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Abstract: Smart meters are increasing the ability to collect, store and share households’ energy consumption data. On
the other hand, the availability of such data raises novel privacy concerns. Although the data can be de-
identified or pseudonymized, a critical question remains: How unique are households’ energy consumptions,
and is it possible to re-identify households based on partial or imperfect knowledge of their consumption? In
this paper, we aim to answer this question, and make two main contributions. First, we develop an adversary
model in which an adversary who observes a pseudonymized dataset and knows a limited number of con-
sumption readings from a target household aims to infer which record in the dataset corresponds to the target.
We characterize the adversary’s knowledge by two parameters: number of known readings and precision of
readings. Using experiments conducted on three real-world datasets, we demonstrate that the adversary can
indeed achieve high inference rates. Second, we propose a local differential privacy (LDP) based solution
for protecting the privacy of energy consumption data. We evaluate the impact of our LDP solution on three
datasets using two utility metrics, three LDP protocols, and various parameter settings. Results show that our
solution can attain high accuracy and low estimation error under strong privacy guarantees.

1 INTRODUCTION

Conventional electricity meters are nowadays being
replaced by smart meters which can record and trans-
mit energy consumption data to consumers and util-
ity providers. This adoption of smart meters is in-
creasing the amount of energy consumption data that
is available to be collected, stored, analyzed, and
shared. On the other hand, such availability of en-
ergy consumption data raises novel privacy risks and
concerns. Although attempts are made to de-identify
or pseudonymize consumption data, a critical ques-
tion remains: How unique are households’ energy
consumption data, and therefore, is it possible to re-
identify households based on partial and/or imperfect
knowledge of their energy consumption?

In this paper, we aim to answer this question by
constructing a realistic adversary model and empiri-
cally measuring the adversary’s success rate on real-
world energy consumption datasets. We consider
an adversary who observes a pseudonymized energy
consumption dataset, and furthermore, knows a lim-
ited number of (consumption, month) pairs of a target
household. The goal of the adversary is to infer which
record in the pseudonymized dataset corresponds to

the target household. To increase flexibility, we al-
low the adversary to know ℓ (consumption, month)
pairs from the target household (we vary ℓ between
1 and 5), and we allow the adversary’s knowledge to
be precise (such as “exactly 915 kWh consumption”)
or imprecise (such as “consumption is between 900-
1000 kWh”). The number of pairs is controlled by
parameter ℓ and the degree of precision is controlled
by parameter s.

We use three real-world datasets from London and
Australia and two metrics to quantify the adversary’s
success rate: Uniqueness Ratio (UR) and Average
Anonymity Degree (AAD). UR measures what per-
centage of households in the dataset are under risk of
being uniquely identified. AAD measures the aver-
age degree of anonymity (similar to the notion of k-
anonymity) with respect to the adversary’s knowledge
characterized by ℓ and s. When adversary’s knowl-
edge is precise, results show that UR ≥ 80% as soon
as ℓ= 2. In addition, UR ≃ 100% when ℓ≥ 3. Simi-
larly, AAD values are low (e.g., households are only 3
or 4-anonymous), which shows that re-identification
and de-anonymization are indeed serious risks, and
psuedonymization may not be sufficiently effective
for privacy protection. In order to achieve reasonably
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strong privacy protection, precision needs to be heav-
ily reduced, e.g., s ≥ 2. However, such reduction in
precision (e.g., through generalization) would come
at a heavy cost of utility.

Motivated by this problem, we then explore a local
differential privacy (LDP) based approach for privacy
protection. We propose a solution in which: (i) each
household bucketizes their consumption reading, (ii)
buckets are perturbed to achieve LDP using popular
protocols such as GRR, RAPPOR or OUE, (iii) per-
turbed buckets are sent to the data collector, and (iv)
the data collector performs estimation to recover con-
sumption statistics pertaining to the general popula-
tion. In this solution, the data collector only observes
perturbed outputs of LDP protocols, not the house-
holds’ true consumption readings. The lack of a truth-
ful energy consumption dataset prevents our afore-
mentioned attack in the first place.

We experimentally measure the impact of our pro-
posed LDP solution on three real-world datasets us-
ing various ε privacy parameters, various bucket range
sizes R, three LDP protocols (GRR, RAPPOR, OUE),
and two utility metrics (TCE and CHE) to quantify
LDP estimation error. Results show that the three pro-
tocols agree in terms of optimal R values. Further-
more, our solution is able to attain high accuracy and
low estimation error under reasonably strong privacy
guarantees (e.g., ε = 1).

The rest of the paper is organized as follows. We
review related work in Section 2. We present our ad-
versary model and experimental results with our ad-
versary model in Sections 3 and 4, respectively. We
present our solution for applying LDP to energy con-
sumption data and experimentally evaluate it in Sec-
tion 5. Finally, Section 6 concludes the paper.

