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Abstract: Global warming is causing an increase in extreme weather events, making flood events more likely. In order 
to prevent casualties and damages in urban areas, flood prediction has become an essential task.  While 
machine learning methods have shown promising results in this task, they face challenges when predicting 
events that fall outside the range of their training data. Since climate change is also impacting the intensity of 
rare events (i.e. by heavy rainfall) this challenge gets more and more pressing. Thus, this paper presents a 
benchmark for the evaluation of machine learning-based flood prediction for such rare, extreme events that 
exceed known maxima. The benchmark includes a real-world dataset, the implementation of a reference 
model, and an evaluation framework that is especially suited analysing potential danger during an extreme 
event and measuring overall performance. The dataset, the code of the evaluation framework, and the 
reference models are publicated alongside this paper.

1 INTRODUCTION 

Global warming not only leads to a rise in 
temperature but also causes an increase in the 
frequency and intensity of extreme weather events. 
Floods are one such example of an event affected by 
this trend (Alfieri et al., 2017). 

 In order to mitigate the negative impact of floods, 
accurate and timely predictions of flood events are 
critical. Predictions made 2-3 hours in advance can 
provide crucial warning time to allow evacuation and 
the implementation of preventative measures, thereby 
reducing the damage caused by floods.  

Artificial neural networks (ANN) and other 
machine learning (ML) methods have shown 
promising results in the prediction of flood events 
(Goymann et al., 2019). However, a major challenge 
in flood prediction is the issue of unknown extreme 
events. If the precipation or the resulting water levels 
exceed previous records,  the ML algorithm is forced 
to extrapolate – i.e., to do predictions outside of the 
range of its training data. Many ML algorithms, 
especially ANN, are known to perform poorly in 
extrapolation scenarios (Minns and Hall, 1996). 
Another factor that complicates unknown extreme 
events is the rare occurrence of even the known 

extreme events in the training set. This makes 
predictions even more challenging. 

These challenges are becoming increasingly 
relevant with the effects of climate change, which are 
likely to lead to an increase in the frequency of 
record-breaking heavy rain and, consequently floods 
in the future. 

Despite the importance of this issue, existing 
works on the extrapolation of ML-based flood 
predictions are limited, with most studies focusing on 
performance within the range of the training data. 
While public datasets on water levels exist, they are 
missing a framework for actual comprehensive 
evaluation as well as a focus on unknown events and 
extrapolation.  

In this paper, we provide a benchmark based on 
the city of Goslar in Germany, focusing on the 
aforementioned challenges in flood predictions. This 
benchmark case is particularly important since it is 
located near the Harz region, a mountainous area in 
Lower Saxony. Areas like this are suspected of 
suffering from this increase in flood events as a result 
of global warming (Allamano et al., 2009).  

This benchmark includes the real-world dataset 
spanning about 14 years and including one big  flood 
event as well as an evaluation framework focused on 
the performance of these unknown situations. We 

Bratzel, D., Wittek, S. and Rausch, A.
A Flood Prediction Benchmark Focused on Unknown Extreme Events.
DOI: 10.5220/0012081700003546
In Proceedings of the 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2023), pages 267-278
ISBN: 978-989-758-668-2; ISSN: 2184-2841
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

267



also provide a reference implementation using a 
Long-Short-Term-Memory (LSTM) model. For the 
evaluation framework as well as for the reference 
implementation, code is provided1.  

This allows other researchers to test their ML-
based flood prediction approaches with respect to 
unknown events and compare the performance with 
our baseline implementation. 

The paper is structured as follows. After stating 
the related work in section 2, section 3 gives a 
detailed description of the data set. Section 4 
describes the predictiv task definded based on this 
dataset. Section 5 contains the evaluation framework, 
incuding an event focused framework (section 5.1) 
and a variety of metrics applied to the overall 
prediction quality (section 5.2). In section 6 a 
reference precitive model is described which is 
evaluated using the framework in section 7.  

2 RELATED WORKS 

The discussed related work in this section can be 
separated as follows: The forecast of a flood event 
through ML, dealing with unseen events, datasets, 
and mainly used framework for evaluating 
hydrological models. 

