
Fidelis: Verifiable Keyword Search with No Trust Assumption

Laltu Sardar1 a and Subhra Mazumdar2 b

1Institute for Advancing Intelligence, TCG-CREST, Kolkata, India
2TU Wien and Christian Doppler Laboratory Blockchain Technologies for the Internet of Things, Vienna, Austria

Keywords: Searchable Encryption, Keyword Search, Fair Payment, Smart Contract, No-Trust Assumption.

Abstract: A searchable encryption (SE) scheme allows a client to outsource its data to a cloud service provider (CSP)
without the fear of leaking sensitive information. The latter can search over the outsourced data based on the
client’s query. Such a scheme prevents a malicious CSP from sending incorrect results. However, a malicious
client can deny receipt of the correct result and wrongly blame the CSP. Existing SE schemes fail when the
client acts maliciously.
In this paper, we have studied searchable encryption schemes where none of the parties trust each other. We
propose Fidelis, a novel blockchain-based SE scheme, with keyword-search functionality, that is verifiable
by both parties. None of the parties can cheat, and an honest CSP gets payment upon providing the result.
We implement and evaluate an instance of the protocol on real-life data using Ethereum as the blockchain
platform, deploying it in the Ropsten test network. Upon comparing with existing schemes, we observe that
our protocol is efficient and scalable.

1 INTRODUCTION

Outsourcing storage, as well as computation to a
cloud service provider (CSP), has acquired signifi-
cant popularity among Small and Medium-sized En-
terprises (SMEs). Outsourcing increases security ef-
fectiveness and reduces maintenance costs. However,
directly uploading the data in plaintext form to cloud
service providers (CSP) is subject to risk. An unau-
thorized person can misuse or steal the data stored in
the cloud. To counter the issue, a different encryption
technique called searchable encryption (SE) is used.
SE allows a user to outsource its data in an encrypted
form to a cloud service provider. The cloud can per-
form any number of queries over that encrypted data
at the request of the client. In this process, the client
reveals some controlled amount of information about
the data to the CSP. Thus, privacy of such schemes
is determined by the amount of leakage upon query-
ing over the encrypted database. A malicious server
may not return the correct result, but the users should
have the ability to check whether the result is com-
plete and derived from the actual state of the database.
This is possible only when the client can verify an SE
scheme. A client can be malicious and try to cheat

a https://orcid.org/0000-0002-7433-0497
b https://orcid.org/0000-0002-3089-2535

CSP. If the client is the only one involved in verifica-
tion, it can intentionally claim that it got an incorrect
result to avoid paying the CSP. So, when none of the
parties are trusted, we need an SE scheme that is ver-
ifiable by both parties. Blockchain provides service
integrity for storage as well as computation. In ad-
dition, by using Ethereum-based smart contracts (Bu-
terin, 2020), all operations can be executed automat-
ically and trustfully. It efficiently makes data sharing
convenient (Jiang et al., 2019).

However, it is a challenging task to outsource
data in an untrusted distributed environment without
leaking a significant amount of information about the
dataset and queries. In most of the previous works
(Fan et al., 2020),(Wang et al., 2018),(Sardar and Ruj,
2019), the client is assumed to be honest. Some recent
work, such as Jiang et al. (Jiang et al., 2019) consider
a fully-malicious setup where the client can behave
maliciously from the beginning of the protocol. They
used cloud storage to store encrypted files and smart
contracts to store encrypted indexes for a single key-
word search. However, the actual result of a search
is not returned. Secondly, the blockchain is simply
used as verifiable storage, incurring a high cost. Guo
et al. (Guo et al., 2020) used the smart contract to
store the verification tag. Thus, in both cases, most
of the computation is done either by the client (Jiang

698
Sardar, L. and Mazumdar, S.
Fidelis: Verifiable Keyword Search with No Trust Assumption.
DOI: 10.5220/0012082700003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 698-703
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

et al., 2019) or by the server (Guo et al., 2020), and
the blockchain is used for storage purposes.

