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Abstract: In this paper, we revisit the Aircraft Sequencing Problem (ASP), which consists of scheduling aircraft 
landings respecting a pre-determined time window and separation criteria. ASP has several versions, with the 
static single runway being the one with the longer solving times for the benchmark instances, for both mixed 
integer programming (MIP) and constraint programming (CP) implementations. We considered this version 
of the problem and addressed the possibility of using parallel processing to solve it. For this purpose, we 
developed a heuristic for splitting the instances, which always guarantees a feasible solution that is the optimal 
solution if a set of conditions is satisfied. The splitting allows for parallel processing, and opens the possibility 
of using the best method to solve each subset of the partition obtained. To explore this feature, we also 
analysed the performances of MIP and CP implementations and constructed a measure to point to the fastest 
one. For the benchmark instances, the results show a time reduction over 50%, in the cases the optimal solution 
is known, and an improvement of over 12% on the value of the best-known feasible solution, in the cases the 
optimal solution is not known and running time has to be limited. 

1 INTRODUCTION 

The Airports Council International (ACI) World 
Airport Traffic Forecasts 2022–2041 (ACI, 2023) 
expects airports worldwide will see 153.8 million 
aircraft movements by 2041.  

As pointed out by Cohen and Coughlin (2003), a 
common response to airport congestion by many 
community leaders is to expand capacity by 
constructing new runways and terminals. However, 
airports expansions are costly, complex, and 
controversial. At the same time, environmental and 
geographic restrictions are also barriers to the 
increase of airports logistics capacities. Hence, one 
must use the existing capacities as efficiently as 
possible in order to avoid flight delays and increase 
the throughput. 

So, prior the incursion on expansion planning and 
construction, the problem of efficiently scheduling 
the aircraft landings (and departures) should be 
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improved. Such problem is called Aircraft 
Sequencing Problem (ASP) or Aircraft Landing 
Problem, which is an important issue in air traffic 
control. 

In ASP, each plane to land has an optimal speed 
(cruise speed) which is the most economic for that 
plane. The target time of a plane is the time of landing 
if it is flies at cruise speed. However, it may incur in 
costs if air traffic control requires it to either slow 
down, hold or speed up. This cost will grow as the 
difference between the assigned landing time and the 
target landing time grows, as illustrated in Beasley et 
al. (2000). 

The landing time must lie within a specified time 
window, bounded by an earliest time and a latest time, 
which depends on the plane. The earliest time 
represents the earliest a plane can land if it flies at its 
maximum airspeed. The latest time represents the 
latest it can land if it flies at its most fuel-efficient 
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airspeed while holding (circling) for the maximum 
allowed time. 

Another aspect, that should be considered, regards 
the separation time between planes. Separation times 
depend on aerodynamic considerations. For example, 
a Boeing 777X-9, with more than 70m of length and 
wingspan, near 20m high and weighing 190ton 
generates a lot more air turbulence and disruption 
than a much smaller plane. So, a plane flying too close 
behind could lose aerodynamic stability. For safety 
reasons, landing a Boeing imposes larger delays so 
that a second plane can land safely after it. In contrast, 
a lighter and smaller plane generates little air 
turbulence, thus a relatively short period goes by so 
another plane can be landed. 

As each aircraft has a preferred landing time, the 
objective is to minimize the total delay costs for all 
aircraft landings, while respecting the separation 
requirements. The cost function approximates the 
actual costs, namely fuel, maintenance, exhaust 
emissions, and passengers missing their connecting 
flights. 

Over the last two decades several authors have 
looked into ASP and its variations. Beasley et al. 
(2000) studied the static case, an off-line case where 
there is complete knowledge of the set of planes that 
are going to land, setting the grounds for linear 
programming and establishing what would become 
the benchmark instances for this problem. Later on, 
Fahle et al. (2003) combined both mixed-integer 
zero-one programming (MIP) and constraint 
programming (CP) to address the same problem. CP 
revealed to have very powerful modelling 
capabilities, but was by far the slowest method, 
whereas MIP was the fastest exact optimization 
method for instances with big time windows, but 
showed difficulties in modelling non-linearities. 
Different heuristics have been applied since to both 
approaches. Veresnikov et al. (2019) and Zipeng and 
Yanyang (2018) present excellent surveys, which 
include a large number of heuristics, metaheuristics, 
hybrid, and other algorithms to tackle the ASP. More 
recently, Ahmadian and Salehipour (2020) proposed 
a relax-and-solve algorithm, where the “relax” 
procedure destructs a sequence of aircraft landings, 
and the “solve” procedure re-constructs a complete 
sequence and schedules the aircraft landings. The 
algorithm was able to decrease the amount of time 
needed to solve the benchmark instances. 