The ML-Based Flood Prediction 
An extensive range of research has been done on 
forecasting a high-water event. Usually, these papers 
differ in hydrogeological features or the ML-
technology that was used to forecast the flood event. 
This leads to the differences in the range of the 
forecasting window, the data quality and quantity, 
and the event that needs to be forecasted. Since ANN 
offers advantages such as rapid development, low 
execution time, the parsimony of data requirements 
and a substantial open-source community 
(Shamseldin, 2010), many works are using this 
technique. Riad et al. discuss the forecast of a flood 
event with a one-layer artificial neural network on 
data collected in the Ourika basin in Morocco from 
1990-1996 (Riad et al., 2004). Shameseldin et al. 
apply the Multi-Layer Perceptron (MLP) model for 
the Nile River in Sudan. The model considers data 
such as rainfall index and seasonal expectation 
rainfall index, and other meteorological input 
information (Shamseldin, 2010). A similar 
application of MLP was used in the region of Greater 
Manchester, where the application of MLP was 
justified because this technique is more suitable for 

 
1 https://gitlab.com/tuc-isse/public/flood-benchmark 

finding patterns and trends in complex data than 
regular statistical models and algorithms (Danso-
Amoako et al., 2012). Although Danso-Amoako et 
al., in their work, do not forecast the future status of 
water level or similar, they predict the actual risk of 
dam failure by creating a data-driven surrogate model 
with using a MLP model. Very different is the case in 
catchments with open water, for example, coastal 
areas, where different sources may cause the 
occurrence of extreme storm surges. In their work 
Kim et al. discuss these effects of the surge and test 
them on a MLP model to predict the surge in the 
coastal region of Japan in Tottori (Kim et al., 2016). 
Although the results are promising, the target of the 
forecast is so-called "after-runner surge”, which 
occurs 15-18 hours after a typhoon. Therefore, two 
important pieces of information are used for the 
forecast: the quantitative description of the typhoon 
and the knowledge that an extreme surge event is very 
likely to occur within the next 18 hours. A 
comparison of the performance of different 
techniques: MLP, Adaptive Neuro-Fuzzy Inference 
System (ANFIS) and empirical models, on a huge 
area of Peninsular Spain is presented in (Jimeno-Sáez 
et al., 2017). A good systematic overview of the ML-
based prediction was done in (Mosavi et al., 2018) 
where most common ML techniques are explained 
and their application in different areas datasets and  
forecast horizons are presented.  

Prediction of Extreme Events 
Despite the good results in forecasting weather 
phenomena, most of the works deal with problems in 
finding a pattern and recognizing an event that has 
already happened in the past. The anomalous 
behaviour of Artificial Neural Networks on 
forecasting unseen events was observed in (Minns 
and Hall, 1996), where the ANN performed very well 
on test data that had the same minimal and maximal 
values but could not overcome the maximal values in 
the test set where the flood event had higher values 
than the ones that could be observed on training data. 
The authors concluded that MLP tends to recall seen 
values but has problems generalizing if the flood 
event shows higher values than the training data. To 
solve the problem in (Hettiarachchi et al., 2005), the 
solution of the so-called Estimated Maximum Flood 
(EMF) was presented. In this case, the authors used 
additional domain knowledge to generate artificial 
data where an extreme event appears. This extreme 
event is much higher than ever observed empirical 
data with a probability higher than zero. The problem 
was also observed and discussed in (Xu et al., 2020) 
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where the general problem of extrapolation of ANN 
was analysed and theoretical and empirical evidences 
were given that simple ANN does not predict 
properly when values are out of the range of the 
training sample. Whereas (Pektas and Cigizoglu, 
2017) observe the ANN behaviour in the hydrology 
during minima and maxima of the dataset that are out 
of the training sample.   (Goymann et al., 2019) 
presented in their work in the catchment Goslar the 
forecast of the flood event from 2017. Facing a 
similar problem with LSTM-ANN, the authors 
provided a classification-based approach. Therefore, 
the result was a value of one if it was expectable that 
a flood event in the next two hours could appear or 
zero if no flood event was expected. 

Flood Prediction Metrics 
To evaluate the prediction models, several metrics 
were used. This includes well-known, mean-based 
metrics like root mean squared error (RMSE) 
(Dtissibe et al., 2020; Jimeno-Sáez et al., 2017; 
Mulualem and Liou, 2020), normalized root mean 
square error (NRMSE) (Kim et al., 2016), mean 
absolute and relative error (MARE) (Dtissibe et al., 
2020; Riad et al., 2004) also indices like the 
correlation coefficient (CC) (Kim et al., 2016) and 
coefficient of determination (R²) (Danso-Amoako et 
al., 2012; Jimeno-Sáez et al., 2017; Riad et al., 2004; 
Shamseldin, 2010). The main disadvantage of mean-
based metrics is that even significant forecast errors 
decrease with the increasing number of right-
predicted values. This is a problem in big datasets 
where an extreme, rare event should be predicted. The 
paper (Krause et al., 2005) discusses several 
efficiency criteria for the hydrological model. The 
leading critique is that the Nash-Sutcliffe efficiency 
(NSE) and the index of agreement (IoA) are sensitive 
to errors in the peaks and less sensitive to systematic 
errors in lower regions. By modifying the metrics, 
authors propose how these metrics could be used as a 
benchmark to evaluate errors in lower and higher 
regions. 