In another work (Guo et al., 2022), the authors
have proposed a solution where both the cloud server
and the client are malicious, but their schemes con-
sider the client to be quasi-malicious. The assump-
tion is used for all existing schemes, including (Li
et al., 2020), (Guo et al., 2020), (Miao et al., 2022)
etc. These schemes fail when the client uploads in-
correct encrypted data and/or manipulated encrypted
search index. If the pre-computed search results and
verification information are incorrect, there is no way
for the CSP to check. Such a client can cheat and deny
payment to the cloud, even if the latter has performed
the search correctly. Our aim is to suggest a scheme
that addresses all these shortcomings.

Our Contribution: We propose a novel single key-
word search scheme called Fidelis that aims to pro-
vide verifiability without requiring any trust assump-
tions. To achieve this goal, we utilize the Ethereum
blockchain platform to enable fair interactions be-
tween the cloud and the client. Unlike other schemes,
we do not store any data on the blockchain except
for certain constant-size information that is crucial
for valid search and result verification. Our proto-
col ensures fairness and confidentiality even in the
presence of fully malicious participants. Addition-
ally, we develop prototypes and test them on the Rop-
sten test network using real-world data. Our experi-
mental analysis indicates that our proposed scheme is
highly efficient and feasible to implement, making it
a promising solution for practical use cases.
Organization: Section 2 presents necessary back-
ground knowledge. Section 3 provides detailed de-
scription of Fidelis. In Section 4, we evaluate the effi-
ciency of Fidelis. We conclude the paper in Section 5.

2 PRELIMINARIES

System and Adversarial Model: There are three enti-
ties - owner, server and user.
The owner of the database Owner (O) is fully-
malicious and may follow two strategies: (a) correctly
uploading data and search index but falsely blaming
the cloud to obtain search results without payment,
or (b) manipulating the data initially to obtain search
results without payment.
Server (S) stores encrypted data and search index, and
provides storage and computation services. It may in-
tentionally provide incomplete or incorrect results to
reduce its costs, and is considered fully malicious.

User (U) is a client who uses the database. The owner
can also be one of the users. It is fully-malicious as
owner. We assume, the owner and the users belong
to the same organization, a user trusts the owner, and
the owner will never collude with the server to cheat
a user.
Apart from these, Blockchain (B) used here is a public
blockchain (e.g. Ethereum) that helps to verify the
execution of the search protocol. The client may act
as an owner of the database as well as the user.

TSet: A tuple set TSet (Cash et al., 2013) is a
data structure consisting of a tuple of algorithms
(TSetSetup,TSetGetTag,TSetRetrieve) briefly
described as follow.
• TSetSetup takes as input a security parameter λ
and an array T of lists of equal-length bit strings in-
dexed by the elements of W . It outputs a pair (TSet,
KT) where TSet is a tuple set data structure and KT
is a key. Thus TSetSetup initiates the tuple set data
structure TSet and chooses a key KT at random.
• TSetGetTag takes as input the key KT and a key-
word w and outputs a search trapdoor stagw ∈ {0,1}λ.
• TSetRetrieve takes the TSet and a search trap-
door stagw as input and returns a list of strings.

We say that a TSet is correct if for all W , T,
and any w∈W , TSetRetrieve(TSet,stagw) =T[w]
when (TSet,KT) ← TSetSetup(T) and stagw ←
TSetGetTag(KT ,w).

Interval based Sorted Merkle Tree (IbSMT): Since
we only require non-membership proof, we take
interval-based sorted Merkle tree (IbSMT). IbSMT is
the same as SMT (as Sorted Merkle Tree) (Dahlberg
et al., 2016) except for the leaves. For example, given
a sorted set S = {x1,x2, . . . ,xn}, SMT keeps xis in the
leaf node. However, IbSMT uses elements of S̄ =
{y0,y1, . . . ,yn} as its leaf node, where yi = xi||xi+1.
The two additional elements, x0 and xn+1, are the
minimum and maximum bound and ∀i ∈ [1,n],xi ∈
(x0,xn+1). x0 and xn+1 can be taken as bit-strings of
all 0 and 1 respectively. An IbSMT data structure con-
sists of three algorithms - BuildTree, NMSearch and
NMVerify:
• IbSMT← BuildTree(S): It takes a set S and outputs
the sorted Merkle tree IbSMT where the leaves are the
intervals constructed as above, i,e., elements from S̄.
• p fn ← NMSearch(IbSMT,x): Given an element x,
the algorithm finds two xi and xi+1 such that xi < x <
xi+1 and outputs the membership proof p fn for the
interval yi← xi||xi+1 in S̄. p fn is the non-membership
proof of x in S.
• b ← NMVeri f y(IbSMT.root, p fn,x): It outputs
membership verification bit b result for x and the

Fidelis: Verifiable Keyword Search with No Trust Assumption

699

proof p fn. The verification is done with the help of
the root of IbSMT.