2 RELATED WORK

Considering more and more data is becoming avail-
able nowadays, re-identification and de-anonymiza-
tion attacks continue to be prominent privacy
threats. The possibility of re-identification and de-
anonymization attacks have been shown in various
domains. The seminal work of (Sweeney, 2000)
showed that 87% of the US population can be iden-
tified using a combination of zip code, gender, and
date of birth. It is also possible to recover spe-
cific individuals’ health records by linking voter reg-
istration records with health insurance data (Ohm,
2009). The work of (Benitez and Malin, 2010) pro-
vides a set of approaches for estimating the like-
lihood of de-identifying information in the context
of data sharing policies associated with the HIPAA

privacy rule. They defined two metrics and es-
timated the risk of a specific re-identification at-
tack. In (Emam et al., 2013), a new model for es-
timating re-identification risk was developed and ap-
plied to Canada’s post-marketing adverse drug event
database. Locations and location trace data are also
susceptible to de-anonymization and re-identification
attacks. In (de Montjoye et al., 2013), it was shown
that human location traces are highly unique, and as
few as four low-resolution location points are enough
to uniquely identify 95% of individuals within a pop-
ulation of half million. In (Yin et al., 2015), re-
identification risks of mobile phone users in China
were examined, and a quantitative relationship be-
tween re-identification risk and data utility for aggre-
gate mobility analysis was studied.

Similar to these data types, smart meter and en-
ergy consumption data can also contain various pri-
vacy risks (McDaniel and McLaughlin, 2009), such as
inferring which appliances are running (Eibl and En-
gel, 2014), predicting occupancy and holidays (Tang
et al., 2015; Kleiminger et al., 2015; Eibl et al., 2019),
and determining household characteristics as well as
energy consumption profiles, even relating to socio-
economic status (Beckel et al., 2013; Beckel et al.,
2014; Anderson et al., 2017; Czétány et al., 2021).
Among different privacy risks, closer to our work
are attacks that focus on de-anonymization and re-
identification. In (Buchmann et al., 2012), it was
shown that households can be re-identified using sim-
ple statistical measures, and even simple means are
sufficient to re-identify 68% of the records. Higher
de-pseudonymization rates were achieved in later
studies such as (Tudor et al., 2015) and (Cleemput
et al., 2018). In a very recent work by (Radovanovic
et al., 2022), the authors demonstrated that even if
consumption data are anonymized, it is possible to
identify a household with high accuracy by utilizing
weekly consumption.

The prevalence of privacy risks associated with
smart meters and energy consumption data has led to
growing interest in engineering new privacy solutions
based on obfuscation and/or perturbation (Pal et al.,
2018; Khwaja et al., 2020). Towards this aim, in this
paper, we consider the application of Local Differen-
tial Privacy (LDP). LDP has recently gained signifi-
cant attention from academia and industry (Cormode
et al., 2018; Gursoy et al., 2022), but its applications
to smart meters and smart grid have been relatively
few. In (Ou et al., 2020), a singular spectrum analysis-
based LDP method has been proposed to prevent in-
ference of household appliances. (Gai et al., 2022)
developed a data aggregation scheme with LDP using
randomized response. In (Parker et al., 2021), a new
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Table 1: Sample energy consumption data (in kWh) from 4
households and across 4 months.

id 01/2021 02/2021 03/2021 04/2021
1 1108 915 1013 972
2 802 712 788 793
3 278 241 267 312
4 551 462 495 479

variant of differential privacy called spectral DP was
proposed, motivated by applications with unbounded
time-series data such as smart meter data. A literature
review covering the applications of different forms of
differential privacy (not just LDP) was conducted in
(Marks et al., 2021).

3 ADVERSARY MODEL

3.1 Problem Setting and Notation

Consider a monthly energy consumption dataset as
shown in Table 1. Each row corresponds to a different
household and each column corresponds to a different
month. The dataset shows how much energy (in kWh)
was consumed by each household in each month, e.g.,
measured by a smart meter. For example, household
1 consumed 972 kWh in April 2021. The dataset
is completely pseudonymized, i.e., random IDs are
assigned to each row (determined arbitrarily) which
aims to hide the identity of the corresponding house-
holds. Note that each row can be viewed as one time
series corresponding to the monthly energy consump-
tion of one household.

We denote the full dataset by D. Without loss of
generality, we write D = {T1,T2, ...,Tn} to denote that
D contains n households, where Ti denotes the energy
consumption time series of the i’th household. We
write Ti[ j] to refer to the consumption amount of Ti in
the j’th month. All time series in D have equal length,
i.e., |T1|= |T2|= ...= |Tn|.

3.2 Adversary Formulation

We consider an adversary A who observes the
pseudonymized dataset D, and furthermore, knows a
limited number of (consumption, month) pairs from
a certain household h. We denote this knowledge of
the adversary by K = {(c1,m1),(c2,m2), ...} where
ci is to the consumption amount (in kWh) and mi
is the corresponding month. For example, K =
{(802,01/2021),(712,02/2021)} means that the ad-
versary knows the household h has consumed 802
kWh in January 2021 and 712 kWh in February 2021.
The adversary is assumed to formulate such knowl-

edge K through third-party resources or accessing
meter readings in the physical world (e.g., observing
h’s electricity bill).