During the research, no related work could be 
found that could fulfil the requirements for the 
application in the catchment area of Goslar for the 
forecast of values during high water levels, such as: 
show difference of prediction versus Ground Truth, 
robustness against growing number of predicted 
values, explanation of errors (systematic error or 
outlier), exact focus on the performance during 
critical time (flood event). 

Therefore, we present a benchmark that includes 
the dataset of a rare extreme flood event, an 
evaluation framework with event-focused evaluation  

 

Figure 1: Geological overview of catchment Goslar (City 
Goslar, Goymann, et al. 2019). 

framework and modified overall metrics and the 
example of the application of residual LSTM-Neural 
Network on the problem of flood forecast in 2, 3 and 
4 hours. 

3 GOSLAR REGION DATASET 

The catchment area of interest is the city of Goslar 
and the high ground part from the settlement in south-
west (Figure 1). The river “Gose” (highlighted in 
purple) that was responsible for the flood event in 
2017 could be measured at station Sennhuette (D) 
since the artificial under-earth connection between 
the dam “Granetalsperre” at (B) and the river Gose at 
Sennhuette (D) needs to be considered. As additional 
input for the sudden rainfall, the weather stations (A) 
Hahnenklee and (B) Margaretenklippe are available.  

The river stream goes from the Southwest to the 
city in the Northeast; therefore, the sensors are 
essential to catch early data for sensing actual level of 
the Gose, that enter the city centre at (D), the latest 
point for measuring the water level before the city. 

Granetalsperre (C) and Sennhuette (D) measure 
the actual level of the water in [cm]. The current of 
the water stream in [m³/s], which is also part of the 
collected data, is not measured directly but is 
automatically derived from this level and mixed 
formal and parametrical model from 
Harzwasserwerke GmbH during data collection. The 
weather stations collect the rainfall in [l/m²]. The data 
collection of all sensors happens every 15 minutes. 
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Table 1: Statistical overview of collected data. 

 

 

Figure 2: Split in training and test data. 

The data set consists of 514176 samples in the 
time range from 01.11.2003 until 30.06.2018. In the 
statistical description (Table 1), it can be observed 
that the Sennhuette reaches its maximum value at 
170.4 [cm], whereas the upper quartile is 9.8[cm]. 
This can be explained by the dataset that includes the 
flood event from 2017 in Goslar (Figure 3).  

 

Figure 3: Data during flood event 2017, Goslar. 

Thus, a similar effect can also be observed in the 
other data but the rainfall, where 75% of the data is 0. 
The situation where quartiles are very close to each 
other but relatively far away from the maximum value 
and the maximum value cannot be considered as an 
outlier; we call extreme, rare event. In the case of 
Sennhuette the maximal value is almost 17 times 
bigger than the upper quartile and cannot be reduced 

as an outlier since this is the actual value that needs 
to be predicted properly. 

4 PREDICTIVE TASK 

The hydrogeological experts of the catchment of 
Goslar agree that with the view on the growing 
importance of global climatic changes, the prediction 
of high-level water events will grow, since the risk of 
unexpected and intense rainfalls will grow. To allow 
emergency services to activate the protection 
procedure and warn the population of the catchment, 
a prediction of at least 120 minutes is required. 
Moreover, emergency services ask for immense 
forecast horizons like 180 minutes (3 hours) and 240 
minutes (4 hours). 

Even though previous work of the Institute of 
System Engineering at the Technical University of 
Clausthal shows a promising and robust forecast for 
the warning of extreme events that could meet the 
requirements (Goymann et al., 2019), show that 
despite accurate predictions of the water level, ANNs 
work poorly during an extreme event. Although the 
poor performance of regular ANN on unseen, rare 
events is known, no dataset could be found that 

 
Granetalsperre  
[l/m²] 

Hahnenklee  
[l/m²] 

Margarethenklippe 
[cm]

Margarethenklippe 
[m³/s]

Sennhuette  
[cm] 

Sennhuette 
[m²/s]

count 514176 514176 514176 514176 514176 514176
mean 0.03 0.04 10.40 0.12 7.98 0.11
std 0.19 0.21 5.84 0.20 6.26 0.20
min 0.00 0.00 3.70 0.01 1.50 0.01
25% 0.00 0.00 6.60 0.04 4.00 0.03
50% 0.00 0.00 8.70 0.07 6.00 0.05
75% 0.00 0.00 12.10 0.13 9.80 0.12
max 25.40 24.50 160.60 12.50 170.40 16.68
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represents the problem correctly. Therefore, the 
discussion about the evaluation of the performance of 
models to forecast extreme, rare, and unseen events 
could not make progress, which is demanded by 
global climatic changes and concepts of safety 
concerns.  