Definitions and Terminologies: We define a ver-
ifiable keyword search scheme VKS as a tuple of
algorithms (KeyGen, Build, SrchTknGen, Search,
VerifySrch) briefly described as follows.

• K ← KeyGen(1λ): is a Probabilistic Polynomial
Time (PPT) algorithm run by the O that takes a se-
curity parameter 1λ and outputs secret key K.
• (EDB,ξ,α)← Build(DB,K): O runs this PPT al-
gorithm that takes the dataset DB and the secret key
K as input and outputs an encrypted database EDB,
an encrypted index ξ, and auxiliary data α. α consists
of two parts αo and αs that are stored by the owner
and the server, respectively.
• τw ← SrchTkn(w,K): O runs this PPT algorithm
that generates an encrypted search trapdoor τw for a
keyword w with the help of K.
• (Rw, p fw)← Search(ξ,αs,τw): with this PPT algo-
rithm, S searches over ξ for τw and returns the search
result Rw to the client together with a proof p fw.
• bw ← VerifySrch(Rw, p fw,αo): Given the result
Rw, proof p fw and auxiliary data αo, U runs this PPT
algorithm, interacting with cloud, and outputs the ver-
ification bit bw.
Correctness: Given a security parameter λ∈N, a ver-
ifiable keyword search scheme is said to be correct, if
for any key K generated using KeyGen(1λ) and for all
sequences of search operations, the algorithm Search
outputs the correct set of identifiers, except with a
negligible probability, and for each received correct
result, the result will be verified correctly by the algo-
rithm VerifySrch.

3 OUR PROPOSED SCHEME

The steps of the protocol Fidelis are encoded in the
smart contract. Owner shares the encrypted database
with the cloud server and sends the keyword space to
the user. The latter needs to pay the cloud server for
retrieval of data against a query. This is enabled by
locking coins, denominated in the native currency of
the blockchain, in the smart contract. User sends a
query to the server and the latter returns the result. If
the server has performed his actions correctly, it gets
the coins, else the coins are refunded to the user. The
outline of the protocol is provided in Fig. 1.

Initialization: A tuple of keys, K = (Ks, K̄s,KT), is
generated by the owner. Ks is a λ-bit string, taken
at random, used to encrypt the keywords that a user

Cloud

User

Smart
Contract

4. Complain
If User malicious

 Initialized

 Locked

 Complain not valid

 Complain valid

 Server

 Initialization

 Query

 Query
 Validity

 Response

 Payout

 Complain valid

Refund on Lock

Pay on Reveal

Complain valid

9. Reveal

If response
 not correct

Owner

Figure 1: Outline of the protocol.

intends to query. K̄s is a λ-bit string, taken at ran-
dom, used to compute verification tags corresponding
to each queried keyword. A pseudo-random function
(PRF) F : {0,1}λ×{0,1}λ→ {0,1}λ is used for en-
cryption using keys Ks and K̄s. Different hash func-

Algorithm 1: Fidelis.Init(DB).

Ks, K̄s
$−→ {0,1}λ for PRF F

Parse DB as {id1, . . . , idd}
Find {W1, . . . ,Wd}
W ←∪d

i=1Wi; StgSET = φ; T = φ
for w ∈W do

Initialize t to be an empty list
Set Kw← F(Ks,w); vtagw← H1(K̄S,w)
for i = 1 to nw = |DB(w)| do

ei← Sym.Enc(Kw, idw
i)

append ei to t.
end
hw← H2(vtagw||e1||e2|| . . . ||enw)
append hw to t.
Set T[w]← t.

end
(TSet,KT)← TSetSetup(T).
for each w ∈W do

stagw← TSetGetTag(KT ,w)
StgSET ← StgSET ∪{stagw}

end
IbSMT= BuildTree(StgSET)
O keeps K = (Ks, K̄s,KT)
O sends EDB,ξ = TSet,IbSMT to S .