Given D and K , the goal of A is to infer which
time series in D corresponds to the household h. If the
adversary is successful in uniquely identifying h from
the dataset, then the adversary learns the remaining
energy consumption readings of h. Continuing from
the example in the previous paragraph, in Table 1,
there is only one household which satisfies the knowl-
edge K = {(802,01/2021),(712,02/2021)}. Then,
the adversary learns that id = 2 corresponds to house-
hold h; furthermore, the consumption readings of h
for March 2021 is 788 kWh and for April 2021 it is
793 kWh. Note that such an inference can be quite
sensitive in practice. For example, if a household
consumes much lower energy in certain months com-
pared to the rest of the months (e.g., in July-August
the consumption is much lower) then this may indi-
cate that the residents go on holiday or the household
is unoccupied during these months.

The success of the adversary relies heavily on the
amount of knowledge K available. We introduce two
parameters for characterizing K : length ℓ and preci-
sion s.

Length ℓ denotes how many (consumption,
month) pairs are known by the adversary, i.e., ℓ= |K |.
When ℓ is small, e.g., ℓ = 1, it is more likely that
there are multiple households in D which fit the ad-
versary’s knowledge. For example, in a dataset with
thousands of households, there can be multiple house-
holds which have the same consumption reading for
January 2021. On the other hand, as the value of ℓ
increases, we expect the uniqueness of households to
also increase.
Precision s: We account for cases in which the adver-
sary’s knowledge K may be imprecise. For example,
instead of knowing that h’s consumption in January
2021 is 802, the adversary may know that consump-
tion is within the range [800, 900) without knowing
the exact amount. The reason for the imprecision in
K could be due to an inexact observation, as well as a
potential privacy protection method (i.e., through gen-
eralization or masking).

In our work, we account for the imprecision us-
ing parameter s. The smallest possible value of s is
s = 0, which means that A knows the exact integer
consumption amount, e.g., consumption in January
2021 is 802. When s = 1, one least significant digit
of the consumption amount is not known by the ad-
versary. For example, instead of knowing the con-
sumption amount is 802, the adversary knows that it
is 80*, i.e., between [800, 810). When s= 2, two least
significant digits are not known, e.g., the adversary’s
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Figure 1: Monthly consumption of five households.

knowledge is equal to 8** which corresponds to the
range [800, 900). In general, s is equal to the number
of least significant digits that are not known by the
adversary (or are masked).

We visualize the impact of s using sample con-
sumption data in Figure 1. When s is smaller, unique-
ness of households increases. For example, when
s = 2 and K consists of the knowledge [300, 400),
there are two households which fit this criteria. When
s = 3 and K consists of the knowledge [0, 1000),
there are five households which fit this criteria. In
general, as s increases, we expect households’ unique-
ness to decrease.

3.3 Measurement Metrics

Given an adversary who has D and K , we would like
to measure: (i) What percentage (ratio) of households
can the adversary uniquely identify? (ii) How anony-
mous are the households? To answer these two ques-
tions, we define the following two metrics.
Uniqueness Ratio (UR): We say that K uniquely
identifies a household in D if and only if there exists
exactly one Ti ∈ D such that:

∀(c j,m j) ∈K : Ti[m j] = c j

In other words, given K , the adversary will be able
to uniquely identify Ti in D since there does not exist
any other time series which fits the conditions in K .

Given D, ℓ and s, we generate all possible com-
binations of knowledge that an adversary may have
which satisfy the ℓ and s parameters. Let K denote
this set of all possible combinations. Note that K is
potentially a very large set, e.g., for a single house-
hold and ℓ = 1, there are |T | different entries in K,
one for each month. Then, the Uniqueness Ratio of

dataset D is defined as:

UR =

# of K ∈K that uniquely identifies
a household in D

|K|

By definition, the metric takes values between [0, 1].
Values closer to 0 imply better privacy for households
(lower uniqueness).
Average Anonymity Degree (AAD): We say that Ti
is k-anonymous with respect to K if and only if there
exist k−1 other time series S⊂ D such that:

∀T ∈ S, ∀(c j,m j) ∈K : T [m j] = Ti[m j] = c j

In other words, Ti appears indistinguishable from
|S| = k−1 other time series to an adversary who has
knowledge K . Note that this is an adaptation of the
well-known notion of k-anonymity (Sweeney, 2002;
Samarati, 2001; Fung et al., 2010). Instead of requir-
ing Ti to be indistinguishable from k− 1 other time
series in terms of all monthly consumption readings,
our formulation requires Ti to be indistinguishable in
terms of only the adversary’s knowledge K .

Let us define a function Φ which takes as input Ti,
D and K and outputs the anonymity degree of Ti in D
with respect to K . That is: Φ(Ti,D,K ) = k. Then,
we generate all possible combinations of knowledge
K similar to UR. Finally, Average Anonymity Degree
(AAD) is formally defined as:

AAD =

∑
K ∈K

n
∑

i=1
Φ(Ti,D,K )

|D|× |K|

Intuitively, AAD measures the anonymity degree
of all time series in D in terms of all possible adver-
sarial knowledge K ∈K. Then, their average is com-
puted to arrive at AAD. In the best case of privacy, all
time series are indistinguishable from one another in
terms of all K . In this case, AAD becomes equal to
|D|. In the worst case, where all time series are only
1-anonymous, AAD becomes equal to 1.