For the training, 70% of the data can be used and 
30% for testing. Even though more data could be used 
for predicting the extreme event, it must be 
considered that the extreme event must be a part of 
the test set (Figure 2) and operations like shuffling are 
only allowed to do after the split operation. 

Therefore, the contribution of this work is a 
benchmark for predictive models containing the data 
set from the catchment area of Goslar including one 
extreme event, an event-focused evaluation 
framework and a set of adapted overall metrics. 

The data, source code of the evaluation 
framework and reference implementations of models 
for 2-, 3- and 4-hours forecast are available as a git 
repository:  
https://gitlab.com/tuc-isse/public/flood-benchmark. 

5 EVALUATION FRAMEWORK 

The presented evaluation framework consists of an 
event-focused evaluation framework and a set of 
overall metrics suitable for evaluating the models. 
The event-focused part gives an insight on the 
performance of the model if applied to events that 
exceed this training horizon. In contrast the overall 
metrics allow the assessment of the model in general, 
without this focus.  

5.1 Event-Focused Framework 

As discussed in previous chapters, a sudden high-
water event causes serious danger to the environment 
of the catchment. Also, we discussed how average-
based metrics underestimate errors in regions with 
lower values. Therefore, a framework for evaluating 
predictive models was created that defines potential 
danger events and allows the framework to be 
adjusted to local hydrogeological conditions and 
safety concerns. 

The schematic visualization of the event-focused 
framework is presented in Figure 4. The analytical 
evaluation of a situation is as follows: dangerous 
floods seem very likely when the water level rises, as 
a drop in the measurements might indicate a 
mitigation of the situation. Clusters where a constant 

rise of the level 𝑦  is observed represent a severe 
potential danger.  

Let 𝑇 ൌ ሼ𝑡 ∈ ℕሽ be a set that represents the number 
of time points where the measurements of the dataset 
were made. The time points where the level is rising 
can be described as: 

𝑇௥௜௦௜௡௚ ൌ ሼ𝑡 ∈ 𝑇|𝑦௧ ൐ 𝑦௧ିଵሽ (1)

Furthermore, the rising level is usually only 
dangerous after overcoming a certain level of interest 
𝛽 , which is specific to each catchment. The 
measurements over this lowest level of interest can be 
defined as 

𝑇௥௘௟௘௩௔௡௧ ൌ ൛𝑡 ∈ 𝑇௥௜௦௜௡௚ห𝑦௧ ൐ 𝛽ൟ  (2)

The time point where relevant measurements were 
taken can be separated into three sets 

𝑇௥௘௟௘௩௔௡௧ ൌ 𝑇௢௞ ∪ 𝑇௢௩௘௥ ∪ 𝑇௨௡ௗ௘௥ (3)

Since the exact value is not needed in the 
application scenario, a certain level of tolerance 𝑏 is 
introduced. 

𝑇௢௞ ൌ ൛𝑡 ∈ 𝑇௥௘௟௘௩௔௡௧ห ห𝑦௣௥௘ௗ െ 𝑦௠௘௦ห ൑ 𝑏ൟ (4)

Describes the time points where forecasted values 
are acceptable and can be considered as correct. 

𝑇௢௩௘௥ ൌ ൛𝑡 ∈ 𝑇௥௘௟௘௩௔௡௧ห𝑦௣௥௘ௗ െ 𝑦௠௘௦ ൐ 𝑏ൟ  (5)

Are time points of overestimation of the model 
which could cause a potential false alarm. 

𝑇௨௡ௗ௘௥ ൌ ൛𝑡 ∈ 𝑇௥௘௟௘௩௔௡௧ห𝑦௣௥௘ௗ െ 𝑦௠௘௦ ൏ 𝑏ൟ (6)

Are time points of underestimation of the model 
where a potential flood alert could have been 
overseen. These points are more critical than 
overestimation since the consequences of a false alert 
are less critical than the consequences of an overseen 
flood event. The event-focused evaluation framework 
was done by the definition of 𝜷 ൌ 𝟒𝟎 ሾ𝐜𝐦ሿ as level 
where the dangerous flood can appear, and the 
acceptable variance of the prediction is 𝒃 ൌ 𝟏𝟎 ሾ𝐜𝐦ሿ. 
Both values have been consolidated with the safety 
concept of the city of Goslar. 

These values can be interpreted accumulated as 
the number of time points where the model forecasted 
correct values or under- or overestimated the values 
during a flood event. Also, the interpretation of 
potential annual or relative right and false predictions 
can be made. This is especially useful when 
comparing models on datasets with different sizes.  

The relative metrics are based on the amount of 
all events:  
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Figure 4: Schematic visualisation of the event-focused framework. 