SECRYPT 2023 - 20th International Conference on Security and Cryptography

700

tions H1, H2, and H3 are used for generating commit-
ments. Each of them is a cryptographic one-way hash
function {0,1}∗ → {0,1}λ. The owner uses a sym-
metric encryption Sym to encrypt each file in DB and
generates EDB. We assume every encrypted file fi
can be accessed with the identifier idi, and the owner
gives this encryption key to the users.

We use the TSet (see Section 2) data structure
to construct encrypted index for the database DB =
{idi : i = 1, . . . ,d}. Let W = ∪d

i=1Wi be the set of
keywords present in DB where Wi is the set of key-
words in the file with identifier idi. For each keyword
w ∈W , a list t = [e1,e2, . . . ,enw ,hw] is generated by
the owner. We define DB(w) ⊂ DB as the set of file
identifiers that contain the keyword w and nw is the
cardinality of DB(w). ei ← Sym.Enc(Kw, idw

i),1 ≤
i≤ nw is the encrypted identifiers of the files contain-
ing w and hw←H(vtagw||e1||e2|| . . . ||enw) is the hash
value that binds the set of identifiers and vtagw. Here
vtagw = H1(K̄S,w) is the verification tag used to ver-
ify the correctness of search results. An array T of
length W is used to store the list t for each keyword,
i.e., T[w] =t. Finally, TSet for the array T is gener-
ated as (TSet,KT)← TSetSetup(T).

We encrypt each keyword w ∈W using key KT ,
generate stagw, and store it in StgSET . The encryp-
tion is done by TSetSetup. An IbSMT is built for
StgSET . The key K = (Ks, K̄s,KT) and root of IbSMT,
defined αo = IbSMT.root, are shared with the user.
The encrypted search index ξ = TSet is outsourced
to the cloud along with αs = IbSMT. Algo. 2 de-
scribes the initialization which is generating the keys
and building the encrypted database.

Query: To query a keyword w, user computes search
token τw = stagw and sends it to the server. It ini-
tializes the smart contract SCw with the root of IbSMT
(see Algo. 3). The user calls StoreandLock in SCw,
where it locks Ps coins for time T1 and stores stagw.

On receiving stagw, the server checks if the
value exists in IbSMT. If stagw /∈ IbSMT, the server
generates a proof of non-membership, p fn, using
IbSMT.root and submits it to SCw. Upon evaluation,
if the proof p fn is found to be correct, then the server
receives Ps coins, and the protocol aborts. If the proof
is not valid, then the server does not get any payment,
Ps gets unlocked, and the protocol is aborted.
Response and Commit: If stagw exists in IbSMT, the
server searches for stagw in TSet. Then it encrypts t
using key Kv and generates Re. It shares Re with the
user and sends commitment of t (ct), commitment of
Re (cr), commitment of Kv (cv), and hw to SCw.
Check Response: The user checks if the commitment
of Re is cr. If not, then it complaints to SCw and un-
locks Ps coins. Else, the it regenerates vtagw, which is

used to generate hw. The user submits vtagw to SCw
and locks additional Pm coins.

Algorithm 2: Fidelis.Search(w).Algorithm 2: Fidelis.Search(w)

User (U):
takes K = (Ks, K̄s,KT) and a keyword w.
computes stagw← TSetGetTag(KT ,w)
executes StoreandLock(stagw,Ps) in SCw
and locks Ps coins till time T1.