In this work, we address ASP with two different 
programming formulations, MIP and CP. We aimed 
to compare the performances between these two 
approaches and provide a set of indicators, or a single 
metric, that could help decide which of the two 

formulations is better for a given instance. We should 
also highlight here that we are dealing only with the 
static case for a single runaway. 

The rest of this paper is organized as follows: in 
Section 2, we present the MIP and CP formulations 
and the constraint formulation for the single runway 
case; in Section 3, we explore a heuristic, based in a 
naïve approach to fix planes, to boost MIP and CP 
performance; in Section 4, we present the results, 
compare and discuss the performances of both MIP 
and CP formulations, with and without the aid of the 
heuristic, and suggest a simple metric to help deciding 
between the use of MIP or CP for ASP. Finally, in 
Section 5, we draw some conclusions and purpose 
future work. 

2 PROBLEM FORMULATION 

As already mentioned, to solve the ASP both MIP and 
CP were used. In this section, we present the 
respective formulations in detail, starting with the 
introduction of the relevant notation. 

Let 𝑛 be the number of planes to land. For each 
plane 𝑖, with 𝑖 ∈ ሼ1, … , 𝑛ሽ, the following information 
is known: 
 𝐸௜ ൌ earliest landing time for plane 𝑖, 
 𝐿௜ ൌ latest landing time for plane 𝑖, 
 𝑇௜ ൌ target/preferred landing time for plane 𝑖, 
 𝑆௜௝ ൌ minimum separation time required between 

planes 𝑖 and 𝑗, if plane 𝑖 lands before plane 𝑗, 
for 𝑗 ∈ ሼ1, … , 𝑛ሽ such that 𝑖 ് 𝑗, 

 𝑔௜ ൌ earliness cost, per unit of time, for landing 
plane 𝑖 before its target time, 

 ℎ௜ ൌ tardiness cost, per unit of time, for landing 
plane 𝑖 after its target time. 

The values for times, namely 𝐸௜ , 𝐿௜ , 𝑇௜  and 𝑆௜௝ , 
are non-negative integers. As for costs 𝑔௜ and ℎ௜ may 
not be integers, but are non-negative and have, at 
most, two decimal places. As mentioned in Beasley et 
al. (2000), this has no significant loss of generality in 
the ASL problem and, according to Fahle et al. 
(2003), it is not a restriction in practice. 

2.1 The MIP Model 

Beasley et al. (2000) and Fahle et al. (2003) both 
address the single runway static ASP using MIP, with 
the same variables and basically the same 
formulation.  

The variables considered are, for 𝑖 ∈ ሼ1, … , 𝑛ሽ: 
 𝑥௜ ൌ landing time for plane 𝑖, 
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 𝛼௜ ൌ landing time deviation from the target time of 
plane 𝑖, if it lands before target, 

 𝛽௜ ൌ landing time deviation from the target time of 
plane 𝑖, if it lands after target, 

 𝛿௜௝ ൌ 1 if plane 𝑖  lands before plane 𝑗  
(𝑗 ∈ ሼ1, … , 𝑛ሽ; 𝑖 ് 𝑗), and 0 otherwise. 

However, the Beasley et al. (2000) formulation is 
more detailed, separating planes in three sets, which 
aids the solver to be used to obtain the optimal 
solution faster with more complex instances. 
Therefore, we adopt their formulation as the MIP 
standard formulation: 

Minimize   ෍ሺ𝑔௜𝛼௜ ൅ ℎ௜𝛽௜ሻ
௡

௜ୀଵ

 (1)

subject to, for all 𝑖, 𝑗 ∈ ሼ1, … , 𝑛ሽ such that 𝑖 ് 𝑗: 

𝐸௜ ൑ 𝑥௜ ൑ 𝐿௜ (2)

𝛿௜௝ ൅ 𝛿௝௜ ൌ 1 , for 𝑗 ൐ 𝑖 (3)

𝛿௜௝ ൌ 1 , ∀ሺ𝑖, 𝑗ሻ ∈ 𝑊 ∪ 𝑉 (4)

𝑥௝ ൒ 𝑥௜ ൅ 𝑆௜௝ , ∀ሺ𝑖, 𝑗ሻ ∈ 𝑉 (5)