𝑇௔௟௟  ൌ |𝑇௢௞|൅|𝑇௨௡ௗ௘௥| ൅ |𝑇௢௩௘௥| ൅ |𝑇௡௢௧ ௥௘௟௘௩௔௡௧| (7)
 

𝑇௢௞_௥௘௟௔௧௜௩௘ ൌ
|𝑇௢௞|
𝑇௔௟௟

    (8)

 

𝑇௢௩௘௥_௥௘௟௔௧௜௩௘ ൌ
|𝑇௢௩௘௥|

𝑇௔௟௟
  (9)

 

𝑇௨௡ௗ௘௥_௥௘௟௔௧௜௩௘ ൌ
|𝑇௨௡ௗ௘௥|

𝑇௔௟௟
 (10)

The annual comparison metrics have as a basis the 
number of years in which the relevant events were 
observed. 

𝑦𝑒𝑎𝑟s 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ൌ
𝑎𝑚𝑚𝑜𝑢𝑛𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

24 ൈ 4 ൈ 365
 (11)

 

𝑇௢௞_௔௡௨௔௟ ൌ
|𝑇௢௞|

𝑦𝑒𝑎𝑟𝑠_𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
  (12)

 

𝑇௢௩௘௥_௔௡௨௔௟ ൌ
|𝑇௢௩௘௥|

𝑦𝑒𝑎𝑟𝑠_𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 (13)

 
 

𝑇௨௡ௗ௘௥_௔௡௨௔௟ ൌ
|𝑇௨௡ௗ௘௥|

𝑦𝑒𝑎𝑟𝑠_𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 (14)

While this measure gives a good comparative 
overview of the performance of different models in 
the predictive task, an interoperable metric related to 
the actual probability of missing dangerous events is 
still missing. For the example, a value of  
𝑇௨௡ௗ௘௥_௔௡௨௔௟ ൌ 12 can be understand a mean of 12 
potential flood events per year, that would not be 
predicted correctly by the model. But there is no 
information on how cluttered this missed floods are. 
It is possible that these 12 events are spread out 

evenly across this year, meaning that only a single 
prediction for only a single 15 min interval is wrong 
every month. This would be a neglectable error, 
because all other prediction around this error would 
be correct and correctly implying an incoming flood, 
thus only reducing the warning time by 15 minutes. 
In the other extreme these 12 events could indeed be 
aligned in a single chain of errors hiding the flood for 
3 hours. Also, the mean over the duration of observed 
years may have a high variance, with some years 
aggregating huge singe blind spots. 

To tackle this issue, we added the statistic of 
chains of underestimated levels (events in 𝑇௨௡ௗ௘௥) as 
an additional metric. A chain in this context is defined 
as a subsequence of model predictions out of the 
ordered set of all model predictions in which all 
elements are within  𝑇௨௡ௗ௘௥ . Intuitively speaking, 
how often the model underestimated a potential flood 
event in a row. If a chain is broken by a correct 
prediction, the parts are counted as different chains.  

As a metric, we record the length of all chains 
longer than a single element, and the length of the 
longest chain, indicating the longest “blind spot” that 
the model would have in the context of a warning 
system.  

5.2 Overall Metrics 

To observe the performance of the model in all 
regions, outside and during the extreme event, the 
following overall metrics were adapted and applied 
(Krause et al., 2005): 

r: Bravais Pearson Correlation Coefficient (BP), 
where one means that there is a perfect correlation 
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between the observed values O and the predicted P, 
and zero when no correlation could be found. The 
correlation coefficient could be used as an additional 
indicator, but this coefficient is unsuitable for making 
judgments about the size of the error. 

r ൌ
∑ ൫O୧ െ O൯൫P୧ െ P൯୬

୧ୀଵ

ට∑ ൫O୧ െ O൯
ଶ୬

୧ୀଵ
ට∑ ൫P୧ െ P൯

ଶ୬
୧ୀଵ

 
(15)

E : Nash–Sutcliffe Efficiency (NSE) has, 
according to Krause et al., low sensitivity to 
systematic errors in lower regions and high 
systematic errors in peaks of prediction.  

E ൌ 1 െ
∑ ሺO୧ െ P୧ሻଶ୬

୧ୀଵ

∑ ൫O୧ െ O൯
ଶ୬

୧ୀଵ

  (16)

 

E ൌ ൝
1

െ∞
E ൏  0

 
:
:
:
  

total fit
no fit

worse than average
   (17)

 

With the range E ∈ ሾ1: െ ∞ሻ it can be interpreted as 
follows: 

d: Index of Agreement (IoA) faces the same 
tendency to overrate errors in peaks and underrate 
errors in lower regions.   

d ൌ 1 െ
∑ ሺO୧ െ P୧ሻଶ୬

୧ୀଵ

∑ ൫หP୧ െ Oห ൅ หP୧ െ Oห൯
ଶ୬

୧ୀଵ

  (18)

With the range d ∈ ሾ1: 0 ሿ, the interpretation of the 

model is as follows: d ൌ ቄ1: total fit
0: no fit

 

E୫୭ୢ:  Modified Nash–Sutcliffe Efficiency and 
d୫୭ୢ modified Index of Agreement were alternated 
to be more sensitive in lower regions when the 
modification value J is smaller than two. In order to 
focus on peaks, the factor J should be alternated to 
values higher than 2. In this work, mainly the value 
J ൌ 3 was used.  