Server (S):
if IbSMT.root in SCw ̸= αs, then S aborts
if stagw does not exist then

p fn← NMSearch(IbSMT,x)
if QueryValid(p fn) = valid then

S gets Ps coins and protocol aborts.
else

Ps gets unlocked and abort.
else if stagw exists then

t← TSetRetrieve(TSet,stagw)

[e1,e2, . . . ,enw ,hw]← t; Kv
$←− {0,1}λ ;

Re← Sym.Enc(Kv, t)
ct ← H3(t); cv← H3(Kv); cr← H3(Re)
SendCommitment(ct ,cr,cv,hw)
Sends Re to the U

end
User:
if cr ̸= H3(Re) then

U complains as vb =
ComplainResponse(Re);

if vb is valid bit then
B unlocks Ps coins and aborts.

else
Computes vtagw← H1(K̄S,w)
StoreandLock(vtagw,Pm)
locks Pm coins by B in SCw till time T1.

end
Server:
if hw ̸= H2(vtagw||e1||e2|| . . . ||enw) then

abort!
else Reveal(Kv)

User:
[e1,e2, . . . ,enw ,hw]← Dec(Kv,Re)
h′w← H2(vtagw||e1||e2|| . . . ||enw)
if h′w ̸= hw or H3(t) ̸= ct then

p fe = (Re, t)
executes Complain(p fe) by B in SCw
if current time < T2 then

B evaluates correctness of p fe
else S gets Pm +Ps coins

else if h′w = hw then
U re-generates Kw← F(Ks,w);
U decrypts each ei as

idw
i ← Sym.Dec(Kw,ei)

U gets R = {id1, id2, . . . , idnw}
S receives payment after time T2.

end

Fidelis: Verifiable Keyword Search with No Trust Assumption

701

Commit Reveal: Using vtagw and e′is, if it is possible
to generate hw, then the server reveals the decommit-
ment of cv. Else, it aborts.

Algorithm 3: Smart Contracts.

Algorithm 2: Fidelis Search(w)

User (U):
takes K = (Ks, K̄s,KT) and a keyword w.
computes stagw← TSetGetTag(KT ,w)
executes StoreandLock(stagw,Ps) in SCw
and locks Ps coins till time T1.

Server (S):
if IbSMT.root in SCw ̸= αs, then S aborts
if stagw does not exist then

p fn← NMSearch(IbSMT,x)
if QueryValid(p fn) = valid then

S gets Ps coins and protocol aborts.
else

Ps gets unlocked and abort.
else if stagw exists then

t← TSetRetrieve(TSet,stagw)

[e1,e2, . . . ,enw ,hw]← t; Kv
$←− {0,1}λ ;

Re← Sym.Enc(Kv, t)
ct ← H3(t); cv← H3(Kv); cr← H3(Re)
SendCommitment(ct ,cr,cv,hw)
Sends Re to the U

end
User:
if cr ̸= H3(Re) then

U complains as vb =
ComplainResponse(Re);

if vb is valid bit then
B unlocks Ps coins and aborts.

else
Computes vtagw← H1(K̄S,w)
StoreandLock(vtagw,Pm)
locks Pm coins by B in SCw till time T1.

end
Server:
if hw ̸= H2(vtagw||e1||e2|| . . . ||enw) then

abort!
else Reveal(Kv)

User:
[e1,e2, . . . ,enw ,hw]← Dec(Kv,Re)
h′w← H2(vtagw||e1||e2|| . . . ||enw)
if h′w ̸= hw or H3(t) ̸= ct then

p fe = (Re, t)
executes Complain(p fe) by B in SCw
if current time < T2 then

B evaluates correctness of p fe
else S gets Pm +Ps coins

else if h′w = hw then
U re-generates Kw← F(Ks,w);
U decrypts each ei as

idw
i ← Sym.Dec(Kw,ei)

U gets R = {id1, id2, . . . , idnw}
S receives payment after time T2.

end

Algorithm 3: Smart Contracts
Function Initialize(IbSMT.root):

Record IbSMT.root in B
Function StoreandLock(value,P):

Lock P in the contract
Record value in B
if current time is T1 then

Unlock coins locked in contract for
User

Function QueryValid(p fn):
if p fn is valid w.r.t IbSMT.root then

Unlock Ps for Server
Function
SendCommitment(ct ,cr,cv,hw):

Record ct ,cr,cv,hw in B
Function Reveal(Kv):