𝑥௝ ൒ 𝑥௜ ൅ 𝑆௜௝𝛿௜௝ െ ൫𝐿௜ െ 𝐸௝൯𝛿௝௜ ,∀ሺ𝑖, 𝑗ሻ ∈ 𝑈 (6)

𝛼௜ ൒ 𝑇௜ െ 𝑥௜ (7)

0 ൑ 𝛼௜ ൑ 𝑇௜ െ 𝐸௜ (8)

𝛽௜ ൒ 𝑥௜ െ 𝑇௜ (9)

0 ൑ 𝛽௜ ൑ 𝐿௜ െ 𝑇௜ (10)

𝑥௜ ൌ 𝑇௜ െ 𝛼௜ ൅ 𝛽௜ (11)

where 

𝑈 ൌ ൛ሺ𝑖, 𝑗ሻ ∈ ሼ1, … , 𝑛ሽଶ | ሺ𝐸௝ ൑ 𝐸௜ ൑ 𝐿௝ or
   𝐸௝ ൑ 𝐿௜ ൑ 𝐿௝ or 𝐸௜ ൑ 𝐸௝ ൑ 𝐿௜ or

 𝐸௜ ൑ 𝐿௝ ൑ 𝐿௜ሻ and 𝑖 ് 𝑗ൟ           
  

𝑉 ൌ  ൛ሺ𝑖, 𝑗ሻ ∈ ሼ1, … , 𝑛ሽଶ | 𝐿௜ ൏ 𝐸௝ and 

𝐿௜ ൅ 𝑆௜௝ ൐ 𝐸௝ and 𝑖 ് 𝑗ൟ   
  

𝑊 ൌ ൛ሺ𝑖, 𝑗ሻ ∈ ሼ1, … , 𝑛ሽଶ | 𝐿௜ ൏ 𝐸௝ 

            and 𝐿௜ ൅ 𝑆௜௝ ൑ 𝐸௝ and 𝑖 ് 𝑗ൟ.
   

2.2 The CP Model 

Generally speaking, the CP formulation of a problem 
can be closely related to the solver which is going to 
be used, since the set of global constraints varies from 
solver to solver. With that said, for the ASP, this does 
not seem to be a very relevant issue, because the 

separation time constraint that has to be enforced in 
relation to all planes landing before a certain plane is 
not easily implemented with global constraints. 
Nevertheless, global constraints can be used as 
redundant constraints to further increase efficiency. 

The CP model adopted here for the single runway 
static ASP, which we named CP standard 
formulation, is based on the one proposed in Fahle et 
al. (2003). The variables considered are, for  
𝑖 ∈ ሼ1, … , 𝑛ሽ: 
 𝑥௜ ൌ landing time for plane 𝑖 → integer variable 

with domain 𝐸௜. . 𝐿௜, 
 𝑐𝑜𝑠𝑡௜ ൌ costs induced by plane  𝑖 → integer 

variable with domain 0. .999999999, 
 𝑏௜ ൌ true if plane 𝑖 lands before target, and false 

otherwise, 
 𝑝𝑝௜௝ ൌ true if plane 𝑖  lands before plane 𝑗  

( 𝑗 ∈ ሼ1, … , 𝑛ሽ; 𝑖 ് 𝑗 ) with plane 𝑗 
respecting the separation time to plane 𝑖, 
and false otherwise, 

and the constraint set is: 

minimize
1

100
෍ 𝑐𝑜𝑠𝑡௜

௡

௜ୀଵ

 (12)

𝑏௜ ൌ ൜
true, if 𝑥௜ ൏ 𝑇௜
false, if 𝑥௜ ൒ 𝑇௜

 , ∀𝑖 ∈ ሼ1, … , 𝑛ሽ (13)

𝑐𝑜𝑠𝑡௜ ൌ ൜
100𝑔௜ሺ𝑇௜ െ 𝑥௜ሻ,  if 𝑏௜ ൌ true
100ℎ௜ሺ𝑥௜ െ 𝑇௜ሻ,  if 𝑏௜ ൌ false

    

,    ∀𝑖 ∈ ሼ1, … , 𝑛ሽ 
(14)

𝑝𝑝௜௝ ൌ ൜
true, if 𝑥௝ ൒ 𝑥௜ ൅ 𝑆௜௝

false, if 𝑥௝ ൏ 𝑥௜ ൅ 𝑆௜௝
 (15)