E୫୭ୢ  ൌ   1 െ  
∑ |O୧ െ  P୧|୎୬

୧ୀଵ  

  ∑ หO୧ െ  Oห
୎୬

୧ୀଵ    
  (19)

 

d୫୭ୢ ൌ 1 െ
∑ |O୧ െ P୧|୎୬

୧ୀଵ

∑ ൫หP୧ െ Oห ൅ หP୧ െ Oห൯
୎୬

୧ୀଵ

  (20)

 

Because the event-focused framework is mainly 
focused on rare, extreme events and the discussed 
overall metrics are adjusted to observe prediction 
errors in peaks, the systematic errors in lower regions 
could rise and give the observer overall wrong 
predictions. This could damage the reputation of the 
prediction model so that emergency services would 

only trust the values in higher regions where the 
model would give better results. To compare the 
overall prediction in lower regions, the modified 
Nash–Sutcliffe Efficiency and modified Index of 
Agreement with J ൏ 2  should be used or as 
suggested, relative derivation of both these metrics. 

The overall framework shows in all metrics a 
perfect fit. Meanwhile, all metrics show a poor result 
in absolute negative correlation (Figure 5). 

 

Figure 5: Negative linear correlation. 

 

Figure 6: Evaluation with the high and low differences in 
peak. 
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ቇ
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 (22)

In this framework, the relative metrics were 
chosen to observe lower regions since they have 
shown less sensitivity to small error changes. 

 

Figure 7: Total linear correlation. 
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Figure 8: Rising number of compared values. 

To observe the behaviour of the overall metrics, 
different situations were modelled. In the first 
example, the observed values equal the measured 
O ൌ P (Figure 7). 

Two situations are modelled to observe the effect 
of error during peak, where all measured and 
predicted values are equal but one (Figure 6). In the 
first situation, the last value’s absolute error is 5; in 
the second situation, the error of the peak is 20. The 
metrics clearly show that NSA and IoA are sensitive 
to the peak in the first situation and show the error 
change in the peak in the second situation. The 
modified NSA and IoA show similar results, and the 
relative NSA and IoA show that model performs well 
in lower regions. In all modified, relative and original 
metrics, IoA shows more stability, whereas NSA 
seems to be more sensitive.  

The overall metrics generally show minimal 
sensitivity to the growing number of predicted values 
compared to the error. Unlike average-based metrics, 
the error did not approach zero, even with very high 
data. To observe the stability of the metric due to the 
growing number of measurements, the situation with 
an absolute error of 20 in the peak was alternated by 
growing from 8 to 10^3 and 10^6 measurements 
(Figure 8). The original and modified metrics could 
sense the error in the peak even when the model is 
improving due to the growing number of correct 
predicted values in the lower region. For the lower 
region, the relative metrics show a good performance 
of the estimated values and are improving with the 
growing number of equal measurements. Also 
remarkable is the stability of all alternations of IoA in 
these situations. In all these situations the BP 
coefficient is failing to show any changes due to a 
perfect correlation. Meanwhile, the Mean Absolute 
Error (MAE) shows clearly how a relatively 

significant error in a small dataset could lose 
importance with the growing size of the data.  

6 REFERENCE MODELS 

The criteria for a successful prevention of more 
significant damages from the sudden flood event in 
Goslar requires a prediction of the flood at least two 
hours in advance. Furthermore, rescue task forces 
could improve their actions with the larger forecast 
horizon. The results show that the forecast of 4 hours 
in the observed catchment is possible. Therefore, 
three models were generated with 2, 3 and 4 hours of 
the forecast horizon.  For all 3-time horizons two 
architectures were tested; a simple LSTM-ANN with 
32 neurons in each of four layers and a residual 
LSTM-ANN with 8 residual blocks and 6 neurons in 
each layer.  All models take as input a series of 32 last 
observed values from each sensor, presented in 
Section 3, except from the data from Sennhuette and 
gives back a forecast of the value of data stream 
Sennhuette in 8, 12 or 16 future data points (2, 3 or 4 
hours).Additional features were extracted to improve 
the model performance. The 2- hours model includes 
the gradient of the input of Sennhuette of one timestep 
(in the past). In 3- and 4-hour models, a gradient of 
192 timesteps (in the past) for Sennhuette and the area 
under the curve for each of the two rainfalls were also 
calculated for the past 96 timesteps.  