Store Kv in B
if current time is T2 then

Unlock coins locked in contract for
Server

Function ComplainResponse(Re):
if cr ̸= H3(Re) then

Unlock coins locked in contract for
User

Function Complain(p fe):
Parse p fe
if p fe = (Kv,cv) and cv ̸= H3(Kv) then

Unlock Ps +Pm for User
else

Compute t′=Dec(Kv,Re)
(e1||e2|| . . . ||eni ,hw)← Parse(t′)
Compute

h′w = H2(vtagw||e1||e2|| . . . ||eni)
if h′w ̸= hw or Re ̸= Sym.Enc(Kv, t)

then
Unlock Ps +Pm for User;

else
Unlock Ps +Pm for Server;

end
end

Response Retrieval: The user checks the commitment
of Kv. If unmatched, it raises a complaint and submits
a proof p fe = (Kv,cv) to the function complain in SCw
before time T2. The client has to raise the complaint
and send proof of error p fe within time T2, else the
server gets the payment Pm+Ps. The waiting times T1
and T2 can be fixed at the beginning of the protocol.

If Kv is valid, the user decrypts Re using Kv and
gets t. Next, he parses t to get e′is and recomputes
h′w. If h′w ̸= hw or ct ! = Commitment(t), he submits
a proof of invalid response to SCw, again before time
T2. SCw evaluates whether the complaint raised by the

user is valid. If valid, then the user gets a refund of
Pm +Ps coins. If not, then the server gets the total
amount for performing the task correctly.

If h′w = hw, the user decrypts eis using Kw =
F(Ks,w). If the user has not raised a complaint within
T2, then the server claims the full amount.

Fidelis is verifiable by both the user and the server.
If anyone cheats, it can be detected by others. Fair-
ness is guaranteed as well. The server cannot get pay-
ment from the user without giving the correct result.
Moreover, there is no way a user can get a correct
result from the server without payment. Confidential-
ity is retained as there is no leakage of information
that would benefit an adversary. The proofs justifying
these properties along with the proof for correctness
and soundness will be discussed in the full version of
the paper.

4 PERFORMANCE ANALYSIS

We implement and evaluate the protocol w.r.t.
Ethereum as a blockchain platform. The smart con-
tracts are written in Solidity language and deployed
in the Ropsten test network.The gas price is 38.66
GWei (or 0.00007132 USD on 9th, February, 2023).
We vary number of files from 10K to 100K, keywords
from 35K to 109K and queries from 10 and 1000.

The gas cost for deploying the smart contract
and for executing Initialize are around 163.957
USD (gas usage: 2298905) is 12.277 USD (gas us-
age: 172144) respectively. For querying a existing
or a non-existing keyword, the gas cost for executing
StoreandLock for a single query remains the same
which is is around 7.366 USD (gas usage: 103287).
(i) Searching existing keyword: For a single exist-

ing keyword, executing SendCommitment takes
16s and costs is 9.487 USD (gas usage: 133021)
payed by the server. They are same for
StoreandLock. However, executing Reveal,
they are 21 s, and 10.045 USD (gas usage:
140846). Finally, the time taken to finalize the
payment is 18s and the gas cost is 2.857 USD (gas
usage: 40063).

(i) Searching a non-existing keyword: The only func-
tion that gets executed in QueryValid, where the
proof size varies with the size of the database. The
time taken for execution varies between 20s and
34s whereas the gas cost increases slightly from
41.296 USD (gas usage: 579030) to 43.528 USD
(gas usage: 610329).
Apart from this, we plot the initial encrypt time

taken by owner in Fig.2(a). It varies between 38s

SECRYPT 2023 - 20th International Conference on Security and Cryptography

702

(a) Owner Computation Time upon varying file size

(b) User and Server’s Computation Time upon varying
number of keywords

Figure 2: Time taken for computation.

and 360s with the increase in the size of the database.
For the bad case, when a given keyword is not a
part of the database, the computation time of user
is around 0.02ms but in the case of server, the time
varies between 25ms to 70ms. If the keyword is part
of the database, then with an increase in the number
of keywords, the user time varies between 0.045ms
to 0.1ms, and the server time varies between 0.05ms
and 0.15ms, as shown in Fig.2(b).