𝑝𝑝௜௝ ് 𝑝𝑝௝௜ , ∀𝑖, 𝑗 ∈ ሼ1, … , 𝑛ሽ, 𝑖 ൏ 𝑗 (16)

allDiffሺ𝑥ଵ, … , 𝑥௡ሻ (17)

In the above formulation, some redundancy has 
already been introduced. However, to further explore 
the potential improvement in efficiency given by 
redundant constraints and global constraints, we add 
the following integer and interval variables, for  
𝑖 ∈ ሼ1, … , 𝑛ሽ: 
 𝑠𝑡𝑎𝑟𝑡௜ ൌ lower bound of the interval for plane 𝑖 → 

integer variable with domain ሺ𝐸௜ െ 𝑑ሻ. . 𝐿௜, 
 𝑒𝑛𝑑௜ ൌ upper bound of the interval for plane 𝑖 → 

integer variable with domain 𝐸௜. . ሺ𝐿௜ ൅ 𝑑ሻ, 
 𝑝𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠௜ሺ𝑠𝑡𝑎𝑟𝑡௜, 2𝑑, 𝑒𝑛𝑑௜ሻ ൌ minimal separa-

tion window for plane 𝑖 → interval variable, 

where 𝑑 ൌ min௜,௝∈ሼଵ,…,௡ሽ൛𝑆௜௝ൟ െ 1 , and the global 
constraint: 

NoOverlapሺ𝑝𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠ሻ (18)
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3 THE PROPOSED APPROACH 

For a set of 𝑛 planes, the difficulty in optimizing ASP 
with MIP or with CP is, in some part, related to the 
number of planes, since, the bigger the 𝑛, the more 
variables and constraints are in the model. Thus, in 
this section, we explore the possibility of dividing the 
larger problem of landing 𝑛  planes into smaller 
problems, in other words, into several ASP each with 
a lower number of planes. 

To do this, we start by introducing the notation 
and convention used. We then present the two naïve 
procedures which can lead to a feasible solution of the 
ASP, without concern about optimization. Following 
that, we briefly discuss a particular objective function 
of the ASP. Finally, we present a heuristic approach 
for the ASP where a feasible solution is found which 
is very close or even equal to the optimal solution. 

Staring with the notation, given a set of 𝑛 planes 
to land, let ሺ𝑇ଵ, 𝑇ଶ, … , 𝑇௡ሻ  be the 𝑛 -tuple of target 
times, where 𝑇௜  is the landing time of plane 𝑖 , and 
ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ be the 𝑛-tuple of landing times, where 
𝑥௜ is the landing time of plane 𝑖. For simplicity and 
without losing generality, in the following, we will 
consider the coordinates of these 𝑛 -tuples in 
ascending order of the target time (i.e., 𝑇ଵ ൑ 𝑇ଶ ൑
⋯ ൑ 𝑇௡). Therefore, the coordinates in ሺ𝑇ଵ, 𝑇ଶ, … , 𝑇௡ሻ 
are not decreasing, but the same does not necessarily 
happen with the coordinates in ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ. 

3.1 The Naïve Forward Procedure and 
the Naïve Backward Procedure 

The Naïve Forward Procedure (NFP) for the ASP is 
based on the sequencing landing procedure known as 
first-come-first-served (Bennell et al., 2011). It is a 
very simple way to obtain a feasible solution for the 
ASP, if the time window allows it. In NFP, the planes 
are landed respecting the line-up determined by the 
ascending ordination the target times (and, in case of 
a tie, the first plane to land is the one with the highest 
cost associated), and sequentially landing a plane on 
the target time, if all separation times between that 
plane and previous planes are respected, or as soon as 
possible, otherwise. Let 𝐿௜

௔  be the landing time of 
plane 𝑖  obtained using NFP. Then, mathematically, 
the landing times in NFP are given by: 

𝐿ଵ
௔ ൌ 𝑇ଵ (19)

𝐿௜
௔ ൌ max௝ழ௜൛𝑇௜, 𝐿௝

௔ ൅ 𝑆௝௜ൟ, for 𝑖 ൌ 2, … , 𝑛. (20)

The Naïve Backward Procedure (NBP) is 
identical to NFP, but instead of landing the planes 
starting with the one which has the smallest target 

time, it begins by landing the one with the largest 
target time, and proceeds backwards. Let 𝐿௜

ௗ  be the 
landing time of plane 𝑖  obtained using NBP. More 
specifically, the landing times in NBP are given by: 

𝐿௡
ௗ ൌ 𝑇௡ (21)

𝐿௜
ௗ ൌ min௝வ௜൛𝑇௜, 𝐿௝

ௗ െ 𝑆௜௝ൟ, for 𝑖 ൌ 1, … , 𝑛 െ 1. (22)

This procedure also provides a feasible solution 
for the ASP, if the time window allows it. 