4 EXPERIMENT RESULTS AND
DISCUSSION

4.1 Experiment Setup and Datasets

We experimented with three real-world energy con-
sumption datasets to measure the effectiveness of the
aforementioned adversary model using the metrics
given in Section 3.3. In our experiments, ℓ is var-
ied between 1 and 5, and s is varied between 0 and 3.
These parameters were chosen as such because of the
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following reasons: For s, the consumption readings in
our datasets rarely went over 10.000; therefore all val-
ues of s≥ 3 would have had the same practical impact
as s = 3. Hence, maximum s was determined as 3. For
ℓ, we experimentally observed that ℓ = 5 is sufficient
to cause either perfect or near-perfect uniqueness in
many cases; thus, increasing it further would not have
changed our results and findings.

Our three datasets come from two sources: The
first dataset is from the London Datastore, whereas
the second and third datasets are from Ausgrid, an
electricity distribution company in Australia. The
datasets are explained in more detail below.

London: The London Datastore is a platform es-
tablished by the Greater London Authority to share
data relating to the city of London. We extracted
the Smart Meter Energy Consumption Data in Lon-
don Households from (Datastore, 2023), which con-
tains energy consumption readings for 5567 London
households that took part in Low Carbon London
project. Data collection occurred from November
2011 to February 2014; however, since many mea-
surements in the years 2011 and 2014 as well as the
first six months of 2012 were missing, we focused on
the 18-month time period from July 2012 to Decem-
ber 2013. We also removed households whose read-
ings contained null values, resulting in 4369 remain-
ing households. Finally, to ensure consistency with
our adversary model and remaining datasets, we ag-
gregated the data in (Datastore, 2023) into monthly
consumptions per household.

Solar: This dataset was provided by Ausgrid,
an electricity distribution company in Australia. We
downloaded the Solar Home Monthly Data from
(Ausgrid, 2023), which contains electricity consump-
tion data for 2657 solar households with rooftop solar
systems installed in their houses. The data is provided
for the time period between January 2007 and Decem-
ber 2014. After inspecting the Solar dataset, we ob-
served 589 null (missing) values. We used backward
interpolation to eliminate them.

Non-solar: Similar to the Solar dataset, the Non-
solar dataset was also provided by Ausgrid. It can be
accessed through the same URL. The dataset contains
monthly energy consumption of 4064 households that
had never installed a solar system. The Non-solar
dataset also covers the time period between January
2007 and December 2014.

4.2 UR and AAD Results

In this section, we present Uniqueness Ratio (UR) and
Average Anonymity Degree (AAD) results under dif-
ferent s and ℓ parameters. We use the plots in Figure

2 to show how UR results change according to s and
ℓ. Interestingly, we observed very similar trends in
all three datasets. First, as expected, as we increase
s from 0 to 3, UR values decrease. A significant re-
duction is obtained even when s is changed from 0
to 1. Furthermore, UR values are very close to 0
when s ≥ 2, yielding good privacy for households.
This shows that reducing the precision of the adver-
sary’s knowledge, e.g., through generalization, is a
possible solution against the adversary model consid-
ered in this paper. Second, we observe that as we
increase ℓ from 1 to 5, UR values increase substan-
tially. Although UR values are lower than 20% when
ℓ = 1, they jump to ≥ 80% when ℓ = 2 (assuming
s = 0 in both cases). In other words, the fact that
the attacker knows two consumption readings of the
victim household rather than one reading increases
the probability of uniquely identifying that household
roughly 4 times. In general, UR values are alarm-
ingly high when ℓ ≥ 3 and s ≤ 1. In many cases,
almost all households become uniquely identifiable
(UR ≃ 100%). In order to prevent identification and
keep UR low, substantial reduction in precision must
be present (i.e., s = 2 or 3).

We use the heatmaps in Figure 3 to report the
changes in AAD values according to the s and ℓ
parameters. In general, across all three datasets,
anonymity levels decrease as ℓ increases and s de-
creases. Note that AAD values on the Solar dataset
are relatively lower than the other datasets, but this
is because the Solar dataset is smaller than the oth-
ers. Interestingly, AAD values are quite high when
s ≥ 2, meaning that households can remain reason-
ably anonymous even when the adversary knows ℓ =
5 readings. On the other hand, a large difference is
observed between s = 1 and s = 2. When s = 1, as
long as ℓ ̸= 1, AADs are low (such as 1, 2, 4, 7)
which means that households become almost unique
in terms of their consumptions. When s = 0, low
AADs are observed across all ℓ, i.e., all AADs con-
verge to 1.