In the tests, the residual LSTM neural network 
outperformed the regular LSTM and the MLP of 
different architecture in forecasting the values during 
the extreme, unseen event. This might be explained 
by the capability of the residual ANN architectures to 
bypass input to the over layers. Meanwhile, in the 
regular ANN, the information is passed from the 
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previous layer to the following. The residual neural 
network gives to one hidden layer the information 
that was generated by its direct predecessor and the 
information from one of the predecessors or even 
from the input layer. This reduces the risk of 
overfitting, where neuronal connections that seem to 
be unimportant are assigned lower weights and 
important new information is ignored. 

The validation split of the training data was done 
with a pre-defined function of Keras-TensorFlow API 
with 20%. The training was done for a maximum of 
30 epochs with the possibility of early stopping and a 
batch size of 265. The data was scaled using the 
method StandardScaler, from the library sklearn. 

7 RESULTS 

As mentioned before, the evaluation framework 
should be applied in two stages: the analysis of the 
defined rare–extreme event via the event-focused 
evaluation framework and the model's overall 
performance in lower and upper regions of the 
prediction via the overall metrics framework. 
Therefore, in the next two chapters, an evaluation of 
the residual LSTM-ANN is discussed and the 
comparison with the performance of the simple 
LSTM-ANN is done. 

Table 2: Event focused evaluation of the LSTM-residual 
ANN. 

 

7.1 Evaluation Residual LSTM 

In Table 2 it can be observed that the count of the 
timesteps where measurements are considered 
irrelevant have a difference of 4. This can be 
explained by the reshaping of the dataset. Since one 
hour is precisely four times 15 minutes, four data 

points are cut off for each prediction hour. Since the 
relevant points are not at the beginning nor at the end 
of the dataset, they are not affected. The amount of 
𝑇௥௘௟௘௩௔௡௧ ൌ ሼ𝑇௢௞, 𝑇௢௩௘௥, 𝑇௨௡ௗ௘௥ሽ ൌ 297  in all three 
models shows the robust detection of the extreme 
event, regardless of the used model. Nonetheless, the 
distribution of the absolute amount of 
𝑇௢௞, 𝑇௢௩௘௥, 𝑇௨௡ௗ௘௥  is different. While the number of 
overrated events is not showing a clear trend and are 
in the range of 14-18, the range of underrated events 
shows a clear and robust trend from 26 underrated 
events in the 2 hours prediction to almost double, 50 
in the 3 hours prediction and 60 for the 4 hours 
prediction. Proportionally, the number of right-
guessed events (𝑇௢௞) is sinking with each additional 
forecasted hour. This trend can be observed in 
absolute and in relative numbers. The most 
dangerous, underrated annual events proportionately 
grow from 4.4 to 10.2 times. This means that, 
annually, the model would wrongly predict about four 
events in two-hour prediction, around nine events for 
three and ten events in a four-hour prediction.  

Table 3: Residual-LSTM overall metric evaluation. 

 

The sum of errors made during the event shows a 
similar trend of growing with the prediction horizon. 
The overall metric evaluation in Table 2 does not 
show a clear trend between the two- and three-hours 
model. Meanwhile, the original overall metrics show 
a better performance of the two-hours model and the 
modified NSE and IoE show the superior prediction 
of the three-hours model in higher regions. The 
relative metrics also show better performance in the 
lower regions. All metrics show the 4 hours model 
performance as the worst.  

It can be said that the overall performance of all 
three models is very close to each other. The slight 
differences should be noticed and observed. The 
event-focused framework, which considers the 
extreme and dangerous event, says clearly that the 
model with a smaller horizon is outperforming the 
model with a wider horizon and seems more reliable 
in dangerous situations.  

2_h 3_h 4_h

T_not_relevant 205334 205330 205326

T_ok 253 233 222

T_over 18 14 15

T_under 26 50 60

T_ok_average[%] 0.123 0.1133 0.108

T_over_relative_average[%] 0.0088 0.0068 0.0073

T_under_average[%] 0.0126 0.0243 0.0292

anual_events_all 50.6 50.6 50.6

anual_events_ok 43.1 39.7 37.8

anual_events_over 3.1 2.4 2.6

anual_events_under 4.4 8.5 10.2

summ_error 1214.6 1549.2 1972.5

average_error 27.6 24.2 26.3

max_error 84.3 77.5 84.6

median_error 21.9 19.2 21

2h  3h   4h

BravaisPearson 0.986  0.985  0.980

(E)NSE 0.969  0.969  0.953

(d)IoA 0.992  0.992  0.987

(E)NSE_mod_J=3 0.971  0.976  0.962

(d)IoA_mod_J=3 0.997  0.997  0.995

(E)NSE_rel 0.955  0.981  0.908

(d)IoA_rel 0.988  0.995  0.975
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Table 4: Simple architecture LSTM-neuronal network 
event-focused framework. 