3.2 Minimizing Deviations of the 
Landing Times from the Target 
Times 

In the ASP, if we consider that the costs are all equal 
(i.e., 𝑔ଵ ൌ ℎଵ ൌ ⋯ ൌ 𝑔௡ ൌ ℎ௡ ), minimizing the 
objective function is equivalent to minimizing the 
absolute deviations of the landing times from the 
target times; more precisely, it is equivalent to 

min ෍|𝑇௜ െ 𝑥௜| 

௡

௜ୀଵ

. (23)

If a feasible solution can be obtained from the NFP 
and/or the NBP, then 

min ൝෍ሺ𝐿௜
௔ െ 𝑇௜ሻ

௡

௜ୀଵ

, ෍൫𝑇௜ െ 𝐿௜
ௗ൯

௡

௜ୀଵ

ൡ  (24)

is an upper bound of problem (23). 

3.3 Decomposition Heuristic Procedure 

For the particular case presented in the previous 
subsection, it is possible to devise a way, using NFP 
and NBP, to obtain the optimal solution in a shorter 
time, if all separation times are less or equal to twice 
the minimum separation times. To do this we apply 
NFP and NBP, and we retain all planes such that 

𝐿௞
௔ ൌ 𝐿௞

ௗ ൌ 𝑇௞ (25)

for 𝑘 ∈ ሼ1,2, … , 𝑛ሽ. 
It can be shown that, if we have a plane that 

satisfies equation (25), then it is true that we can find 
an optimal solution where: 

i) this plane also lands on target; 
ii) all the planes that have a smaller target time, 

land before it; 
iii) all the planes that have a larger target time, 

land after it. 
Therefore, the larger problem of landing the 𝑛 

planes can be broken down into smaller problems, 
separated by the planes that verify equation (25). 
Depending on the separation times, but, for 
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simplicity, let us focus in the case where the 
separation times are close to each other, then these 
smaller problems are independent from each other, 
which allows to use parallel processing to run the 
algorithms. 

It is relevant to notice that this procedure can also 
be applied to the more general ASP (in which costs 
are not all equal), and, even though, in the general 
case, optimality cannot be guaranteed, the solution 
obtained for the ASP will be very close or even equal 
to the optimal solution, especially if the values of all 
landing costs are very close together and the 
maximum separation time is less or equal to twice the 
minimum separation time. 

_______________________________ 

Decomposition Heuristic (DH) Procedure 

1. Apply NFP to obtain 𝐿ଵ
௔, 𝐿ଶ

௔, … , 𝐿௡
௔  (i.e., the 

landing times when the plane with the lowest 
target time lands on target and, if needed, the 
others planes are pushed to forward times, 
landing on or after target). 

2. Apply NBP to obtain 𝐿ଵ
ௗ, 𝐿ଶ

ௗ, … , 𝐿௡
ௗ  (i.e., the 

landing times when the plane with the highest 
target time lands on target and, if needed, the 
others planes are pulled to previous times, 
landing on or before target). 

3. Determine the set of planes 𝑃  such that  
𝐿௜

௔ ൌ 𝐿௜
ௗ ൌ 𝑇௜, for 𝑖 ∈ ሼ1, … , 𝑛ሽ. 

4. If #𝑃 ൌ 0, then apply the MIP standard or the 
CP standard procedure, and finish. 

 Otherwise, proceed to the next step. 
5. Order the planes by ascending target times and 

split this ordered set of 𝑛  planes into 𝑘ሺ൐ 1ሻ 
subsets using the planes in 𝑃. 

 The planes used to split are placed in all subsets 
they determine, which can be one or two 
subsets. If consecutive planes belong to 𝑃, then 
they work as a whole. 

6. In each subset: 
 – for all planes in 𝑃 , update the earliest 

landing time and the latest landing time to 
the target time; 

 – for all planes not in 𝑃: 
 > if the subset starts with planes in 𝑃, say 

𝑘 is the one with the highest target time 
within 𝑃, then update the earliest landing 
time of all planes not in 𝑃  to the 
maximum between its provided earliest 
landing time and the target time of plane 
𝑘  plus the respective separation time 
between these two planes; 

 > if the subset ends with planes in 𝑃, say 𝑘 
is the one with the lowest target time 

within 𝑃, then update the latest landing 
time of all planes not in 𝑃  to the 
minimum between its provided latest 
landing time and the target time of plane 
𝑘 minus the minimum of all separation 
times.  

