosed attribute.

BBS+ can be implemented using the pairing-
friendly elliptic curve BLS12-381, with the prime
order of the subgroup of G1 being p ∈ {0,1}256.
Therefore, the elements in G1 - i.e., A′,A,d - can
be represented as 48-byte strings and the integer
elements as 32-byte strings.
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Public Keys. A VP header may contain either pkIss
or a reference to it. For instance, a JWS (Jones et al.,
2015) header may contain pkIss as JWK or X.509 cer-
tificate, or a url as JKU, or a certificate thumbprint,
etc. pkIss size may be calculated as follows.

• merTree,cmtList: the public key pkIss of Ed-
DSA digital signature is a 32-byte point of the
curve ed25519.

• CL: the public key pkIss of the CL signature
algorithm is (n,R1, . . . ,Rm,S,Z) ∈ Zm+3

n of size
384(m+3) bytes.

• BBS+: the public key pkIss of the BBS+ signature
algorithm is (w = gx

2,h0, . . . ,hm) ∈G2×Gm+1
1 of

size 96+ 48(m+ 1) bytes, where G1,G2 are ob-
tained using curve BLS12-381.

5.6 Assessment Summary

We find that cmtList and merTree are more stan-
dardized, easier to implement but more cumbersome
for the Issuer to manage, very fast to compute but only
merTree is reliably small in size. Predicates must be
defined by the issuer, and unlinkability requires the is-
suer to provide a supply of single-use credentials with
new attribute salts and signatures in advance. While
CL is particularly computationally expensive and large
in size, BBS+ is computationally feasible and com-
pact; in both cases, predicate proofs can be provided
by the holder, and the randomness for unlinkability is
also generated by the holder based on a single selec-
tive disclosure signature. Our assessment is summa-
rized qualitatively in Table 6.

6 CONCLUSION

There exist several approaches exist to augment VCs
with privacy-preserving selective disclosure of at-
tributes, including cryptographic mechanisms based
on hiding commitments and selective disclosure sig-
natures. We analyzed four mechanisms: salted hash
list (cmtList), salted hash tree (merTree), as well
as CL and BBS+ signatures. For each mechanism we

Table 6: cm assessment summary.

Feature cmtList merTree CL BBS+

Standard + ± − ±
Agile + + −− +
Unlinkable ± ± + +
Predicates ± ± + +
Fast +++ +++ − ±
Compact − + − +

defined the VP and VC structures, presented the oper-
ations to be performed to issue VCs and present VPs.
Finally, we examined standardization status, crypto-
graphic agility, and additional features such as pred-
icate proofs and unlinkable VPs, and experimentally
evaluated the performance of mechanisms with a view
to a practical scenario of proximity flows with con-
strained devices.

We find that merTree is the fastest mechanism of
those examined but requires constant management by
the Issuer to provide selective disclosure together with
unlinkability; BBS+ is competitive in terms of size,
does not require constant re-issuing of credentials on
the Issuer’s part, and is acceptable in speed even on
constrained devices.

Future Work. As future work, we aim to describe
additional selective disclosure mechanisms based on
e.g., vector commitments (Catalano and Fiore, 2013)
or other signatures such as PS (Pointcheval and
Sanders, 2018).

We aim to provide greater detail on the algorithms
for the creation and verification of the Holder gener-
ated proofs for CL and BBS+, together with the neces-
sary preliminaries regarding the NIZKP.
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