Combining the results presented in this section,
in addition to confirming our expectations regarding
the AAD and UR impacts of ℓ and s, we empirically
observe that: (i) precise knowledge of consumption
readings (s = 0) can indeed cause high risk of unique
identification for households, (ii) knowing more than
ℓ= 1 consumption readings greatly increases the risk
of identification and greatly decreases the degree of
anonymity, and (iii) high amount of imprecision, such
as s = 2 or 3, must be introduced in order to prevent
adversarial inference effectively.
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Figure 2: UR results on London, Solar, and Non-solar datasets respectively.

Figure 3: AAD results on London, Solar, and Non-solar datasets respectively.

4.3 Impact of Seasonality

Next, in order to examine the impact of seasonality,
we measure how UR results change from month to
month in a calendar year. To do so, we construct
knowledge K for each month separately and compute
UR values in each month. The results are given in
Figures 4, 5 and 6. On the London dataset, we per-
form this experiment only in year 2013, since 2013
is the only full year of data available. Three different
years (2007, 2008, 2009) are considered for the Solar
and Non-solar datasets. In all results, ℓ= 1 and s = 0
are used.

An interesting observation from the London
dataset is that UR results are lower between
months June-September, whereas they are consider-
ably higher between months January-March (e.g., 4%
UR vs 8% UR). In other words, uniqueness drops in
summer months whereas it rises in the winter months.
A similar behavior is observed on Solar and Non-solar
datasets, but since these datasets are from Australia,
winter months are close to June-August whereas sum-
mer months are closer to January-March. Never-
theless, UR results are considerably higher in win-
ter months compared to summer months. Further-
more, across different years and different datasets
(2007 to 2009), this observation holds consistently.
Thus, we find that uniqueness of households may in-
deed be impacted by seasons and weather conditions.
Households typically consume higher energy in cold

Figure 4: Seasonality on London dataset (year: 2013).

Figure 5: Seasonality on Solar dataset.

weather, and since households have different char-
acteristics, they are likely to be reflected by the in-
creased uniqueness ratios during winter.
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Figure 6: Seasonality on Non-solar dataset.

5 APPLICATION OF LOCAL
DIFFERENTIAL PRIVACY
(LDP)

Various approaches can be developed to address
privacy risks concerning energy consumption data.
Our results in the previous section showed that
generalization-based methods constitute one possi-
ble option to reduce UR and AAD; however, large
amount of generalization is necessary for them to be
effective (e.g., s= 2). Another option is the use of dif-
ferential privacy (DP) such that the full dataset is D is
collected by the data collector in plaintext; yet, only
a noisy access interface is provided to researchers
and/or adversaries. However, the shortcomings of this
approach are twofold: (i) it remains susceptible to
side channel attacks, and (ii) it assumes that house-
holds inherently trust the data collector to hold their
data in plaintext. Instead, in this paper we advocate
for the use of local differential privacy (LDP) which
recently emerged as a state-of-the-art notion for pri-
vacy protection.

5.1 LDP and LDP Protocols

In LDP, there exist several households (clients) and a
data collector (server). To ensure LDP, each client’s
true consumption is encoded and perturbed by a ran-
domized algorithm Ψ on the client side, and the per-
turbed output is sent to the data collector. Thus, the
collected dataset D consists of perturbed readings,
and households’ true consumption readings are never
revealed in D. Consequently, LDP can be used in
scenarios where the data collector is untrusted by the
households. Formally, LDP is defined as follows.

Definition 1 (ε-LDP). A randomized algorithm Ψ

satisfies ε-local differential privacy (ε-LDP), where
ε > 0, if and only if for any two inputs v1,v2 in uni-

verse U, it holds that:

∀y ∈ Range(Ψ) :
Pr[Ψ(v1) = y]
Pr[Ψ(v2) = y]

≤ eε (1)

where Range(Ψ) denotes the set of all possible out-
puts of Ψ.

After collecting perturbed readings from many
clients, the data collector needs to perform estima-
tion to recover statistics pertaining to the client popu-
lation. For value v ∈U, let C(v) denote the true count
of v, i.e., number of times v is actually observed in
the population. Let C̄(v) denote the estimated count
of v, i.e., the count estimated by the server after LDP.
The difference between C(v) and C̄(v) is called the
estimation error. Several LDP protocols were devel-
oped in the literature for minimizing estimation error
under various settings. In this paper, we will use three
popular LDP protocols: GRR, RAPPOR, and OUE.
Generalized Randomized Response (GRR): is a
generalization of the randomized response survey
technique introduced in (Warner, 1965) to support
non-binary U and arbitrary ε. Denoting by v the
client’s true value, the perturbation algorithm ΨGRR
perturbs v and outputs y ∈U with probability:

Pr[ΨGRR(v) = y] =

{
p = eε

eε+|U|−1 if y = v

q = 1
eε+|U|−1 if y ̸= v

(2)

where |U| denotes the size of the universe. This sat-
isfies ε-LDP since p

q = eε. The client sends y to the
server.