7. To each updated subset and using parallel 
processing, apply the MIP standard or the CP 
standard procedure. 

8. In an orderly manner, joint the 𝑘 solutions found 
in the previous step. 

9. Verify if all separation times are respected. 
10. If the separation times are respected, then finish. 
 Otherwise, list the pair of planes that fail, and 

finish.  
_______________________________ 

In the DH procedure described, the step that most 
contributes in running time reduction is the trimming 
in the landing time windows executed in step 6, which 
considerably decreases the window size for some 
planes, and for the planes in 𝑃 reduces the window to 
a single point. 

4 RESULTS AND DISCUSSION 

The algorithms presented in this paper were 
programmed in Python and run on an Intel Core I7 – 
8550U CPU @ 1.80 GHz (16 Gb RAM) for all 
instances (1 to 13). To solve the mixed-integer and 
constraint formulations of the problem to optimality 
we used the PULP_CBC_CMD solver from the 
PULP package (Roy et al., 2020) and the CP-SAT 
solver from OR-Tools (Google LLC, 2020). 

The 13 instances used here are the ones used by 
Beasley et al. (2000), which are publicly available at 
J.E. Beasley’s OR-Library (Beasely, n.d.). For the 
discussion it is relevant to notice that we can divide 
the instances in two groups that that have different 
degrees of difficulty. Group 1 is composed of 
instances 1 to 7, each characterized by a reasonable 
low number of planes, with overlapped time windows 
and almost all separation times symmetrical (i.e., 
𝑆௜௝ ൌ 𝑆௝௜). Group 2 is composed of instances 8 to 13, 
that have a higher number of planes, ranging from 50 
to 500, and almost no symmetrical separation times. 

4.1 Assessing the Standard MIP and 
CP Models 

Table 1 summarizes all the results obtained from all 
the models implemented in this study: MIP standard,  
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Table 1: Computational results. 
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st
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N

o.
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s 
 

MIP Standard 
CP 

N
o.

 S
et

s 
fr

om
 D

H
 

MIP-DH CP-DH 
Standard With Redundancy 

Varia
-bles 

Cons-
traints 

BFS 
Time 

(s) 
Conflicts Branches BFS

Time
(s) 

Conflicts Branches BFS
Time

(s) 
BKS 

Time 
(s) 

BFS
Time

(s) 

1 10 120 255 700* 0.56 189 781 700* 0.02 189 780 700* 0.05 1 700* 0.86 700* 0.04 

2 15 255 450 1480* 2.47 5322 9434 1480* 0.37 5227 9272 1480* 0.29 2 1480* 3.29 1480* 0.36 

3 20 440 750 820* 0.92 633 2742 820* 0.09 669 2839 820* 0.09 2 820* 0.49 820* 0.05 

4 20 440 750 2520* 34.34 422779 519630 2520* 25.81 475257 585103 2520* 33.67 1 2520* 14.33 2520* 18.2 

5 20 440 750 3100* 68.87 2476040 3090352 3100* 238.82 2549564 3176484 3100* 152.26 1 3100* 22.97 3100* 107.7

6 30 960 905 24442* 0.25 0 0 24442* 0.06 0 0 24442* 0.03 - - - - - 

7 44 2024 1587 1550* 4.72 41419 45691 1550* 6.03 80159 83531 1550* 6.24 - - - - - 

8 50 2600 4114 1950* 36.68 908848 1329678 1950 >3600 1574948 2408028 1950 >3600 4 1950* 1.11 1950* 0.22 

9 100 10200 12219 6186 >3600 11113626 18639588 7521 >3600 4224066 7788409 8592 >3600 5 5633 >3600 5606 >3600

10 150 22800 25869 16779 >3600 7435701 13986412 16779 >3600 3210455 6255785 25137 >3600 5 13621 >3600 19349 >3600

11 200 40400 44584 14016 >3600 5292859 11728993 15574 >3600 3926510 8655811 16403 >3600 6 12592 >3600 21137 >3600

12 250 63000 68477 20144 >3600 3989610 9872690 31280 >3600 4232316 10430915 28397 >3600 11 16216 >3600 16296 >3600

13 500 251000 262552 47924 >3600 1719857 10074489 99575 >3600 2018402 11702868 90061 >3600 14 43853 >3600 53742 >3600

BFS – best-found solution; * optimal solution. 