We observe that querying existing keywords, the
gas cost is around 23 USD. In Guo et al. (Guo
et al., 2022), the gas cost for uploading a digest in-
creases with the increase in index pairs, varying be-
tween 712.08 USD (gas usage: 9984351, for 1K index
pairs) and 14,252.8388 USD (gas usage:199843506,
for 16K index pairs). In Fidelis, the gas cost for up-
loading data/locking coins is around 46.877 USD (gas
usage: 65727700), being invariant with the frequency
of occurrence of the keyword. The cost of storage
on-chain is fixed (only 320 B) for our protocol, com-
pared to (Guo et al., 2022), where the cost of storage
increases to 1MB when the number of index-pairs is
20K. For non-existing keywords, the smart contract
needs to verify whether the proof sent by server is cor-
rect. The length of the proof increases with the size
of the database, hence the gas cost is much higher.

5 CONCLUSION

We have proposed Fidelis, a blockchain-based search-
able encryption scheme that operates without any
trust assumption and ensures the verifiability of

search results. We provide proof of its security and
fairness. We deploy and test our prototype in the
Ethereum Ropsten testnet with real-life data which
demonstrates the feasibility and efficiency of our pro-
posed scheme. We can see that the protocol can be
executed by all involved parties efficiently.

REFERENCES

Buterin, V. (2020 (accessed November 4, 2020)). Ethereum.
Cash, D., Jarecki, S., Jutla, C. S., Krawczyk, H., Rosu,

M., and Steiner, M. (2013). Highly-scalable search-
able symmetric encryption with support for boolean
queries. In Advances in Cryptology - CRYPTO 2013 -
33rd Annual Cryptology Conf., pp 353–373.

Dahlberg, R., Pulls, T., and Peeters, R. (2016). Efficient
sparse merkle trees - caching strategies and secure
(non-)membership proofs. In Secure IT Systems - 21st
Nordic Conf., NordSec 2016, vol. 10014 of LNCS, pp.
199–215.

Fan, C., Dong, X., Cao, Z., and Shen, J. (2020). VCKSCF:
efficient verifiable conjunctive keyword search based
on cuckoo filter for cloud storage. In, 19th IEEE Int.
Conf. on Trust, Security and Privacy in Computing
and Communications, TrustCom 2020, pp. 285–292.
IEEE.

Guo, Y., Zhang, C., and Jia, X. (2020). Verifiable
and forward-secure encrypted search using blockchain
techniques. In ICC 2020 - 2020 IEEE Int. Conf. on
Communications (ICC), pp. 1–7.

Guo, Y., Zhang, C., Wang, C., and Jia, X. (2022). To-
wards public verifiable and forward-privacy encrypted
search by using blockchain. IEEE Trans. on Depend-
able and Secure Computing, pp. 1–1.

Jiang, S., Liu, J., Wang, L., and Yoo, S. (2019). Verifiable
search meets blockchain: A privacy-preserving frame-
work for outsourced encrypted data. In 2019 IEEE Int.
Conf. on Communications, ICC 2019, pp. 1–6. IEEE.

Li, H., Zhou, H., Huang, H., and Jia, X. (2020). Veri-
fiable encrypted search with forward secure updates
for blockchain-based system. In Wireless Algorithms,
Systems, and Applications - 15th Int. Conf., WASA
2020, vol. 12384, LNCS, pp. 206–217. Springer.

Miao, Y., Tong, Q., Deng, R., Choo, K.-K. R., Liu, X.,
and Li, H. (2022). Verifiable searchable encryption
framework against insider keyword-guessing attack in
cloud storage. IEEE Trans. on Cloud Computing,
10(2):835–848.

Sardar, L. and Ruj, S. (2019). Fspvdsse: A forward secure
publicly verifiable dynamic sse scheme. In Provable
Security - 13th Int. Conf., ProvSec 2019, pp. 355–371.

Wang, J., Chen, X., Sun, S., Liu, J. K., Au, M. H., and
Zhan, Z. (2018). Towards efficient verifiable conjunc-
tive keyword search for large encrypted database. In
Computer Security - 23rd European Symposium on
Research in Computer Security, ESORICS 2018, vol.
11099, LNCS, pp. 83–100. Springer.

Fidelis: Verifiable Keyword Search with No Trust Assumption

703