On the server side, upon receiving perturbed out-
puts from all clients, to perform estimation for some
value v∗ ∈ U the server first first finds Ĉ(v∗): total
number of clients who reported v∗ as their perturbed
output. Then, estimate C̄(v∗) is computed as:

C̄(v∗) =
Ĉ(v∗)−|L | ·q

p−q
(3)

where |L | denotes the number of clients in the popu-
lation.
RAPPOR: was originally developed by Google and
implemented in Chrome (Erlingsson et al., 2014;
Fanti et al., 2016). While the original version of RAP-
POR relies on Bloom filters for string encoding, in
this paper we leverage a variant of RAPPOR which
uses unary encoding, similar to (Wang et al., 2017;
Gursoy et al., 2019).

Client initializes a bitvector B with length |U|.
The client sets B[v] = 1 and for all remaining posi-
tions j ̸= v, those positions are set as: B[ j] = 0. Then,
the perturbation step of RAPPOR takes as input B and
outputs a perturbed vector B′. Perturbation algorithm
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ΨRAP considers each bit in B one by one, and either
keeps or flips the bit with probabilities:

∀i∈[1,|U|] : Pr[B′[i] = 1] =

{
eε/2

eε/2+1
if B[i] = 1

1
eε/2+1

if B[i] = 0
(4)

The client sends perturbed bitvector B′ to the server.
The server receives perturbed bitvectors B′ from

all clients in the population. To perform estimation
for value v∗, Sup(v∗) is computed as the total number
of received bitvectors that satisfy: B′[v∗] = 1. Then,
the estimate C̄(v∗) is computed as:

C̄(v∗) =
Sup(v∗)+ |L | · (α−1)

2α−1
(5)

where α is the bit keeping probability: α = eε/2

eε/2+1
.

Optimized Unary Encoding (OUE): has the same
encoding phase as RAPPOR with unary encoding, but
its bit keeping and flipping probabilities are different.
It treats the 0 and 1 bits asymmetrically to improve
accuracy of server-side estimation (Wang et al., 2017;
Jia and Gong, 2019).

Client initializes bitvector B with length |U| such
that B[v] = 1, and for all remaining positions j ̸= v,
B[ j] = 0. Perturbation algorithm ΨOUE takes as input
B and produces perturbed bitvector B′ such that:

∀i∈[1,|U|] : Pr[B′[i] = 1] =

{
1
2 if B[i] = 1

1
eε+1 if B[i] = 0

(6)

The client sends perturbed bitvector B′ to the server.
The server receives perturbed bitvectors B′ from

all clients in the population. To perform estimation
for value v∗, Sup(v∗) is computed as the total number
of received bitvectors that satisfy: B′[v∗] = 1. Then,
the estimate C̄(v∗) is computed as:

C̄(v∗) =
2 ·

(
(eε +1) ·Sup(v∗)−|L |

)
eε−1

(7)

5.2 Enforcing LDP on Energy
Consumption Data

GRR, RAPPOR and OUE protocols assume a discrete
universe U and perform perturbation within this dis-
crete universe. Since households’ energy consump-
tion readings are typically numeric and continuous,
these protocols are not directly applicable to energy
consumption data. A straightforward solution for this
problem would be to discretize each numeric con-
sumption reading by rounding it to the nearest integer.
However, this is also not a desirable solution, since it
causes U to be extremely large. To exemplify, recall
that the real-world datasets from Section 4 contained

Algorithm 1: Our application of LDP.
Input : Household population L , privacy

parameter ε, bucket range size R,
number of buckets N, month j

Output: Estimates C̄(·) for month j

/* Client-side perturbation */
1 U←{0,1,2, ...,N−1}
2 for i ∈ L do
3 v← Ti[ j]//R
4 x← Perturb v using LDP protocol with

parameters ε and U // use Eqn 2,
4 or 6 for GRR, RAPPOR or OUE

5 Send x to the server
6 end
/* Server-side estimation */

7 for v∗ ∈ [0,N−1] do
8 C̄(v∗)← Estimate using LDP protocol

with parameters ε and U // use Eqn
3, 5 or 7

9 end
10 return C̄(v∗) for all v∗

4369, 2657 and 4064 households respectively, mean-
ing that the number of households is in the order of
1000s. Considering that minimum consumption read-
ing is typically 0 and maximum consumption reading
can be quite large (e.g., 10000s or more), our U would
be in the order of 10000s which is a magnitude larger
than the number of households. This would cause
the resulting statistics (i.e., number of households per
unique reading) to be extremely sparse, which nega-
tively impacts estimation utility. Additionally, large
U also causes efficiency problems because the com-
putational complexities of many protocols such as
GRR, RAPPOR and OUE are at least linear in terms
of U, i.e., they are Ω(|U|).

Motivated by the above problems, we propose the
following solution for applying LDP to energy con-
sumption readings via bucketization. Given the range
size (bucket size) R and the number of buckets N,
we first construct buckets: [0,R), [R,2R), [2R,3R),
..., [NR− R,NR]. When household i would like to
perturb his/her consumption reading at month j, de-
noted by Ti[ j], the household first computes his/her
true value as v = Ti[ j]//R, where // denotes integer
division. This way, the household’s consumption is
assigned to one of the N buckets, and the true value v
of the household becomes the number of that bucket.
Considering there are N buckets, the universe U is
now limited to: U = {0,1, ...,N−1}. After the house-
hold’s true value v is determined and U is known as
above, v can be fed into one of GRR, RAPPOR or
OUE protocols, and the perturbed output can be ob-
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tained. The household sends the perturbed output to
the data collector. After collecting perturbed outputs
from all households, the data collector (server) per-
forms estimation to find how many households are es-
timated to have consumption readings in each bucket.