 

7.2 Evaluation of Simple LSTM 

As mentioned before, the initial goal of the evaluation 
framework is not only to investigate the performance 
of one kind of architecture but to evaluate two or more 
architectures in comparison to each other. Therefore, 
a simple LSTM-ANN was prepared.  

In Table 4 one can observe the apparent change of 
the distribution of the time points where 
measurements were overrated and underrated. 
Meanwhile, the residual LSTM-ANN also has a high 
number of overrated measurements during the event.  

Table 5: Simple-LSTM overall metric evaluation. 

 

The simple architecture of LSTM shows a trend 
towards underrating more overrating a measurement. 
With 50, 88 or 135 it has almost doubled the amount 
of the underrated measurements. Furthermore, it 
reduces the number of right-guessed forecasts. This 
trend can be observed also in relative evaluation, 
meanwhile the average error or median fails to 
represent the difference. However, the overall 
framework analysis in Table 5 shows that this 
architecture has generally worse performance in 
upper regions (NSE, IoA and modified NSE and IoA) 

and awful performance in lower regions, according to 
relative NSE and IoE.  The interpretation of the 
number is that the model makes a systematic error in 
lower regions. Though the performance in higher 
regions is rising, it has more errors than the residual 
LSTM-ANN. This observation can be confirmed with 
the event-focused evaluation in Table 4. The 
performance difference during the extreme event can 
be qualitatively observed in Figure 11 and Figure 12. 
The observation of the overall performance of both 
models can be done in Figure 10 and Figure 9. 
Meanwhile, the residual ANN-model prediction 
visually covers the measured level, the simple LSTM 
ANN-model shows systematical overprediction in the 
lower region and high underrating during extreme 
events.  

The Table 6 gives a comprehensive overview of 
the distribution of error-chains among the models and 
for the different prediction horizons. The last raw of 
the table shows the average length of all chains. The 
residual LSTM-ANN produces consistently slightly 
shorter longest chains than the simple LSTM-ANN (9 
versus 10) and also sorter chains on average (2.3:3.9; 
4.1:8.1; 5.4:11).  

Table 6: Distribution of chain length among models and 
prediction horizons. 

 

8 CONCLUSIONS 

In this article, we presented a benchmark for machine 
learning-based forecasting models. One crucial part 
of the benchmark is the real-world data from the 
settlement Goslar in Germany that were collected 
from Harzwasserwerke GmbH for 14 years. 

 2h  3h   4h  

BravaisPearson  0.958  0.955  0.953

(E)NSE  0.830  0.741  0.827

(d)IoA  0.955  0.924  0.947

(E)NSE_mod_J=3  0.945  0.911  0.902

(d)IoA_mod_J=3  0.992  0.985  0.981

(E)NSE_rel  0.327  ‐0.237  0.352

(d)IoA_rel  0.822  0.636  0.800

length

sim
ple

residual

sim
ple

residual

sim
ple

residual

2 5 3 9 5 10 8

3 3 0 5 0 3 2

4 0 0 3 1 5 1

5 0 0 1 0 0 0

6 1 1 1 1 2 1

7 0 0 0 0 1 0

8 0 0 1 1 1 1

9 0 1 0 1 1 1

10 1 0 1 0 1 0

Average length 3,9 2,3 8,2 4,1 11 5,4

2h 3h 4h
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Figure 9: Overall prediction line of residual LSTM-ANN. 

 
Figure 10: Overall prediction line of simple LSTM-ANN. 

We discussed the problem that ANN are facing 
during the prediction of unseen, extreme events like 
floods caused by sudden rain as it happened in the 
year 2017 in Goslar. The presented results of the 
residual LSTM-ANN could outperform the regular 
LSTM-ANN during the regular operation and the 
extreme event. The discussed and presented 
framework that consists of an overall evaluation 
framework and event-focused evaluation framework 
could prove the improvement of the used model. The 
robust evaluation allows further evaluation of risks 
for the city of Goslar's safety concepts. The presented 
models are also a part of the actual real-time 
observation system in the settlement. 

Nevertheless, the benchmark gives a consolidated 
and substantial challenge for machine-learning-based 
models that should be applied to rare, extreme events. 
The framework's flexibility also allows the evaluation 
on settlements with other geological conditions. 

The consolidation of the benchmark allows for 
improvement in the methods of forecasting and 

evaluating the constantly evolving research of 
machine learning algorithms in the area of 
hydrogeology.    
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