CP standard and with redundancy, MIP-DH and CP-
DH. 

For each model, the best-found solution and 
respective times are presented. Also, for MIP and CP 
we chose to present the number of variables and 
constraints created for each instance as an 
approximation of the complexity level. We start by 
briefly comment the global results and then present a 
more detailed discussion in the following four 
subsubsections. 

From Table 1, it is clear that the DH method 
applied with MIP or CP led to better solutions as well 
as faster processing time. In addition, good (if not 
optimal) feasible solutions are found early in the tree 
search for a number of the instance, namely 9 to 13, 
for which an optimal solution has not been found by 
MIP or CP standard. 

4.1.1 MIP and CP Standard 

Upon comparing both models, MIP and CP standard, 
it is possible to observe that CP has the best 
performance, time wise, for the first four instances. It 
is noteworthy the number of variables created by both 
models in order to solve the problem.  

When scaling the problem beyond the 44 planes, 
MIP formulation outperforms CP. We should call the 
attention towards instances 4 and 5. Although they 
have a considerable low number of planes, another 
particularly must be present that makes it harder for 
CP to solve the problem (this is further discussed in 
Section 4.2). 

When entering in Group 2, no optimal solution is 
found by both formulation below a time offset of 

3600 seconds. Although the solutions found by MIP 
and CP have close values, the best ones were always 
accomplished by MIP. 

It is relevant to notice that the values here 
obtained and presented (i.e., the solutions) are equal 
to those reported by Beasley et al. (2000) and Fahle 
et al. (2003). 

4.1.2 CP and CP with Redundancy 

Redundancy is an important feature to be considered 
when dealing with CP. When introduced, it has the 
potential to reduce the difficulty of the problem at 
hand by simplifying it. This is usually achieved 
through domain reduction and, subsequently, search 
space reduction. 

With the use of a general constraint, in this case 
NoOverlap from OR-TOOLS, we tried to improve the 
CP performance through redundancy. Nonetheless, it 
only seemed to have some effect on solving instance 
5, where it was able to cut down by 36% the time 
needed. Moving to Group 2, this strategy did not seem 
to have much effect. In fact, the solutions obtained for 
the objective function using this strategy were worse, 
except for instances 12 and 13. For instances 9, 10 
and 11, in the time given (i.e., 3600s), the standard 
approach was able to produce better results than CP 
with redundant constraints. 

In light of these results, and not being a priority 
objective of this work, we can only hypothesize on 
the cause. Initially, the computational effort spent 
reducing the problem is worthwhile, but becomes less 
and less efficient. It will, eventually, stop 
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compensating in terms of search space reduction and 
not producing the best results. 

Nevertheless, more attention should be given to 
the redundancy topic. Firstly, a better and more 
detailed design of the use of global restriction should 
be done since these have the potential to help solving 
the problem in shorter period of times. Also, 
symmetry should be studied and understood how it 
can be removed from the search step. 

4.1.3 Evaluating the DH Procedure 

The main objective of creating and introducing the 
DH procedure was to decrease the amount of time 
needed to solve the ASP (or reach a better value for 
the objective function in the time given, 3600s) using 
both MIP and CP formulation. As DH divides the 
main problem in smaller groups, with strictly defined 
time intervals and, consequently, less planes, one 
should expect a decrease in the global difficulty. 

In fact, analysing Table 1, we can verify that the 
objective was accomplished. 

From instance 1 to 3 there is no concrete 
discussion to be done, as the problems were already 
simple enough to be solved with the standard 
formulations. Thus, DH did not bring any advantage 
in the simple cases. Moving to instances 6 and 7, 
given the fact that the combination of NFP and NBP 
was not able to fix any plane, the DH could not be 
applied. Instances 4, 5 and 8 saw their resolution time 
being decreased considerably just to achieve the best-
found solution. Upon entering the set of instances 
with more than 100 planes, the complexity increases 
considerably. Since an output was to be given after 
3600s, all the values obtained when DH was applied 
were better than those obtained with MIP and CP 
standard formulations. This means that if faced with 
a situation where a solution is needed, with not 
enough time to find the optimal, DH brings a 
considerable advantage to the air traffic control. 

Globally, for this set of instances, for the MIP 
formulation, DH reduced in 70% the time needed to 
find an optimal solution (instances 1 to 8) and 13% 
the value of the objective function. Regarding the CP 
formulation, DH reduced in 52% the time to find the 
optimal solution and 32% the value of the objective 
function. 