The overall process is summarized in Algorithm
1. As explained above, first the universe of buckets
U ← {0,1,2, ...,N− 1} is initialized on line 1 of the
algorithm. Then, between lines 3-6, each household
bucketizes his/her true value (line 3) and then perturbs
it using an LDP protocol (line 4) such as GRR, RAP-
POR or OUE. Outcome of the perturbation is sent
to the server (line 5). After the server receives per-
turbed outputs from all households, the server per-
forms estimation (lines 7-9). Since values have been
bucketized, the estimation of the server needs to be
performed bucket-by-bucket. Thus, for each bucket
(line 7), the estimation algorithm of the correspond-
ing LDP protocol is used (line 8) such as GRR, RAP-
POR or OUE. Results of the estimations are produced
as the output of Algorithm 1 (line 10).

5.3 Quantifying Estimation Error

Due to the perturbation of LDP, the estimates recov-
ered by Algorithm 1 will be imperfect, i.e., they will
contain error. We propose two error metrics to mea-
sure estimation error: Consumption Histogram Error
(CHE) and Total Consumption Error (TCE).
Consumption Histogram Error (CHE): Algorithm
1 recovers noisy LDP estimates C̄(v∗) for v∗ ∈ [0,N−
1], which can be viewed as a histogram of number of
households that have value v∗= 0,1, ...,N−1. In con-
trast, let C(v∗) denote the true number of households
that have value v∗ which would have been learned if
all households’ consumption readings were observed
in plaintext (i.e., no privacy protection). CHE is com-
puted as the average difference between C̄(v∗) and
C(v∗), i.e.:

CHE =

N−1
∑

v∗=0
|C̄(v∗)−C(v∗)|

N

Total Consumption Error (TCE): The total energy
consumption of all households in the population is
important to preserve, since it is important for demand
and capacity planning in a city or an electricity grid.
Let ϕ be the true total energy consumption in the cur-
rent month, which would have been computed if all
households’ consumption readings were observed in
plaintext. On the other hand, using the output of Al-
gorithm 1, the expected total energy consumption un-

Figure 7: TCE results on London dataset (ε = 1).

Figure 8: TCE results on Non-solar dataset (ε = 1).

der LDP, denoted by ϕ̄, can be computed as:

ϕ̄ =
N−1

∑
v∗=0

C̄(v∗)×
(
v∗R+

R
2
)

Then, TCE is computed as:

TCE =
|ϕ̄−ϕ|

ϕ
×100%

Multiplication by 100% is performed to turn TCE into
a percentage and thereby increase interpretability.

5.4 LDP Experiment Results

In order to measure the potential real-world impact of
our LDP solution via simulation, we perform experi-
ments using the same datasets and setup from Section
4. We focus on the impacts of two parameters: pri-
vacy budget ε and range size R. We measure error
amounts using TCE and CHE metrics. We perform
experiments separately for different months in each
dataset, compute the values of TCE and CHE metrics,
and then take their average across all months.

In Figures 7 and 8, we fix ε = 1 and vary R, in
order to analyze the impact of varying R on TCE. On
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Table 2: TCE results on London (left), Non-solar (mid), Solar (right) datasets.

ε GRR RAPPOR OUE
0.1 95.64 135.12 171.72
0.5 16.05 27.99 27.24
1 6.59 15.55 13.24
2 2.80 5.02 5.32
4 1.00 3.46 2.71
6 0.63 1.69 1.77

ε GRR RAPPOR OUE
0.1 81.93 108.77 105.50
0.5 11.52 20.54 19.07
1 4.04 10.29 10.12
2 1.63 5.57 4.27
4 0.88 2.37 2.18
6 0.71 1.38 1.64

ε GRR RAPPOR OUE
0.1 53.46 84.39 80.45
0.5 8.29 19.39 19.42
1 3.86 9.22 9.78
2 1.38 4.67 4.61
4 0.66 2.01 2.61
6 0.45 1.27 2.02

Table 3: CHE results on London (left), Non-solar (mid), Solar (right) datasets.

ε GRR RAPPOR OUE
0.1 664.32 701.64 806.13
0.5 142.19 170.14 164.30
1 67.86 95.65 89.50
2 28.36 39.76 45.54
4 8.38 21.73 23.09
6 3.05 11.69 20.64

ε GRR RAPPOR OUE
0.1 695.97 769.16 779.02
0.5 139.16 167.92 161.46
1 55.83 86.07 87.68
2 26.12 43.90 43.48
4 8.69 19.75 26.68
6 3.17 11.32 20.19

ε GRR RAPPOR OUE
0.1 532.10 539.31 602.10
0.5 108.97 139.72 150.01
1 50.65 73.46 70.67
2 20.84 35.68 36.92
4 6.72 16.15 21.75
6 2.36 9.20 18.28

both datasets and all three LDP protocols, the results
show a U-shaped curve trend. In other words, in Fig-
ure 7, starting from R = 100 and gradually increas-
ing R, we observe that TCE results decrease until R
is between the 250-350 range, and afterwards TCE
results start to increase as R is further increased to
R> 350. Similarly, in Figure 8, starting from R= 200
and gradually increasing R, TCE results decrease un-
til R is between 600-800, and afterwards TCE starts
to increase as R is further increased. These figures
and observations yield three key insights. First, our
proposed solution using bucketization is indeed more
effective than simply rounding consumption readings
to the nearest integer and then applying LDP. Round-
ing to the nearest integer is equivalent to setting R= 1,
which, according to these results, would be expected
to yield much higher TCE. Second, GRR, RAPPOR
and OUE protocols all agree in the U-shaped curve
trend, and they approach minimal error amounts for
similar R. Due to their consistency, it is possible to
choose R in a protocol-agnostic manner, and an R
value that yields good results for one protocol is likely
to yield good results also for other protocols. Third,
assuming the use of a good R value, it is possible to
estimate total consumptions with TCE ≤ 5% or 10%
even with a reasonably strict privacy budget of ε = 1.
This shows that our proposed solution is feasible and
can yield good utility in practice.

In Tables 2 and 3, we fix R and vary ε, in order
to analyze the impact of varying ε on TCE and CHE.
In this experiment, we chose near-optimal values of
R, that is: R = 300 for London dataset, R = 800 for
Non-solar dataset, and R = 500 for Solar dataset. Re-
sults with the TCE metric are reported in Table 2 and
results with the CHE metric are reported in Table 3.
We observe that the GRR protocol has lower error
in terms of both TCE and CHE compared to RAP-

POR and OUE across many ε settings. ε = 0.1 is the
strictest privacy budget we use, and indeed, we ob-
serve that errors are quite high in this case. As we
increase ε from 0.1 to 0.5, errors are substantially re-
duced. As we increase ε further to 1, 2, 4 and 6, errors
are further reduced, although at a lower speed com-
pared to the reduction from 0.1 to 0.5. When ε ≥ 4,
TCE values are ≤ 1% and CHE values contain single
digit, negligible errors (in case of GRR).

6 CONCLUSION

In this paper, we made mainly two contributions at
the intersection of privacy and energy consumption
data. First, we proposed an adversary model in which
an adversary observes a pseudonymized energy con-
sumption dataset and knows a limited number of con-
sumption readings of a target household. The knowl-
edge of the adversary is characterized by a length pa-
rameter ℓ and a precision parameter s. Using three
real-world datasets and UR and AAD metrics, we ex-
perimentally showed the effectiveness of such an ad-
versary’s re-identification ability. Second, we pro-
posed a LDP and bucketization-based solution for
protecting the privacy of households’ consumption
readings. We measured the estimation error caused
by our solution under various settings and parameter
choices using CHE and TCE metrics. Results showed
that our solution is able to achieve low estimation er-
ror under reasonably strong privacy guarantees such
as ε = 1.

There are several directions for future work. First,
we plan to study the results of the UR and AAD met-
rics after our LDP and bucketization-based solution
from Section 5 is applied to the data. Second, we plan
to integrate several additional LDP protocols to our
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work, which can reduce client-server communication
cost (e.g., hashing-based protocols such as BLH and
OLH) in bandwidth-constrained environments. Third,
recall from Section 5 that bucket sizes are equal for
all buckets (R). We plan to investigate the utility and
privacy impacts of uneven bucket sizes, e.g., whether
uneven bucket sizes can help improve estimation util-
ity, and whether small bucket sizes may increase the
risk of identifiability. Furthermore, we plan to in-
vestigate whether bucket sizes can be automatically
learned from the underlying data.
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Babiloni, A., Deme-Bélafi, Z., and Csoknyai, T.

(2021). Development of electricity consumption pro-
files of residential buildings based on smart meter data
clustering. Energy and Buildings, 252:111376.

Datastore, L. (2023). Smartmeter energy
consumption data in london house-
holds. https://data.london.gov.uk/dataset/
smartmeter-energy-use-data-in-london-households.

de Montjoye, Y.-A., Hidalgo, C. A., Verleysen, M., and
Blondel, V. D. (2013). Unique in the crowd: The pri-
vacy bounds of human mobility. Scientific Reports,
3.

Eibl, G., Burkhart, S., and Engel, D. (2019). Insights into
unsupervised holiday detection from low-resolution
smart metering data. In International Conference on
Information Systems Security and Privacy (ICISSP),
pages 281–302. Springer.

Eibl, G. and Engel, D. (2014). Influence of data granularity
on smart meter privacy. IEEE Transactions on Smart
Grid, 6(2):930–939.

Emam, E., Dankar, F. K., Neisa, A., and Jonker, E. (2013).
Evaluating the risk of patient re-identification from
adverse drug event reports. BMC Medical Informat-
ics and Decision Making, 13.
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