4.2 The MIPvsCP Coefficient 

The MIPvsCP coefficient was created to assess 
whether an instance will be faster to solve and/or get 
a lower value for the objective function, in a specific 

model (MIP or CP), without the need of running the 
instance on any of the two models. 

The main goal here is, based on the properties of 
an instance, decide to use either MIP or CP using 
MIPvsCP coefficient, defined as followed: 

MIPvsCP ൌ
1
𝑁

ቌ
∑ 𝜎்௜

𝜇்௜

௡
௜ୀଵ ∗ 𝑃௜

ଶ

∑ 𝑃௜
ଶ௡

௜ୀଵ
ቍ (26)

To design this coefficient, we took in 
consideration three main aspects: 

1. The number of groups within an instance (𝑁). 
− To calculate the number of groups, we need 

to sort, ascendingly, the planes in an instance 
by their target times 𝑇௝. 

− Then, we calculate the difference between 
the target times ሺ𝑇௝ାଵ െ 𝑇௝ሻ  of two 
consecutive planes. 

− If more than one plane has a difference lower 
than the minimum separation time within the 
instance and those planes are consecutive, 
then, they stay in the same group. 

2. The number of planes within each group 𝑖 (𝑃௜), 
which is raised to the power of two in order to 
reinforce that the difficulty is exponentially 
proportional to the number of planes within a 
group, i.e., a group with six planes is more 
difficult to solve than two times the difficulty of 
a group with three planes. 

3. The variation coefficient within each group  𝑖 

ቀ
ఙ೅೔

ఓ೅೔
ቁ, calculated by the quotient between the 

standard deviation ( 𝜎்௜ሻ  and the average 
(𝜇்௜ሻ of the target time within the group 𝑖. 

Furthermore, in order to get one value per instance 
and be able to compare the metric between different 
instances, we divide the sum of the variation 
coefficients of each group by the sum of the number 
of planes within the group powered by two. Finally, 
we divide the previous value by the number of 
groups. The lower the value obtained, higher the 
complexity of the instance to be solved. 

The results are shown in Table 2, where the 
instance and the best model for that instance is stated, 
then the number of groups formed for MIPvsCP 
calculation, and then the MIPvsCP value.  

Analysing Table 2, we can say that for these 
instances, for a MIPvsCP coefficient above 0.18% we 
recommend using the CP model, and below 0.15% we 
recommend MIP. 

For instances within 0.18% and 0.15%, we have 
no evidence to support which one is better. 

Lastly, both MIP and CP can achieve good 
performance for instances without any group formed. 
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Table 2: MIPvsCP values for each instance. 

Instance Best model Groups MIPvsCP (%)
1 CP 1 0.71
2 CP 1 0.41
3 Both 0 -----
4 CP 2 0.18
5 MIP 3 0.11
6 CP 8 1.45
7 Both 0 -----
8 MIP 2 0.15
9 MIP 19 0.05
10 MIP 33 0.05
11 MIP 40 0.03
12 MIP 56 0.004
13 MIP 109 0.0016

5 CONCLUSIONS 

ASP is a problem that air traffic control faces on daily 
basis on different airports around the world, and, as 
such, new ways to help solve the problems are 
pertinent. 

In this work, we addressed ASP using MIP and 
CP, both well studied and formulated in the related 
literature. The two main contributions were the 
design of a decomposition heuristic procedure to 
boost the performance of MIP and CP and the 
development of a quick measure that points out to the 
formulation to be used prior to running them. 

From the results presented, five main outcomes 
should be retained: 
 MIP is better for complex problems; 
 CP is faster for simpler problems; 
 DH procedure provides a heuristic able to get a 

good solution (or even an optimal one) in a 
faster way; 

 When MIPvsCP coefficient is above 0.18%, 
CP formulation should be used, and when it is 
below 0.15%, MIP is the better bet. 

There are still some enhancements that can be 
made, such as pre-processing in the way mentioned in 
(Beasley et al. 2000) and, in the CP formulation, 
exploring additional redundant constraints and the 
usefulness of some symmetry-breaking constraints. 
In the DH procedure, two improvements can be made: 
add the MIPvsCP coefficient to guide the choice 
between MIP and CP to solve the smaller problems, 
and address the case where the DH procedure is not 
able to produce a feasible solution because of the 
separation times. Notwithstanding, an easy answer to 
this last issue is the use of part of NFP and/or NBP 
solutions. 
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